Abstract

Y2O3:Eu3+ nanospheres with sizes of 40-334 nm in diameter were obtained using a low-cost co-precipitation method followed by a thermal annealing process. The sizes of the nanospheres were controlled by tuning the synthesis time and annealing temperature. X-ray diffraction patterns and scanning electron microscopy images were used to determine the structure, shape, and size of the obtained nanoparticles. The optical properties of the nanospheres were investigated with measurements of the photoluminescence excitation and emission spectra. A phase transformation of the nanospheres from an amorphous structure to a cubic crystalline Y2O3 structure was observed when the annealing temperature was higher than 500 °C. Intense red photoluminescence emission and UV excitation of the nanospheres with a crystal structure were identified. In addition, the optimal concentration of dopant (Eu3+) for the red emission was determined to be ~8 mol%. The unique structural and optical properties of the Y2O3:Eu3+ nanospheres could lead to efficient red LED-phosphors for use in generating white light with GaAlN-based UV LEDs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications

Yanlin Huang, Yosuke Nakai, Taiju Tsuboi, and Hyo Jin Seo
Opt. Express 19(7) 6303-6311 (2011)

Synthesis and photoluminescence characteristics of the LiGd3(MoO4)5:Eu3+ red phosphor with high color purity and brightness

Dasheng Lu, Xinghong Gong, Yujin Chen, Jianhua Huang, Yanfu Lin, Zundu Luo, and Yidong Huang
Opt. Mater. Express 8(2) 259-269 (2018)

Close-relationship between the luminescence and structural characteristics in efficient nano-phosphor Y2Mo4O15:Eu3+

Huajuan Deng, Na Xue, Zhoufei Hei, Mengfan He, Ting Wang, Nannan Xie, and Ruijin Yu
Opt. Mater. Express 5(3) 490-496 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2006).
  2. W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
    [Crossref]
  3. S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
    [Crossref]
  4. K. Binnemans, “Interpretation of europium(III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
    [Crossref]
  5. S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
    [Crossref] [PubMed]
  6. M.-H. Lee, S.-G. Oh, and S.-C. Yi, “Preparation of Eu-doped Y2O3 luminescent nanoparticles in nonionic reverse microemulsions,” J. Colloid Interface Sci. 226(1), 65–70 (2000).
    [Crossref] [PubMed]
  7. D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. 102, 916–920 (1998).
    [Crossref]
  8. Y. Jiang, Z. Wang, F. Zhang, H. Paris, and C. Summers, “Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique,” J. Mater. Res. 13(10), 2950–2955 (1988).
    [Crossref]
  9. H. T. Hintzen and H. M. van Noort, “Investigation of luminescent Eu-doped sesquioxides Ln2O3 (Ln = In, Sc, Y, La, Gd, Lu) and some mixed oxides by 151Eu Mössbauer spectroscopy,” J. Phys. Chem. Solids 49(8), 873–881 (1998).
    [Crossref]
  10. P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick, “A complete 4fn energy level diagram for all trivalent lanthanide ions,” J. Solid State Chem. 178(2), 448–453 (2005).
    [Crossref]
  11. Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, “Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes,” J. Am. Chem. Soc. 133(39), 15475–15486 (2011).
    [Crossref] [PubMed]
  12. Y. K. Ooi, C. Liu, and J. Zhang, “Analysis on polarization-dependent light extraction and effect of passivation layer for 230 nm AlGaN nanowire light-emitting diodes,” IEEE Photonics J. 9(4), 4501712 (2017).
    [Crossref]
  13. P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
    [Crossref] [PubMed]
  14. X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
    [Crossref]
  15. N. Bradsley, M. Hansen, L. Pattison, M. Pattison, K. Stober, V. Taylor, J. Tsao, and M. Yamada, Solid-state lighting R&D plan, edited by J. Brodrick (Solid-State Lighting Program, the U.S. Department of Energy).
  16. M. Pattison, N. Bradsley, M. Hansen, L. Pattison, S. Schober, K. Stober, J. Tsao, and M. Yamada, Solid-state lighting2017suggested research topics supplement: Technology and market context, edited by J. Brodrick (Office of Energy Efficiency & Renewable Energy, the U.S. Department of Energy).
  17. J. Penning, K. Stober, V. Taylor, and M. Yamada, Energy savings forecast of solid-state lighting in general illumination applications – Prepared for the U.S. Department of Energy Solid-State Lighting Program (Navigant Consulting, Inc. and the U.S. Department of Energy).
  18. P. Zhu, W. Wang, H. Zhu, P. Vargas, and A. Bont, “Optical properties of Eu3+-doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method,” IEEE Photonics J. 10(1), 4500210 (2018).
    [Crossref]
  19. J.-H. Wang, Z.-P. Li, B. Liu, and B.-B. Liu, “Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure,” Chin. Phys. B 26(2), 026101 (2017).
    [Crossref]
  20. S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).
  21. G. Chen, W. Qi, Y. Li, C. Yang, and X. Zhao, “Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties,” J. Mater. Sci. Mater. Electron. 27(6), 5628–5634 (2016).
    [Crossref]
  22. M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
    [Crossref] [PubMed]
  23. H. Cui, P. Zhu, H. Zhu, H. Li, and Q. Cui, “Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors,” Chin. Phys. B 23(5), 057801 (2014).
    [Crossref]
  24. A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(3), 496–500 (2014).
    [Crossref]
  25. Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
    [Crossref]
  26. B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
    [Crossref] [PubMed]
  27. H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
    [Crossref]
  28. S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
    [Crossref]
  29. T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
    [Crossref]
  30. M. K. Devaraju, S. Yin, and T. Sato, “A rapid hydrothermal synthesis of rare earth oxide activated Y (OH)3 and Y2O3 nanotubes,” Nanotechnology 20(30), 305302 (2009).
    [Crossref] [PubMed]
  31. N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
    [Crossref]
  32. J.-G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
    [Crossref]
  33. R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, and C.-H. Yan, “Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals,” Chem. Mater. 19(1), 18–27 (2007).
    [Crossref]
  34. X. Wu, Y. Tao, F. Gao, L. Dong, and Z. Hu, “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires,” J. Cryst. Growth 277(1-4), 643–649 (2005).
    [Crossref]
  35. H. Wang, M. Uehara, H. Nakamura, M. Miyazaki, and H. Maeda, “Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route,” Adv. Mater. 17(20), 2506–2509 (2005).
    [Crossref]
  36. J. A. Nelson, E. L. Brant, and M. J. Wagner, “Nanocrystalline Y2O3:Eu phosphors prepared by alkalide reduction,” Chem. Mater. 15(3), 688–693 (2003).
    [Crossref]
  37. C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
    [Crossref]
  38. G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3:Eu,” Adv. Mater. 13(20), 1557–1560 (2001).
    [Crossref]
  39. J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C.-H. Lu, “Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis,” J. Phys. Chem. 105(45), 11098–11105 (2001).
    [Crossref]
  40. M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir 17(22), 7145–7149 (2001).
    [Crossref]
  41. B. Bihari, H. Eilers, and B. M. Tissue, “Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals,” J. Lumin. 75(1), 1–10 (1997).
    [Crossref]
  42. T. Ye, Z. Guiwen, Z. Weiping, and Z. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32(5), 501–506 (1997).
    [Crossref]
  43. H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251(1-2), 74–78 (1996).
    [Crossref]
  44. T. Sato, S. Imaeda, and K. Sato, “Thermal transformation of yttrium hydroxides to yttrium oxides,” Thermochim. Acta 133, 79–85 (1988).
    [Crossref]
  45. N. C. Chang, “Fluorescence and stimulated emission from trivalent europium in yttrium oxide,” J. Appl. Phys. 34(12), 3500–3504 (1963).
    [Crossref]
  46. L. S. Wang, Y. H. Zhou, Z. W. Quan, and J. Lin, “Formation mechanisms and morphology dependent luminescence properties of Y2O3:Eu phosphors prepared by spray pyrolysis process,” Mater. Lett. 59(10), 1130–1133 (2005).
    [Crossref]
  47. Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
    [Crossref]
  48. C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
    [Crossref]
  49. P. Zhu, “Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene,” J. Opt. 18(2), 025403 (2016).
    [Crossref]
  50. P. Zhu and N. Tansu, “Effect of packing density and packing geometry on light extraction of III-nitride light-emitting diodes with microsphere arrays,” Photon. Res. 3(4), 184–191 (2015).
    [Crossref]
  51. S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, T. Sannomiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Synthesis of Y2O3 nanophosphors by homogeneous precipitation method using excessive urea for cathodoluminescence and upconversion luminescence bioimaging,” Opt. Mater. Express 6(3), 831–843 (2016).
    [Crossref]
  52. JCPDS card No. 41–1105.
  53. J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
    [Crossref]
  54. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  55. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]

