Abstract

In this research, surface plasmon resonance (SPR) spectroscopy was used for sensing copper ion by combining the SPR with nanocrystalline cellulose modified by hexadecyltrimethylammonium bromide and graphene oxide composite (CTA-NCC/GO) thin film. The binding of Cu2+ on CTA-NCC/GO thin film was monitored by using SPR spectroscopy. By using the obtained SPR curve, detection range, binding affinity, sensitivity, full width at half maximum (FWHM), data accuracy (DA), and signal-to-noise ratio (SNR) have been calculated. The results showed that the sensor detection range was 0.01 until 0.5 ppm, and that it reached a saturation value. Moreover, the resonance angle shift followed the Langmuir isotherm model with a binding affinity constant of 4.075 × 103 M−1. A high sensitivity of 3.271° ppm−1 also was obtained for low Cu2+ concentration ranged from 0.01 to 0.1 ppm. For the FWHM, the lowest value calculated was at 0.08 and 0.1 ppm, which is 3.35°. The DA of the SPR signal consecutively highest at 0.08 and 0.1 ppm. Besides that, the SNR of the SPR signal increases with the Cu2+ concentrations. The CTA-NCC/GO thin film morphological properties were also studied by using atomic force microscopy. The rms roughness values, which were obtained before and after in contact with Cu2+, were 3.51 nm and 2.46 nm, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique

Hazwani Suhaila Hashim, Yap Wing Fen, Nur Alia Sheh Omar, Jaafar Abdullah, Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, and Silvan Saleviter
Opt. Express 28(7) 9738-9752 (2020)

Design and analysis of surface plasmon resonance optical sensor for determining cobalt ion based on chitosan-graphene oxide decorated quantum dots-modified gold active layer

Silvan Saleviter, Yap Wing Fen, Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Jaafar Abdullah, Amir Reza Sadrolhosseini, and Nur Alia Sheh Omar
Opt. Express 27(22) 32294-32307 (2019)

Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF

Wei Gong, Shouzhen Jiang, Zhen Li, Chonghui Li, Jihua Xu, Jie Pan, Yanyan Huo, Baoyuan Man, Aihua Liu, and Chao Zhang
Opt. Express 27(3) 3483-3495 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
    [Crossref] [PubMed]
  2. Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
    [Crossref]
  3. C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
    [Crossref] [PubMed]
  4. D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
    [Crossref]
  5. J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
    [Crossref]
  6. M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
    [Crossref] [PubMed]
  7. J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
    [Crossref]
  8. J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
    [Crossref] [PubMed]
  9. H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
    [Crossref]
  10. E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
    [Crossref]
  11. Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
    [Crossref]
  12. W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
    [Crossref]
  13. Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
    [Crossref]
  14. N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
    [Crossref]
  15. C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
    [Crossref] [PubMed]
  16. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
    [Crossref]
  17. Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
    [Crossref]
  18. Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
    [Crossref]
  19. N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
    [Crossref]
  20. Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
    [Crossref] [PubMed]
  21. N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
    [Crossref]
  22. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).
  23. C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
    [Crossref]
  24. W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).
  25. Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
    [Crossref] [PubMed]
  26. H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
    [Crossref]
  27. P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
    [Crossref]
  28. Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
    [Crossref] [PubMed]
  29. A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
    [Crossref]
  30. Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
    [Crossref]
  31. S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
    [Crossref]
  32. Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
    [Crossref]
  33. K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
    [Crossref]
  34. S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
    [Crossref]
  35. J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
    [Crossref]
  36. C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
    [Crossref] [PubMed]
  37. X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
    [Crossref] [PubMed]
  38. R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
    [Crossref]
  39. S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).
  40. S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
    [Crossref]
  41. L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
    [Crossref] [PubMed]
  42. B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
    [Crossref]
  43. C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
    [Crossref]
  44. M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
    [Crossref]
  45. A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
    [Crossref]
  46. M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
    [Crossref]
  47. H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
    [Crossref] [PubMed]
  48. M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
    [Crossref] [PubMed]
  49. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
    [Crossref] [PubMed]
  50. T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
    [Crossref]
  51. W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
    [Crossref]
  52. Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
    [Crossref] [PubMed]
  53. Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
    [Crossref]
  54. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength : a simple approximation,” Proc. SPIE 5068, Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, (13 October 2003); doi: 10.1117/12.518857(2003).
  55. A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
    [Crossref] [PubMed]
  56. X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).
  57. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
    [Crossref]
  58. N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
    [Crossref] [PubMed]
  59. E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
    [Crossref]
  60. J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
    [Crossref]
  61. J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
    [Crossref] [PubMed]
  62. A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
    [Crossref]
  63. Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
    [Crossref]
  64. K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
    [Crossref] [PubMed]
  65. P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
    [Crossref] [PubMed]
  66. N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
    [Crossref] [PubMed]
  67. N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
    [Crossref] [PubMed]
  68. N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
    [Crossref]

