Abstract

We propose and demonstrate a method for tuning the beat frequency of a dual-polarization distributed feedback (DFB) fiber laser via fiber side polishing. This process can significantly alter the birefringence in DFB fiber lasers. Beat frequency evolutions in DFB fiber lasers were investigated, and the experimental results showed that the beat frequency tuning was dependent on polished thickness, roughness, and direction. The abrasive paper with a grain size of 1.8 µm was adopted to fine-tune the beat frequency. It was found that the beat frequency of DFB fiber lasers shifted toward higher frequencies with increasing polished thickness. However, the beat frequency shifted toward lower frequencies using a secondary side polishing process in the direction orthogonal to the first polished surface. As a result, the beat frequency of the DFB fiber laser was tuned in a wide frequency range from 475.5 MHz to 2080.4 MHz, which corresponds to a birefringence change of 1.2 × 10−5. Side-polished DFB fiber lasers could provide a novel approach to frequency division multiplexing for a large number of fiber laser sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements

J. T. Kringlebotn, W. H. Loh, and R. I. Laming
Opt. Lett. 21(22) 1869-1871 (1996)

Beat frequency trimming of dual-polarization fiber grating lasers for multiplexed sensor applications

Yang Zhang, Yan-Nan Tan, Tuan Guo, and Bai-Ou Guan
Opt. Express 19(1) 218-223 (2011)

Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection

Tuan Guo, Allan C. L. Wong, Wei-Sheng Liu, Bai-Ou Guan, Chao Lu, and Hwa-Yaw Tam
Opt. Express 19(3) 2485-2492 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
    [Crossref] [PubMed]
  2. J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994).
    [Crossref] [PubMed]
  3. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004).
    [Crossref] [PubMed]
  4. J. Hubner, P. Varming, and M. Kristensen, “Five wavelength DFB fibre laser source for WDM systems,” Electron. Lett. 33(2), 139–140 (1997).
    [Crossref]
  5. M. Ibsen, S. U. Alam, M. N. Zervas, and A. B. Grudinin, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photonics Technol. Lett. 11(9), 1114–1116 (1999).
    [Crossref]
  6. H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
    [Crossref] [PubMed]
  7. G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27(13), 1114–1116 (2002).
    [Crossref] [PubMed]
  8. W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
    [Crossref]
  9. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
    [Crossref] [PubMed]
  10. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996).
    [Crossref] [PubMed]
  11. S. W. Løvseth, J. T. Kringlebotn, E. Rønnekleiv, and K. Bløtekjaer, “Fiber distributed-feedback lasers used as acoustic sensors in air,” Appl. Opt. 38(22), 4821–4830 (1999).
    [Crossref] [PubMed]
  12. A. Suemasa, A. Shimo-Oku, K. I. Nakagawa, and M. Musha, “Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO,” Ceas Space J. 9(4), 485–491 (2017).
    [Crossref]
  13. H. Renner, “Effective-index increase, form birefringence and transition losses in UV-side-illuminated photosensitive fibers,” Opt. Express 9(11), 546–560 (2001).
    [Crossref] [PubMed]
  14. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
    [Crossref] [PubMed]
  15. T. Guo, A. C. Wong, W. S. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express 19(3), 2485–2492 (2011).
    [Crossref] [PubMed]
  16. Y. Zhang, Y. N. Tan, T. Guo, and B. O. Guan, “Beat frequency trimming of dual-polarization fiber grating lasers for multiplexed sensor applications,” Opt. Express 19(1), 218–223 (2011).
    [Crossref] [PubMed]
  17. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
    [Crossref]
  18. J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
    [Crossref]
  19. L. Jin, Y. Liang, M. P. Li, L. Cheng, J. Li, and B. O. Guan, “A 16-element multiplexed heterodyning fiber grating laser sensor array,” J. Lightwave Technol. 32(22), 4410–4415 (2014).
    [Crossref]
  20. J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
    [Crossref] [PubMed]
  21. W. Fan, B. Chen, X. Li, L. Chen, and Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204(1), 157–161 (2002).
    [Crossref]
  22. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [Crossref] [PubMed]
  23. Z. E. Harutjunian, W. H. Loh, R. I. Laming, and D. N. Payne, “Single polarisation twisted distributed feedback fibre laser,” Electron. Lett. 32(4), 346 (1996).
    [Crossref]
  24. M. N. Zervas, R. Wilmshurst, and L. M. Walker, “Twisted hi-bi fiber distributed-feedback lasers with controllable output state of polarization,” Opt. Lett. 38(9), 1533–1535 (2013).
    [Crossref] [PubMed]
  25. R. H. Stolen, “Polishing-induced birefringence in single-mode fibers,” Appl. Opt. 25(3), 344–347 (1986).
    [Crossref] [PubMed]
  26. J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
    [Crossref]
  27. J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
    [Crossref]
  28. B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
    [Crossref]
  29. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
    [Crossref]
  30. Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
    [Crossref]
  31. J. Zhou, K. Guo, J. He, M. Hou, Z. Zhang, C. Liao, Y. Wang, G. Xu, and Y. Wang, “Novel fabrication technique for phase-shifted fiber Bragg gratings using a variable-velocity scanning beam and a shielded phase mask,” Opt. Express 26(10), 13311–13321 (2018).
    [Crossref] [PubMed]
  32. M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
    [Crossref]