2018 (1)

P. Zhu, W. Wang, H. Zhu, P. Vargas, and A. Bont, “Optical properties of Eu3+-doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method,” IEEE Photonics J. 10(1), 4500210 (2018).
[Crossref]

2017 (2)

J.-H. Wang, Z.-P. Li, B. Liu, and B.-B. Liu, “Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure,” Chin. Phys. B 26(2), 026101 (2017).
[Crossref]

Y. K. Ooi, C. Liu, and J. Zhang, “Analysis on polarization-dependent light extraction and effect of passivation layer for 230 nm AlGaN nanowire light-emitting diodes,” IEEE Photonics J. 9(4), 4501712 (2017).
[Crossref]

2016 (5)

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

P. Zhu, “Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene,” J. Opt. 18(2), 025403 (2016).
[Crossref]

S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, T. Sannomiya, J. Miyake, M. Ashida, T. Araki, and M. Hashimoto, “Synthesis of Y2O3 nanophosphors by homogeneous precipitation method using excessive urea for cathodoluminescence and upconversion luminescence bioimaging,” Opt. Mater. Express 6(3), 831–843 (2016).
[Crossref]

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

G. Chen, W. Qi, Y. Li, C. Yang, and X. Zhao, “Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties,” J. Mater. Sci. Mater. Electron. 27(6), 5628–5634 (2016).
[Crossref]

2015 (5)

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

P. Zhu and N. Tansu, “Effect of packing density and packing geometry on light extraction of III-nitride light-emitting diodes with microsphere arrays,” Photon. Res. 3(4), 184–191 (2015).
[Crossref]

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

K. Binnemans, “Interpretation of europium(III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

2014 (5)

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

H. Cui, P. Zhu, H. Zhu, H. Li, and Q. Cui, “Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors,” Chin. Phys. B 23(5), 057801 (2014).
[Crossref]

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(3), 496–500 (2014).
[Crossref]

2011 (2)

Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
[Crossref]

Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, “Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes,” J. Am. Chem. Soc. 133(39), 15475–15486 (2011).
[Crossref] [PubMed]

2010 (2)

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

2009 (3)

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

M. K. Devaraju, S. Yin, and T. Sato, “A rapid hydrothermal synthesis of rare earth oxide activated Y (OH)3 and Y2O3 nanotubes,” Nanotechnology 20(30), 305302 (2009).
[Crossref] [PubMed]

2008 (2)

N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
[Crossref]

J.-G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

2007 (1)

R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, and C.-H. Yan, “Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals,” Chem. Mater. 19(1), 18–27 (2007).
[Crossref]

2005 (4)

X. Wu, Y. Tao, F. Gao, L. Dong, and Z. Hu, “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires,” J. Cryst. Growth 277(1-4), 643–649 (2005).
[Crossref]

H. Wang, M. Uehara, H. Nakamura, M. Miyazaki, and H. Maeda, “Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route,” Adv. Mater. 17(20), 2506–2509 (2005).
[Crossref]