2019 (1)

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

2018 (8)

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

2017 (5)

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

2016 (6)

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

2015 (2)

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

2014 (2)

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

2013 (8)

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
[Crossref]

Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

2012 (5)

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

2011 (10)

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref] [PubMed]

Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
[Crossref]

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

2010 (3)

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

2009 (4)

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

2007 (3)

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

2006 (3)

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

2005 (1)

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

2004 (4)

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
[Crossref] [PubMed]

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

2002 (1)

M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
[Crossref]

2001 (1)

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Abdelouahdi, K.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Abdi, M. M.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Abdullah, J.

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

Abe, K.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Abitol, T.

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

Ai, K.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Al-Rekabi, S. H.

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

Alwahib, A. A.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Amjadi, M.

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

Anas, N. A. A.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

Aranguren, M.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Ariffin, H.

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Arsad, N.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Avérous, L.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Bakar, A. A. A.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Balandin, A. A.

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref] [PubMed]

Barakat, A.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Becker, J. Y.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Benight, A. S.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Berglund, L. A.

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Bhushan, V.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Bidin, N.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Bismarck, A.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Buhot, A.

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

Capadona, J. R.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Cennamo, N.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Cerrada, M. L.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

Chah, S.

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

Chang, M. N.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Chang, W. L.

W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
[Crossref]

Chanzy, H.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

Chao, C. C.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Chau, Y. C.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Chau, Y. F. C.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Chau, Y.-F. C.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Chen, C. H.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Chen, H.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Chen, P.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Chen, X.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Chen, Y. P.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Cheney, M. A.

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Cherian, B. M.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Chiang, H. P.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Chiang, H.-P.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Chik, C. E. N. C. E.

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

Chiu, P. K.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Chou Chao, C.-T.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Chou Chau, Y. F.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Cohen, B.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Conte, L.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Cranston, E. D.

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

Cui, M. L.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Curvelo, A. A. S.

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

Daniyal, W. M. E. M. M.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

Dhar, N.

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Dufresne, A.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

Eichhorn, S. J.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

El Achaby, M.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

El Miri, N.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Fen, Y. W.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
[Crossref]

Fihri, A.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Fleury, E.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

Foley, K.

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Forzani, E. S.

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Fu, Y. P.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Gagor, A.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Galatus, R.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Gindl, W.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Goussé, C.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

Grunert, M.

M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
[Crossref]

Guo, J. S.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Hallaj, T.

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

Halperin, A.

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

Hong, S.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

Hsiao, C. N.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Huang, C. C.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Huang, H. J.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Ishak, N. S.

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Ismadji, S.

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Jang, D. O.

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

Jang, G.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Jawaid, M.

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Jeong, D. Y.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Jiang, S. L.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Jiao, L.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Joo, S. W.

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Ju, Y. H.

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Junior de Menezes, A.

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

Kaith, B. S.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Kalia, S.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Kamaruddin, N. H.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Kameoka, J.