2018 (1)

2017 (2)

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

A. Suemasa, A. Shimo-Oku, K. I. Nakagawa, and M. Musha, “Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO,” Ceas Space J. 9(4), 485–491 (2017).
[Crossref]

2016 (1)

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

2015 (2)

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

2014 (2)

L. Jin, Y. Liang, M. P. Li, L. Cheng, J. Li, and B. O. Guan, “A 16-element multiplexed heterodyning fiber grating laser sensor array,” J. Lightwave Technol. 32(22), 4410–4415 (2014).
[Crossref]

H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

2011 (2)

2008 (1)

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

2007 (1)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

2004 (1)

2002 (2)

G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27(13), 1114–1116 (2002).
[Crossref] [PubMed]

W. Fan, B. Chen, X. Li, L. Chen, and Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204(1), 157–161 (2002).
[Crossref]

2001 (1)

2000 (1)

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
[Crossref]

1999 (3)

1998 (1)

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

1997 (1)

J. Hubner, P. Varming, and M. Kristensen, “Five wavelength DFB fibre laser source for WDM systems,” Electron. Lett. 33(2), 139–140 (1997).
[Crossref]

1996 (2)

J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996).
[Crossref] [PubMed]

Z. E. Harutjunian, W. H. Loh, R. I. Laming, and D. N. Payne, “Single polarisation twisted distributed feedback fibre laser,” Electron. Lett. 32(4), 346 (1996).
[Crossref]

1994 (3)

1986 (1)

1980 (1)

Agger, S.

Alam, S. U.

M. Ibsen, S. U. Alam, M. N. Zervas, and A. B. Grudinin, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photonics Technol. Lett. 11(9), 1114–1116 (1999).
[Crossref]

Al-Taiy, H.

Archambault, J. L.

Babin, S. A.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Bai, Z.

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

Bennion, I.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
[Crossref]

Berendt, M. O.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Bløtekjaer, K.

Cao, S.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

Chen, B.

W. Fan, B. Chen, X. Li, L. Chen, and Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204(1), 157–161 (2002).
[Crossref]

Chen, L.

W. Fan, B. Chen, X. Li, L. Chen, and Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204(1), 157–161 (2002).
[Crossref]

Cheng, L.

L. Jin, Y. Liang, M. P. Li, L. Cheng, J. Li, and B. O. Guan, “A 16-element multiplexed heterodyning fiber grating laser sensor array,” J. Lightwave Technol. 32(22), 4410–4415 (2014).
[Crossref]

Churkin, D. V.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Cranch, G. A.