L. S. Wang, Y. H. Zhou, Z. W. Quan, and J. Lin, “Formation mechanisms and morphology dependent luminescence properties of Y2O3:Eu phosphors prepared by spray pyrolysis process,” Mater. Lett. 59(10), 1130–1133 (2005).
[Crossref]

P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick, “A complete 4fn energy level diagram for all trivalent lanthanide ions,” J. Solid State Chem. 178(2), 448–453 (2005).
[Crossref]

2003 (3)

Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
[Crossref]

J. A. Nelson, E. L. Brant, and M. J. Wagner, “Nanocrystalline Y2O3:Eu phosphors prepared by alkalide reduction,” Chem. Mater. 15(3), 688–693 (2003).
[Crossref]

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

2001 (3)

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3:Eu,” Adv. Mater. 13(20), 1557–1560 (2001).
[Crossref]

J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C.-H. Lu, “Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis,” J. Phys. Chem. 105(45), 11098–11105 (2001).
[Crossref]

M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir 17(22), 7145–7149 (2001).
[Crossref]

2000 (1)

M.-H. Lee, S.-G. Oh, and S.-C. Yi, “Preparation of Eu-doped Y2O3 luminescent nanoparticles in nonionic reverse microemulsions,” J. Colloid Interface Sci. 226(1), 65–70 (2000).
[Crossref] [PubMed]

1998 (2)

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. 102, 916–920 (1998).
[Crossref]

H. T. Hintzen and H. M. van Noort, “Investigation of luminescent Eu-doped sesquioxides Ln2O3 (Ln = In, Sc, Y, La, Gd, Lu) and some mixed oxides by 151Eu Mössbauer spectroscopy,” J. Phys. Chem. Solids 49(8), 873–881 (1998).
[Crossref]

1997 (3)

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

B. Bihari, H. Eilers, and B. M. Tissue, “Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals,” J. Lumin. 75(1), 1–10 (1997).
[Crossref]

T. Ye, Z. Guiwen, Z. Weiping, and Z. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32(5), 501–506 (1997).
[Crossref]

1996 (1)

H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251(1-2), 74–78 (1996).
[Crossref]

1988 (2)

T. Sato, S. Imaeda, and K. Sato, “Thermal transformation of yttrium hydroxides to yttrium oxides,” Thermochim. Acta 133, 79–85 (1988).
[Crossref]

Y. Jiang, Z. Wang, F. Zhang, H. Paris, and C. Summers, “Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique,” J. Mater. Res. 13(10), 2950–2955 (1988).
[Crossref]

1963 (1)

N. C. Chang, “Fluorescence and stimulated emission from trivalent europium in yttrium oxide,” J. Appl. Phys. 34(12), 3500–3504 (1963).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Abe, S.

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

Akasaka, T.

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

Ananias, D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Araki, T.

Ashida, M.

Bihari, B.

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. 102, 916–920 (1998).
[Crossref]

B. Bihari, H. Eilers, and B. M. Tissue, “Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals,” J. Lumin. 75(1), 1–10 (1997).
[Crossref]

Binnemans, K.

K. Binnemans, “Interpretation of europium(III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

Bont, A.

P. Zhu, W. Wang, H. Zhu, P. Vargas, and A. Bont, “Optical properties of Eu3+-doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method,” IEEE Photonics J. 10(1), 4500210 (2018).
[Crossref]

Brant, E. L.

J. A. Nelson, E. L. Brant, and M. J. Wagner, “Nanocrystalline Y2O3:Eu phosphors prepared by alkalide reduction,” Chem. Mater. 15(3), 688–693 (2003).
[Crossref]

Breshike, C. J.

Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, “Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes,” J. Am. Chem. Soc. 133(39), 15475–15486 (2011).
[Crossref] [PubMed]

Burdick, G. W.

P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick, “A complete 4fn energy level diagram for all trivalent lanthanide ions,” J. Solid State Chem. 178(2), 448–453 (2005).
[Crossref]

Carlos, L. D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Chang, N. C.

N. C. Chang, “Fluorescence and stimulated emission from trivalent europium in yttrium oxide,” J. Appl. Phys. 34(12), 3500–3504 (1963).
[Crossref]

Chen, G.

G. Chen, W. Qi, Y. Li, C. Yang, and X. Zhao, “Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties,” J. Mater. Sci. Mater. Electron. 27(6), 5628–5634 (2016).
[Crossref]

Chen, W.

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

Cui, H.

H. Cui, P. Zhu, H. Zhu, H. Li, and Q. Cui, “Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors,” Chin. Phys. B 23(5), 057801 (2014).
[Crossref]

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

Cui, Q.

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

H. Cui, P. Zhu, H. Zhu, H. Li, and Q. Cui, “Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors,” Chin. Phys. B 23(5), 057801 (2014).
[Crossref]

Dai, Q.

Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, “Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes,” J. Am. Chem. Soc. 133(39), 15475–15486 (2011).
[Crossref] [PubMed]

Das, S.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Detchprohm, T.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Devaraju, M. K.

M. K. Devaraju, S. Yin, and T. Sato, “A rapid hydrothermal synthesis of rare earth oxide activated Y (OH)3 and Y2O3 nanotubes,” Nanotechnology 20(30), 305302 (2009).
[Crossref] [PubMed]

Dhanaraj, J.

J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C.-H. Lu, “Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis,” J. Phys. Chem. 105(45), 11098–11105 (2001).
[Crossref]

Dobson, P. J.

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3:Eu,” Adv. Mater. 13(20), 1557–1560 (2001).
[Crossref]

Dong, L.

X. Wu, Y. Tao, F. Gao, L. Dong, and Z. Hu, “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires,” J. Cryst. Growth 277(1-4), 643–649 (2005).
[Crossref]

Douglas Yoder, P.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Du, J.

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

Dubey, R. K.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Dupuis, R. D.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Dutta, S.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Eilers, H.

B. Bihari, H. Eilers, and B. M. Tissue, “Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals,” J. Lumin. 75(1), 1–10 (1997).
[Crossref]

H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251(1-2), 74–78 (1996).
[Crossref]

Fang, J.

T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Fern, G. R.