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

Kang, T.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

Kang, X.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Karim, Z.

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Kaur, P.

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

Keckes, J.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Kian, L. K.

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Kim, J.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Kim, S.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Kim, W. M.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Ko, H.

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

Koh, K.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Korin, E.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Kroft, S. H.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Kuga, S.

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Kumara, N. T. R. N.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Lai, C. H.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Lai, E. P. C.

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

Larzek, M.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Lee, D. Y.

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

Lee, K. S.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Lee, T. S.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Levinson, B. S.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Li, C.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Li, H.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Li, L.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Liao, B. H.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Lim, C. M.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Lin, C. T.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Lin, L. P.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Lin, L. Y.

C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
[Crossref] [PubMed]

Lin, Q.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Ling, T. K.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Liu, H. L.

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Liu, J.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Liu, J. M.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Lu, L.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Mahdi, M. A.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

Mahmood Mat Yunus, W.

Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

Mangalam, A.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Marcovich, N. E.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Marway, H.

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

Massarotti, D.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

McKenna, R. W.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Miller, M. L.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Mobarak, N. N.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Mohammadi, A.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Moksin, M. M.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Monaghan, S. A.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Moon, J.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

Musielak, M.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Nakagaito, A. N.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Nassiopoulos, E.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Nishiyama, Y.

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Njuguna, J.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Nogi, M.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Noor, A. S. M.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Ock, K.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Oh, S.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

Omar, N. A. S.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Osredkar, J.

J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
[Crossref]

Panta, Y. M.

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Peijs, T.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Peng, B. L.

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Perkins, W. D.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Putro, J. N.

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Qian, S.

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Qiao, R.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Ramdzan, N. S. M.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

Renneckar, S.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Roh, Y.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Roman, M.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Rowan, S. J.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Sadeghi, S.

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

Sadrolhosseini, A. R.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Salajková, M.

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

Saleviter, S.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Santoso, S. P.

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Sareen, D.

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

Shen, L.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Shen, Y.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Shiao, M. H.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Shokri, R.

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

Simonsen, J.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Singh, K.

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

Singh, N.

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

Siqueira, G.

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

Sitko, R.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Solhy, A.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Son, J. M.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Su, C. B.

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

Sun, R. J.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Sustar, N.

J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
[Crossref]

Talib, Z. A.

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Talik, E.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Tam, K. C.

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Tan, W.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Tao, N.

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Teng, Y. L.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Thielemans, W.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Toledo, F.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Tseng, F. G.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Veigel, S.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Voo, N. Y.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Wada, M.

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Wang, C. K.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Wang, G. A.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Wang, T. J.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Wang, W.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Wang, X. X.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Wang, Z.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Weder, C.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Wei, T. B.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Weng, Y. Q.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Westerhoff, P.

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Willis, M. S.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Wing Fen, Y.

Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

Winter, W. T.

M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
[Crossref]

Wu, C. M.

C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
[Crossref] [PubMed]

Xu, F.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Xu, M.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Xu, Q. H.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Xu, Y. S.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Yaacob, M. H.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Yang, H.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Yang, P. Y.

W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
[Crossref]

Yang, S.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Yano, H.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Ye, B. H.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Yi, J.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

You, T.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Yu, J. C. C.

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

Yu, K.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Yuan, H.

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Yue, F.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Yunus, W. M. M.

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
[Crossref]

Yusof, N. A.

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

Zahouily, M.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Zainuddin, N. H.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Zainudin, A. A.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Zan, M. S. D.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Zare, R. N.

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

Zawisza, B.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Zeng, C. C.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Zeni, L.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Zhang, G.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Zhang, L.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Zhang, L. H.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Zhang, Y. M.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Zhao, B.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Zheng, Z. Y.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Zhong, Y. R.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Zhou, F.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Zhou, Q.

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

Zhou, S.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Zhou, Z.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Zhu, X.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Zhu, Y.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Zhulina, E. B.