Eickhoff, W.

Erdogan, T.

Fan, W.

W. Fan, B. Chen, X. Li, L. Chen, and Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204(1), 157–161 (2002).
[Crossref]

Feng, S.

Feng, T.

Fu, C.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

Grudinin, A. B.

M. Ibsen, S. U. Alam, M. N. Zervas, and A. B. Grudinin, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photonics Technol. Lett. 11(9), 1114–1116 (1999).
[Crossref]

Guan, B. O.

Guo, K.

Guo, T.

Hadeler, O.

Harutjunian, Z. E.

Z. E. Harutjunian, W. H. Loh, R. I. Laming, and D. N. Payne, “Single polarisation twisted distributed feedback fibre laser,” Electron. Lett. 32(4), 346 (1996).
[Crossref]

He, J.

Hou, M.

J. Zhou, K. Guo, J. He, M. Hou, Z. Zhang, C. Liao, Y. Wang, G. Xu, and Y. Wang, “Novel fabrication technique for phase-shifted fiber Bragg gratings using a variable-velocity scanning beam and a shielded phase mask,” Opt. Express 26(10), 13311–13321 (2018).
[Crossref] [PubMed]

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

Hubner, J.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

J. Hubner, P. Varming, and M. Kristensen, “Five wavelength DFB fibre laser source for WDM systems,” Electron. Lett. 33(2), 139–140 (1997).
[Crossref]

Ibsen, M.

M. Ibsen, S. U. Alam, M. N. Zervas, and A. B. Grudinin, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photonics Technol. Lett. 11(9), 1114–1116 (1999).
[Crossref]

O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
[Crossref] [PubMed]

Inniss, D.

Ismagulov, A. E.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Jin, L.

L. Jin, Y. Liang, M. P. Li, L. Cheng, J. Li, and B. O. Guan, “A 16-element multiplexed heterodyning fiber grating laser sensor array,” J. Lightwave Technol. 32(22), 4410–4415 (2014).
[Crossref]

B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
[Crossref]

Jin, W.

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

Kablukov, S. I.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Klinger, J.

Kosinski, S. G.

Kringlebotn, J. T.

Kristensen, M.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

J. Hubner, P. Varming, and M. Kristensen, “Five wavelength DFB fibre laser source for WDM systems,” Electron. Lett. 33(2), 139–140 (1997).
[Crossref]

Lai, Y. C.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
[Crossref]

Laming, R. I.

Lauridsen, V. C.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Lemaire, P. J.

Li, J.

L. Jin, Y. Liang, M. P. Li, L. Cheng, J. Li, and B. O. Guan, “A 16-element multiplexed heterodyning fiber grating laser sensor array,” J. Lightwave Technol. 32(22), 4410–4415 (2014).
[Crossref]

Li, M.

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

Li, M. P.

L. Jin, Y. Liang, M. P. Li, L. Cheng, J. Li, and B. O. Guan, “A 16-element multiplexed heterodyning fiber grating laser sensor array,” J. Lightwave Technol. 32(22), 4410–4415 (2014).
[Crossref]

Li, Q.

Li, X.

W. Fan, B. Chen, X. Li, L. Chen, and Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204(1), 157–161 (2002).
[Crossref]

Lian, J.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

Liang, Y.

L. Jin, Y. Liang, M. P. Li, L. Cheng, J. Li, and B. O. Guan, “A 16-element multiplexed heterodyning fiber grating laser sensor array,” J. Lightwave Technol. 32(22), 4410–4415 (2014).
[Crossref]

Liao, C.

J. Zhou, K. Guo, J. He, M. Hou, Z. Zhang, C. Liao, Y. Wang, G. Xu, and Y. Wang, “Novel fabrication technique for phase-shifted fiber Bragg gratings using a variable-velocity scanning beam and a shielded phase mask,” Opt. Express 26(10), 13311–13321 (2018).
[Crossref] [PubMed]

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Lin, Z.