M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir 17(22), 7145–7149 (2001).
[Crossref]

Fischer, A. M.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Foley, M. E.

Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, “Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes,” J. Am. Chem. Soc. 133(39), 15475–15486 (2011).
[Crossref] [PubMed]

Fu, S.

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

Fukushima, S.

Furukawa, T.

Gai, S.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Gao, F.

X. Wu, Y. Tao, F. Gao, L. Dong, and Z. Hu, “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires,” J. Cryst. Growth 277(1-4), 643–649 (2005).
[Crossref]

Gao, G.

N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
[Crossref]

Gibbons, C. S.

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

Guiwen, Z.

T. Ye, Z. Guiwen, Z. Weiping, and Z. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32(5), 501–506 (1997).
[Crossref]

Gupta, B. K.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Han, S. M.

Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
[Crossref]

Haranath, D.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Hashimoto, M.

Hintzen, H. T.

H. T. Hintzen and H. M. van Noort, “Investigation of luminescent Eu-doped sesquioxides Ln2O3 (Ln = In, Sc, Y, La, Gd, Lu) and some mixed oxides by 151Eu Mössbauer spectroscopy,” J. Phys. Chem. Solids 49(8), 873–881 (1998).
[Crossref]

Holland, E.

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3:Eu,” Adv. Mater. 13(20), 1557–1560 (2001).
[Crossref]

Hou, D.

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

Hou, H.

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

Hu, Z.

X. Wu, Y. Tao, F. Gao, L. Dong, and Z. Hu, “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires,” J. Cryst. Growth 277(1-4), 643–649 (2005).
[Crossref]

Huang, S.

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Hutchison, J. L.

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3:Eu,” Adv. Mater. 13(20), 1557–1560 (2001).
[Crossref]

Ichimiya, M.

Iida, J.

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

Imaeda, S.

T. Sato, S. Imaeda, and K. Sato, “Thermal transformation of yttrium hydroxides to yttrium oxides,” Thermochim. Acta 133, 79–85 (1988).
[Crossref]

Ireland, T. G.

M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir 17(22), 7145–7149 (2001).
[Crossref]

Ishigaki, T.

J.-G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

Jadhav, A. P.

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(3), 496–500 (2014).
[Crossref]

Jagannathan, R.

J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C.-H. Lu, “Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis,” J. Phys. Chem. 105(45), 11098–11105 (2001).
[Crossref]

Ji, C.

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

Jiang, K.

Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
[Crossref]

Jiang, Y.

Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
[Crossref]

Y. Jiang, Z. Wang, F. Zhang, H. Paris, and C. Summers, “Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique,” J. Mater. Res. 13(10), 2950–2955 (1988).
[Crossref]

Jing, X.

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kang, Y. S.

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(3), 496–500 (2014).
[Crossref]

Kao, T.-T.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Kasperczyk, M.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Kneissl, M.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Kumar, P.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Kutty, T. R. N.

J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C.-H. Lu, “Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis,” J. Phys. Chem. 105(45), 11098–11105 (2001).
[Crossref]

Lee, M.-H.

M.-H. Lee, S.-G. Oh, and S.-C. Yi, “Preparation of Eu-doped Y2O3 luminescent nanoparticles in nonionic reverse microemulsions,” J. Colloid Interface Sci. 226(1), 65–70 (2000).
[Crossref] [PubMed]

Li, C.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Li, H.

H. Cui, P. Zhu, H. Zhu, H. Li, and Q. Cui, “Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors,” Chin. Phys. B 23(5), 057801 (2014).
[Crossref]

Li, J.-G.

J.-G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

Li, P.

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

Li, X.

J.-G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

Li, X.-H.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Li, Y.

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

G. Chen, W. Qi, Y. Li, C. Yang, and X. Zhao, “Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties,” J. Mater. Sci. Mater. Electron. 27(6), 5628–5634 (2016).
[Crossref]

Li, Z.

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

Li, Z.-P.

J.-H. Wang, Z.-P. Li, B. Liu, and B.-B. Liu, “Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure,” Chin. Phys. B 26(2), 026101 (2017).
[Crossref]

Lin, J.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

L. S. Wang, Y. H. Zhou, Z. W. Quan, and J. Lin, “Formation mechanisms and morphology dependent luminescence properties of Y2O3:Eu phosphors prepared by spray pyrolysis process,” Mater. Lett. 59(10), 1130–1133 (2005).
[Crossref]

Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
[Crossref]

Lin, Y.

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Lita, A.

Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, “Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes,” J. Am. Chem. Soc. 133(39), 15475–15486 (2011).
[Crossref] [PubMed]

Liu, B.

J.-H. Wang, Z.-P. Li, B. Liu, and B.-B. Liu, “Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure,” Chin. Phys. B 26(2), 026101 (2017).
[Crossref]

Liu, B.-B.

J.-H. Wang, Z.-P. Li, B. Liu, and B.-B. Liu, “Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure,” Chin. Phys. B 26(2), 026101 (2017).
[Crossref]

Liu, C.

Y. K. Ooi, C. Liu, and J. Zhang, “Analysis on polarization-dependent light extraction and effect of passivation layer for 230 nm AlGaN nanowire light-emitting diodes,” IEEE Photonics J. 9(4), 4501712 (2017).
[Crossref]

Liu, H.

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Liu, J.

Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
[Crossref]

Liu, N.

Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
[Crossref]

Liu, X.

N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
[Crossref]

Liu, Y.

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

Lu, C.-H.

J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C.-H. Lu, “Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis,” J. Phys. Chem. 105(45), 11098–11105 (2001).
[Crossref]

Lü, S.

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Ma, C.

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

Ma, Y.

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

Maeda, H.

H. Wang, M. Uehara, H. Nakamura, M. Miyazaki, and H. Maeda, “Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route,” Adv. Mater. 17(20), 2506–2509 (2005).
[Crossref]

Mai, H.

T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Martens, M.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Martinez-Rubio, M. I.

M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir 17(22), 7145–7149 (2001).
[Crossref]

Meijerink, A.