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Zong, C.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

ACS Omega (1)

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Am. J. Clin. Pathol. (1)

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Anal. Chem. (1)

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Biomacromolecules (1)

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
[Crossref] [PubMed]

Can. J. Chem. Eng. (1)

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Carbohydr. Polym. (1)

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Dyes Pigm. (1)

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Electrochim. Acta (1)

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

IEEE Sens. J. (1)

Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Indian J. Phys. (1)

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Inorg. Chem. Commun. (2)

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Int. J. Biol. Macromol. (1)

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Int. J. Polym. Mater. (1)

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Int. J. Polym. Sci. (1)

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

J. Clin. Toxicol. (1)

J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
[Crossref]

J. Colloid Interface Sci. (2)

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

J. Lumin. (1)

W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
[Crossref]

J. Mater. Chem. (1)

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

J. Mater. Sci. (1)

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

J. Polym. Environ. (1)

M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
[Crossref]

Materials (Basel) (1)

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Microchem. J. (1)

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Microporous Mesoporous Mater. (1)

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Nat. Mater. (1)

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref] [PubMed]

Nord. Pulp Paper Res. J. (1)

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

Opt. Photonics J. (1)

Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
[Crossref]

Optik (Stuttg.) (5)

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Phys. Rev. (1)

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Polymer (Guildf.) (2)

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

RSC Advances (1)

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Sci. Rep. (2)

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (7)

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Sens. Biosensing Res. (1)

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

Sens. Lett. (2)

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

Sens. Mater. (2)

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

Sens. Rev. (2)

Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

Sensors (Basel) (3)

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (3)

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

Talanta (2)

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

Tetrahedron (1)

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Tetrahedron Lett. (1)

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

Trends Analyt. Chem. (1)

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Other (1)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength : a simple approximation,” Proc. SPIE 5068, Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, (13 October 2003); doi: 10.1117/12.518857(2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Kretschmann configuration.
Fig. 2
Fig. 2 Schematic diagram of surface plasmon resonance spectroscopy.
Fig. 3
Fig. 3 The SPR curve of gold layer in contact with deionized water.
Fig. 4
Fig. 4 The SPR curves for Cu2+ (0.1-60 ppm) in contact with the gold layer.
Fig. 5
Fig. 5 The resonance angle shifts of gold surface in contact with different Cu2+ concentration.
Fig. 6
Fig. 6 SPR curve for CTA-NCC/GO thin film in contact with deionized water.
Fig. 7
Fig. 7 SPR reflectivity curves for CTA-NCC/GO thin film in contact with Cu2+ solution (a) 0.01-0.5 ppm and (b) 0.5-60 ppm.
Fig. 8
Fig. 8 Langmuir isotherm model of resonance angle shift for Cu2+ ions in contact with CTA-NCC/GO thin film and gold thin film.
Fig. 9
Fig. 9 Comparison of the shift of resonance angle for Cu2+ in contact with CTA-NCC/GO thin film from 0.01 to 0.1 ppm.
Fig. 10
Fig. 10 FWHM of SPR curve (for deionized water) corresponding to half from its maximum value.
Fig. 11
Fig. 11 Detection accuracy for CTA-NCC/GO thin film in Cu2+ ion sensing.
Fig. 12
Fig. 12 Signal-to-noise ratio for CTA-NCC/GO thin film in Cu2+ ion sensing.
Fig. 13
Fig. 13 AFM images of CTA-NCC/GO thin film (a) before and (b) after in contact with Cu2+ solution.

Tables (2)

Tables Icon

Table 1 Resonance angle and resonance angle shift for all Cu2+ solution concentrations in contact with CTA-NCC/GO thin film.

Tables Icon

Table 2 Resonance angle shift, FWHM, DA, and SNR data for CTA-NCC/GO SPR sensor in detecting Cu2+ ion from 0.01 ppm to 60 ppm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ θ = Δ θ max C 1 K + C

Metrics