W. Fan, B. Chen, X. Li, L. Chen, and Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204(1), 157–161 (2002).
[Crossref]

Liu, P.

Liu, S.

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Liu, W. S.

Loh, W. H.

J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996).
[Crossref] [PubMed]

Z. E. Harutjunian, W. H. Loh, R. I. Laming, and D. N. Payne, “Single polarisation twisted distributed feedback fibre laser,” Electron. Lett. 32(4), 346 (1996).
[Crossref]

Løvseth, S. W.

Lu, C.

T. Guo, A. C. Wong, W. S. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express 19(3), 2485–2492 (2011).
[Crossref] [PubMed]

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
[Crossref]

Mizrahi, V.

Musha, M.

A. Suemasa, A. Shimo-Oku, K. I. Nakagawa, and M. Musha, “Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO,” Ceas Space J. 9(4), 485–491 (2017).
[Crossref]

Nakagawa, K. I.

A. Suemasa, A. Shimo-Oku, K. I. Nakagawa, and M. Musha, “Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO,” Ceas Space J. 9(4), 485–491 (2017).
[Crossref]

Nikulin, M. A.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Palsdottir, B.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Payne, D. N.

Z. E. Harutjunian, W. H. Loh, R. I. Laming, and D. N. Payne, “Single polarisation twisted distributed feedback fibre laser,” Electron. Lett. 32(4), 346 (1996).
[Crossref]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994).
[Crossref] [PubMed]

Peng, W.

Philipsen, J. L.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Povlsen, J. H.

S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004).
[Crossref] [PubMed]

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Preußler, S.

Rashleigh, S. C.

Reed, W. A.

Reekie, L.

Ren, W.

Renner, H.

Rønnekleiv, E.

Schneider, T.

Shimo-Oku, A.

A. Suemasa, A. Shimo-Oku, K. I. Nakagawa, and M. Musha, “Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO,” Ceas Space J. 9(4), 485–491 (2017).
[Crossref]

Stolen, R. H.

Suemasa, A.

A. Suemasa, A. Shimo-Oku, K. I. Nakagawa, and M. Musha, “Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO,” Ceas Space J. 9(4), 485–491 (2017).
[Crossref]

Sun, B.

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Tam, H. Y.

Tan, S.

Tan, Y. N.

Ulrich, R.

Varming, P.

S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004).
[Crossref] [PubMed]

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

J. Hubner, P. Varming, and M. Kristensen, “Five wavelength DFB fibre laser source for WDM systems,” Electron. Lett. 33(2), 139–140 (1997).
[Crossref]

Vengsarkar, A. M.

Walker, L. M.

Wang, G.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Wang, Q.

Wang, Y.

J. Zhou, K. Guo, J. He, M. Hou, Z. Zhang, C. Liao, Y. Wang, G. Xu, and Y. Wang, “Novel fabrication technique for phase-shifted fiber Bragg gratings using a variable-velocity scanning beam and a shielded phase mask,” Opt. Express 26(10), 13311–13321 (2018).
[Crossref] [PubMed]

J. Zhou, K. Guo, J. He, M. Hou, Z. Zhang, C. Liao, Y. Wang, G. Xu, and Y. Wang, “Novel fabrication technique for phase-shifted fiber Bragg gratings using a variable-velocity scanning beam and a shielded phase mask,” Opt. Express 26(10), 13311–13321 (2018).
[Crossref] [PubMed]

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Wenzel, N.

Williams, J. A. R.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
[Crossref]

Wilmshurst, R.

Wong, A. C.

Xu, G.