P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick, “A complete 4fn energy level diagram for all trivalent lanthanide ions,” J. Solid State Chem. 178(2), 448–453 (2005).
[Crossref]

Miyake, J.

Miyazaki, M.

H. Wang, M. Uehara, H. Nakamura, M. Miyazaki, and H. Maeda, “Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route,” Adv. Mater. 17(20), 2506–2509 (2005).
[Crossref]

Nakamura, H.

H. Wang, M. Uehara, H. Nakamura, M. Miyazaki, and H. Maeda, “Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route,” Adv. Mater. 17(20), 2506–2509 (2005).
[Crossref]

Nelson, J. A.

J. A. Nelson, E. L. Brant, and M. J. Wagner, “Nanocrystalline Y2O3:Eu phosphors prepared by alkalide reduction,” Chem. Mater. 15(3), 688–693 (2003).
[Crossref]

Niioka, H.

Novotny, L.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Oh, S.-G.

M.-H. Lee, S.-G. Oh, and S.-C. Yi, “Preparation of Eu-doped Y2O3 luminescent nanoparticles in nonionic reverse microemulsions,” J. Colloid Interface Sci. 226(1), 65–70 (2000).
[Crossref] [PubMed]

Ooi, Y. K.

Y. K. Ooi, C. Liu, and J. Zhang, “Analysis on polarization-dependent light extraction and effect of passivation layer for 230 nm AlGaN nanowire light-emitting diodes,” IEEE Photonics J. 9(4), 4501712 (2017).
[Crossref]

Pal, U.

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(3), 496–500 (2014).
[Crossref]

Pandey, M. K.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Paris, H.

Y. Jiang, Z. Wang, F. Zhang, H. Paris, and C. Summers, “Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique,” J. Mater. Res. 13(10), 2950–2955 (1988).
[Crossref]

Pawar, A. U.

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(3), 496–500 (2014).
[Crossref]

Peijzel, P. S.

P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick, “A complete 4fn energy level diagram for all trivalent lanthanide ions,” J. Solid State Chem. 178(2), 448–453 (2005).
[Crossref]

Person, S.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Ponce, F. A.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Pust, P.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

Qi, W.

G. Chen, W. Qi, Y. Li, C. Yang, and X. Zhao, “Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties,” J. Mater. Sci. Mater. Electron. 27(6), 5628–5634 (2016).
[Crossref]

Qin, Q.

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Qin, W.

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Qiu, G.

N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
[Crossref]

Quan, Z. W.

L. S. Wang, Y. H. Zhou, Z. W. Quan, and J. Lin, “Formation mechanisms and morphology dependent luminescence properties of Y2O3:Eu phosphors prepared by spray pyrolysis process,” Mater. Lett. 59(10), 1130–1133 (2005).
[Crossref]

Reich, C.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Reid, M. F.

P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick, “A complete 4fn energy level diagram for all trivalent lanthanide ions,” J. Solid State Chem. 178(2), 448–453 (2005).
[Crossref]

Saini, S.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Sannomiya, T.

Sato, K.

T. Sato, S. Imaeda, and K. Sato, “Thermal transformation of yttrium hydroxides to yttrium oxides,” Thermochim. Acta 133, 79–85 (1988).
[Crossref]

Sato, T.

M. K. Devaraju, S. Yin, and T. Sato, “A rapid hydrothermal synthesis of rare earth oxide activated Y (OH)3 and Y2O3 nanotubes,” Nanotechnology 20(30), 305302 (2009).
[Crossref] [PubMed]

T. Sato, S. Imaeda, and K. Sato, “Thermal transformation of yttrium hydroxides to yttrium oxides,” Thermochim. Acta 133, 79–85 (1988).
[Crossref]

Sato, Y.

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

Satter, M. M.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Schmidt, P. J.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

Schnick, W.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

Shangda, Z.

T. Ye, Z. Guiwen, Z. Weiping, and Z. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32(5), 501–506 (1997).
[Crossref]

Shanker, V.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Sharma, S. K.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Shen, S.-C.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Shi, L.

T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Shi, R.

N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
[Crossref]

Si, R.

R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, and C.-H. Yan, “Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals,” Chem. Mater. 19(1), 18–27 (2007).
[Crossref]

Sievers, R. E.

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

Silver, J.

M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir 17(22), 7145–7149 (2001).
[Crossref]

Singh, V. N.

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

Snowden, M. J.

M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir 17(22), 7145–7149 (2001).
[Crossref]

Som, S.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Strouse, G. F.

Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, “Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes,” J. Am. Chem. Soc. 133(39), 15475–15486 (2011).
[Crossref] [PubMed]

Summers, C.

Y. Jiang, Z. Wang, F. Zhang, H. Paris, and C. Summers, “Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique,” J. Mater. Res. 13(10), 2950–2955 (1988).
[Crossref]

Sun, L.-D.

R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, and C.-H. Yan, “Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals,” Chem. Mater. 19(1), 18–27 (2007).
[Crossref]

Sun, X.

J.-G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

Tansu, N.

Tao, Y.

X. Wu, Y. Tao, F. Gao, L. Dong, and Z. Hu, “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires,” J. Cryst. Growth 277(1-4), 643–649 (2005).
[Crossref]

Tissue, B. M.

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. 102, 916–920 (1998).
[Crossref]

B. Bihari, H. Eilers, and B. M. Tissue, “Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals,” J. Lumin. 75(1), 1–10 (1997).
[Crossref]

H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251(1-2), 74–78 (1996).
[Crossref]

Trowga, P.

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

Uehara, M.

H. Wang, M. Uehara, H. Nakamura, M. Miyazaki, and H. Maeda, “Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route,” Adv. Mater. 17(20), 2506–2509 (2005).
[Crossref]

van Noort, H. M.

H. T. Hintzen and H. M. van Noort, “Investigation of luminescent Eu-doped sesquioxides Ln2O3 (Ln = In, Sc, Y, La, Gd, Lu) and some mixed oxides by 151Eu Mössbauer spectroscopy,” J. Phys. Chem. Solids 49(8), 873–881 (1998).
[Crossref]

Vargas, P.

P. Zhu, W. Wang, H. Zhu, P. Vargas, and A. Bont, “Optical properties of Eu3+-doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method,” IEEE Photonics J. 10(1), 4500210 (2018).
[Crossref]

Vechi, A.

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

Visser, H. G.

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Wagner, M. J.

J. A. Nelson, E. L. Brant, and M. J. Wagner, “Nanocrystalline Y2O3:Eu phosphors prepared by alkalide reduction,” Chem. Mater. 15(3), 688–693 (2003).
[Crossref]

Wakefield, G.

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3:Eu,” Adv. Mater. 13(20), 1557–1560 (2001).
[Crossref]

Wang, H.

H. Wang, M. Uehara, H. Nakamura, M. Miyazaki, and H. Maeda, “Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route,” Adv. Mater. 17(20), 2506–2509 (2005).
[Crossref]

Wang, J.-H.

J.-H. Wang, Z.-P. Li, B. Liu, and B.-B. Liu, “Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure,” Chin. Phys. B 26(2), 026101 (2017).
[Crossref]

Wang, L. S.

L. S. Wang, Y. H. Zhou, Z. W. Quan, and J. Lin, “Formation mechanisms and morphology dependent luminescence properties of Y2O3:Eu phosphors prepared by spray pyrolysis process,” Mater. Lett. 59(10), 1130–1133 (2005).
[Crossref]

Wang, S.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

Wang, S. B.

Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
[Crossref]

Wang, W.

P. Zhu, W. Wang, H. Zhu, P. Vargas, and A. Bont, “Optical properties of Eu3+-doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method,” IEEE Photonics J. 10(1), 4500210 (2018).
[Crossref]

Wang, Y.

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

Wang, Z.

Y. Jiang, Z. Wang, F. Zhang, H. Paris, and C. Summers, “Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique,” J. Mater. Res. 13(10), 2950–2955 (1988).
[Crossref]

Watkins, B. A.

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

Wegh, R. T.

P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick, “A complete 4fn energy level diagram for all trivalent lanthanide ions,” J. Solid State Chem. 178(2), 448–453 (2005).
[Crossref]

Wei, Y. O.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Weiping, Z.

T. Ye, Z. Guiwen, Z. Weiping, and Z. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32(5), 501–506 (1997).
[Crossref]

Wen, Z.

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

Wernicke, T.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Williams, D. K.

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. 102, 916–920 (1998).
[Crossref]

Wu, C.

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Wu, D.

Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
[Crossref]

Wu, X.

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

X. Wu, Y. Tao, F. Gao, L. Dong, and Z. Hu, “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires,” J. Cryst. Growth 277(1-4), 643–649 (2005).
[Crossref]

Xiao, Y.

Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
[Crossref]

Xie, H.

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Xu, C.

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

Xu, H.

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

Xu, R.

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

Yamagata, S.

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

Yamamoto, T.

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

Yan, C.-H.

R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, and C.-H. Yan, “Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals,” Chem. Mater. 19(1), 18–27 (2007).
[Crossref]

Yan, T.

T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Yang, C.

G. Chen, W. Qi, Y. Li, C. Yang, and X. Zhao, “Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties,” J. Mater. Sci. Mater. Electron. 27(6), 5628–5634 (2016).
[Crossref]

Yang, H.

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Yang, P.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Ye, T.

T. Ye, Z. Guiwen, Z. Weiping, and Z. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32(5), 501–506 (1997).
[Crossref]

Yi, R.

N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
[Crossref]

Yi, S.-C.

M.-H. Lee, S.-G. Oh, and S.-C. Yi, “Preparation of Eu-doped Y2O3 luminescent nanoparticles in nonionic reverse microemulsions,” J. Colloid Interface Sci. 226(1), 65–70 (2000).
[Crossref] [PubMed]

Yin, S.

M. K. Devaraju, S. Yin, and T. Sato, “A rapid hydrothermal synthesis of rare earth oxide activated Y (OH)3 and Y2O3 nanotubes,” Nanotechnology 20(30), 305302 (2009).
[Crossref] [PubMed]

Yoshida, Y.

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

Yu, L.

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

Yu, M.

Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
[Crossref]

Zhang, D.

T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Zhang, F.

Y. Jiang, Z. Wang, F. Zhang, H. Paris, and C. Summers, “Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique,” J. Mater. Res. 13(10), 2950–2955 (1988).
[Crossref]

Zhang, H. J.

Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
[Crossref]

Zhang, J.

Y. K. Ooi, C. Liu, and J. Zhang, “Analysis on polarization-dependent light extraction and effect of passivation layer for 230 nm AlGaN nanowire light-emitting diodes,” IEEE Photonics J. 9(4), 4501712 (2017).
[Crossref]

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Zhang, N.

N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
[Crossref]

Zhang, Y.-W.

R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, and C.-H. Yan, “Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals,” Chem. Mater. 19(1), 18–27 (2007).
[Crossref]

Zhao, D.

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

Zhao, X.

G. Chen, W. Qi, Y. Li, C. Yang, and X. Zhao, “Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties,” J. Mater. Sci. Mater. Electron. 27(6), 5628–5634 (2016).
[Crossref]

Zhong, S.

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

Zhou, H.-P.

R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, and C.-H. Yan, “Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals,” Chem. Mater. 19(1), 18–27 (2007).
[Crossref]

Zhou, Y. H.

L. S. Wang, Y. H. Zhou, Z. W. Quan, and J. Lin, “Formation mechanisms and morphology dependent luminescence properties of Y2O3:Eu phosphors prepared by spray pyrolysis process,” Mater. Lett. 59(10), 1130–1133 (2005).
[Crossref]

Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
[Crossref]

Zhu, H.

P. Zhu, W. Wang, H. Zhu, P. Vargas, and A. Bont, “Optical properties of Eu3+-doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method,” IEEE Photonics J. 10(1), 4500210 (2018).
[Crossref]

H. Cui, P. Zhu, H. Zhu, H. Li, and Q. Cui, “Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors,” Chin. Phys. B 23(5), 057801 (2014).
[Crossref]

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

Zhu, P.

P. Zhu, W. Wang, H. Zhu, P. Vargas, and A. Bont, “Optical properties of Eu3+-doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method,” IEEE Photonics J. 10(1), 4500210 (2018).
[Crossref]

P. Zhu, “Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene,” J. Opt. 18(2), 025403 (2016).
[Crossref]

P. Zhu and N. Tansu, “Effect of packing density and packing geometry on light extraction of III-nitride light-emitting diodes with microsphere arrays,” Photon. Res. 3(4), 184–191 (2015).
[Crossref]

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

H. Cui, P. Zhu, H. Zhu, H. Li, and Q. Cui, “Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors,” Chin. Phys. B 23(5), 057801 (2014).
[Crossref]

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

Zhuo, M.

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

Adv. Mater. (2)

H. Wang, M. Uehara, H. Nakamura, M. Miyazaki, and H. Maeda, “Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route,” Adv. Mater. 17(20), 2506–2509 (2005).
[Crossref]

G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3:Eu,” Adv. Mater. 13(20), 1557–1560 (2001).
[Crossref]

Appl. Phys. Lett. (3)

C. Xu, B. A. Watkins, R. E. Sievers, X. Jing, P. Trowga, C. S. Gibbons, and A. Vechi, “Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis,” Appl. Phys. Lett. 71(12), 1643–1645 (1997).
[Crossref]

C. Wu, W. Qin, Q. Qin, D. Zhao, J. Zhang, S. Huang, S. Lü, H. Liu, and Y. Lin, “Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,” Appl. Phys. Lett. 82(4), 520–522 (2003).
[Crossref]

X.-H. Li, T. Detchprohm, T.-T. Kao, M. M. Satter, S.-C. Shen, P. Douglas Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens, and M. Kneissl, “Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates,” Appl. Phys. Lett. 105(14), 141106 (2014).
[Crossref]

Chem. Mater. (2)

J. A. Nelson, E. L. Brant, and M. J. Wagner, “Nanocrystalline Y2O3:Eu phosphors prepared by alkalide reduction,” Chem. Mater. 15(3), 688–693 (2003).
[Crossref]

R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, and C.-H. Yan, “Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals,” Chem. Mater. 19(1), 18–27 (2007).
[Crossref]

Chem. Phys. Lett. (1)

H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251(1-2), 74–78 (1996).
[Crossref]

Chem. Rev. (1)

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Chin. Phys. B (2)

J.-H. Wang, Z.-P. Li, B. Liu, and B.-B. Liu, “Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure,” Chin. Phys. B 26(2), 026101 (2017).
[Crossref]

H. Cui, P. Zhu, H. Zhu, H. Li, and Q. Cui, “Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors,” Chin. Phys. B 23(5), 057801 (2014).
[Crossref]

Coord. Chem. Rev. (1)

K. Binnemans, “Interpretation of europium(III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

IEEE Photonics J. (2)

Y. K. Ooi, C. Liu, and J. Zhang, “Analysis on polarization-dependent light extraction and effect of passivation layer for 230 nm AlGaN nanowire light-emitting diodes,” IEEE Photonics J. 9(4), 4501712 (2017).
[Crossref]

P. Zhu, W. Wang, H. Zhu, P. Vargas, and A. Bont, “Optical properties of Eu3+-doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method,” IEEE Photonics J. 10(1), 4500210 (2018).
[Crossref]

J. Alloys Compd. (2)

W. Chen, M. Zhuo, Y. Liu, S. Fu, Y. Liu, Y. Wang, Z. Li, Y. Li, Y. Li, and L. Yu, “Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property,” J. Alloys Compd. 656, 764–770 (2016).
[Crossref]

Y. Xiao, D. Wu, Y. Jiang, N. Liu, J. Liu, and K. Jiang, “Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties,” J. Alloys Compd. 509(19), 5755–5760 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, “Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes,” J. Am. Chem. Soc. 133(39), 15475–15486 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (2)

N. C. Chang, “Fluorescence and stimulated emission from trivalent europium in yttrium oxide,” J. Appl. Phys. 34(12), 3500–3504 (1963).
[Crossref]

J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, “Photoluminescence studies of Y2O3:Eu3+ under high pressure,” J. Appl. Phys. 115(2), 023502 (2014).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Colloid Interface Sci. (1)

M.-H. Lee, S.-G. Oh, and S.-C. Yi, “Preparation of Eu-doped Y2O3 luminescent nanoparticles in nonionic reverse microemulsions,” J. Colloid Interface Sci. 226(1), 65–70 (2000).
[Crossref] [PubMed]

J. Cryst. Growth (1)

X. Wu, Y. Tao, F. Gao, L. Dong, and Z. Hu, “Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires,” J. Cryst. Growth 277(1-4), 643–649 (2005).
[Crossref]

J. Lumin. (1)

B. Bihari, H. Eilers, and B. M. Tissue, “Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals,” J. Lumin. 75(1), 1–10 (1997).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

A. P. Jadhav, A. U. Pawar, U. Pal, and Y. S. Kang, “Red emitting Y2O3:Eu3+ nanophosphors with >80% down conversion efficiency,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(3), 496–500 (2014).
[Crossref]

J. Mater. Res. (1)

Y. Jiang, Z. Wang, F. Zhang, H. Paris, and C. Summers, “Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique,” J. Mater. Res. 13(10), 2950–2955 (1988).
[Crossref]

J. Mater. Sci. (1)

S. Zhong, S. Wang, H. Xu, H. Hou, Z. Wen, P. Li, S. Wang, and R. Xu, “Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties,” J. Mater. Sci. 44(14), 3687–3693 (2009).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

G. Chen, W. Qi, Y. Li, C. Yang, and X. Zhao, “Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties,” J. Mater. Sci. Mater. Electron. 27(6), 5628–5634 (2016).
[Crossref]

J. Opt. (1)

P. Zhu, “Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene,” J. Opt. 18(2), 025403 (2016).
[Crossref]

J. Phys. Chem. (2)

J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C.-H. Lu, “Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis,” J. Phys. Chem. 105(45), 11098–11105 (2001).
[Crossref]

D. K. Williams, B. Bihari, and B. M. Tissue, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 Nanocrystals,” J. Phys. Chem. 102, 916–920 (1998).
[Crossref]

J. Phys. Chem. C (2)

N. Zhang, X. Liu, R. Yi, R. Shi, G. Gao, and G. Qiu, “Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes,” J. Phys. Chem. C 112(46), 17788–17795 (2008).
[Crossref]

J.-G. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping,” J. Phys. Chem. C 112(31), 11707–11716 (2008).
[Crossref]

J. Phys. Chem. Solids (1)

H. T. Hintzen and H. M. van Noort, “Investigation of luminescent Eu-doped sesquioxides Ln2O3 (Ln = In, Sc, Y, La, Gd, Lu) and some mixed oxides by 151Eu Mössbauer spectroscopy,” J. Phys. Chem. Solids 49(8), 873–881 (1998).
[Crossref]

J. Solid State Chem. (1)

P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick, “A complete 4fn energy level diagram for all trivalent lanthanide ions,” J. Solid State Chem. 178(2), 448–453 (2005).
[Crossref]

Langmuir (1)

M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir 17(22), 7145–7149 (2001).
[Crossref]

Mater. Chem. Phys. (1)

T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Mater. Lett. (1)

L. S. Wang, Y. H. Zhou, Z. W. Quan, and J. Lin, “Formation mechanisms and morphology dependent luminescence properties of Y2O3:Eu phosphors prepared by spray pyrolysis process,” Mater. Lett. 59(10), 1130–1133 (2005).
[Crossref]

Mater. Res. Bull. (2)

Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, and H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull. 38(8), 1289–1299 (2003).
[Crossref]

T. Ye, Z. Guiwen, Z. Weiping, and Z. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32(5), 501–506 (1997).
[Crossref]

Nano Biomed. (1)

S. Yamagata, Y. Sato, T. Yamamoto, S. Abe, T. Akasaka, Y. Yoshida, and J. Iida, “Evaluation of fluorescent orthodontic adhesives containing Y2O3:Eu3+ particles,” Nano Biomed. 8, 35–40 (2016).

Nanotechnology (2)

B. K. Gupta, D. Haranath, S. Saini, V. N. Singh, and V. Shanker, “Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications,” Nanotechnology 21(5), 055607 (2010).
[Crossref] [PubMed]

M. K. Devaraju, S. Yin, and T. Sato, “A rapid hydrothermal synthesis of rare earth oxide activated Y (OH)3 and Y2O3 nanotubes,” Nanotechnology 20(30), 305302 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. Lett. (1)

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

RSC Advances (1)

S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, and S. K. Sharma, “Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis,” RSC Advances 5(87), 70887–70898 (2015).
[Crossref]

Solid State Commun. (1)

H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, and D. Hou, “Ultrastable structure and luminescence properties of Y2O3 nanotubes,” Solid State Commun. 150(27-28), 1208–1212 (2010).
[Crossref]

Thermochim. Acta (1)

T. Sato, S. Imaeda, and K. Sato, “Thermal transformation of yttrium hydroxides to yttrium oxides,” Thermochim. Acta 133, 79–85 (1988).
[Crossref]

Other (5)

JCPDS card No. 41–1105.

W. H. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2006).

N. Bradsley, M. Hansen, L. Pattison, M. Pattison, K. Stober, V. Taylor, J. Tsao, and M. Yamada, Solid-state lighting R&D plan, edited by J. Brodrick (Solid-State Lighting Program, the U.S. Department of Energy).

M. Pattison, N. Bradsley, M. Hansen, L. Pattison, S. Schober, K. Stober, J. Tsao, and M. Yamada, Solid-state lighting2017suggested research topics supplement: Technology and market context, edited by J. Brodrick (Office of Energy Efficiency & Renewable Energy, the U.S. Department of Energy).

J. Penning, K. Stober, V. Taylor, and M. Yamada, Energy savings forecast of solid-state lighting in general illumination applications – Prepared for the U.S. Department of Energy Solid-State Lighting Program (Navigant Consulting, Inc. and the U.S. Department of Energy).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM images of nanospheres with the Eu concentration of 5 mol% synthesized at 80 °C for 4 hours, with or without a follow-up annealing process: (a) without annealing, (b)-(f) after annealing for 1 hour at an annealing temperature of 300 °C (b), 500 °C (c), 700 °C (d), and 900 °C (e, f).
Fig. 2
Fig. 2 XRD spectra of the samples with the Eu3+ concentration of 5 mol% synthesized at 80 °C for 4 hours, both with and without a follow-up annealing process. The annealed samples were obtained after annealing for 1 hour at an annealing temperature of 300 °C, 500 °C, 700 °C, and 900 °C, respectively.
Fig. 3
Fig. 3 (a) Photoluminescence emission spectra of the nanospheres with the Eu3+ concentration of 5 mol% synthesized at 80 °C for 4 hours, with or without a follow-up annealing process (1-hour annealing at four different annealing temperatures). (b) The corresponding excitation spectra of the nanospheres.
Fig. 4
Fig. 4 SEM images of the Y2O3:Eu3+ nanospheres with the Eu3+ concentration of 10 mol% synthesized at 80 °C for (a) 2 hours, (b) 3 hours, (c) 4 hours, and (d) 5 hours. Each sample was annealed for 1 hour at 700 °C.
Fig. 5
Fig. 5 Photoluminescence emission spectra of the Y2O3:Eu3+ nanospheres with different Eu concentrations (5-15 mol%) synthesized at 80 °C for 4 hours, followed by thermal annealing at 700 °C for 1 hour.

Metrics