J. Zhou, K. Guo, J. He, M. Hou, Z. Zhang, C. Liao, Y. Wang, G. Xu, and Y. Wang, “Novel fabrication technique for phase-shifted fiber Bragg gratings using a variable-velocity scanning beam and a shielded phase mask,” Opt. Express 26(10), 13311–13321 (2018).
[Crossref] [PubMed]

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

Xu, X.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Yan, F.

Yang, K.

Yin, G.

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Zervas, M. N.

M. N. Zervas, R. Wilmshurst, and L. M. Walker, “Twisted hi-bi fiber distributed-feedback lasers with controllable output state of polarization,” Opt. Lett. 38(9), 1533–1535 (2013).
[Crossref] [PubMed]

M. Ibsen, S. U. Alam, M. N. Zervas, and A. B. Grudinin, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photonics Technol. Lett. 11(9), 1114–1116 (1999).
[Crossref]

Zhang, F.

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

Zhang, L.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
[Crossref]

Zhang, W.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, J.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Zhong, Q.

Zhou, J.

Appl. Opt. (3)

Ceas Space J. (1)

A. Suemasa, A. Shimo-Oku, K. I. Nakagawa, and M. Musha, “Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO,” Ceas Space J. 9(4), 485–491 (2017).
[Crossref]

Electron. Lett. (3)

J. Hubner, P. Varming, and M. Kristensen, “Five wavelength DFB fibre laser source for WDM systems,” Electron. Lett. 33(2), 139–140 (1997).
[Crossref]

Z. E. Harutjunian, W. H. Loh, R. I. Laming, and D. N. Payne, “Single polarisation twisted distributed feedback fibre laser,” Electron. Lett. 32(4), 346 (1996).
[Crossref]

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringent phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

IEEE Photonics J. (2)

J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, G. Wang, X. Xu, and Y. Wang, “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

M. Li, Z. Bai, F. Zhang, M. Hou, Y. Wang, C. Liao, W. Jin, and Y. Wang, “Red shift of side-polished fiber surface plasmon resonance sensors with silver coating and inhibition by gold plating,” IEEE Photonics J. 9(3), 1–13 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Ibsen, S. U. Alam, M. N. Zervas, and A. B. Grudinin, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photonics Technol. Lett. 11(9), 1114–1116 (1999).
[Crossref]

J. Lightwave Technol. (2)

B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
[Crossref]

L. Jin, Y. Liang, M. P. Li, L. Cheng, J. Li, and B. O. Guan, “A 16-element multiplexed heterodyning fiber grating laser sensor array,” J. Lightwave Technol. 32(22), 4410–4415 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett. 4(6), 428–432 (2007).
[Crossref]

Opt. Commun. (2)

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

W. Fan, B. Chen, X. Li, L. Chen, and Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204(1), 157–161 (2002).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol. 32(5), 369–371 (2000).
[Crossref]

Opt. Lett. (9)

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
[Crossref] [PubMed]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994).
[Crossref] [PubMed]

S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004).
[Crossref] [PubMed]

J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996).
[Crossref] [PubMed]

H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
[Crossref] [PubMed]

G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27(13), 1114–1116 (2002).
[Crossref] [PubMed]

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
[Crossref] [PubMed]

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

M. N. Zervas, R. Wilmshurst, and L. M. Walker, “Twisted hi-bi fiber distributed-feedback lasers with controllable output state of polarization,” Opt. Lett. 38(9), 1533–1535 (2013).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B Chem. 230, 206–211 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The structure of a side-polished distributed feedback (DFB) fiber laser and schematic diagram of beat frequency measurement system.
Fig. 2
Fig. 2 The output power of the DFB fiber laser as a function of 980 nm laser pump power. (inset: the original DFB fiber laser before side polishing;)
Fig. 3
Fig. 3 The experimental setup including a motor-driven wheel polishing system employed for DFB fiber laser side polishing (inset: a 62 mm diameter polishing wheel lined with an abrasive paper).
Fig. 4
Fig. 4 Beat signal (a) and optical spectrum (b) of the DFB fiber laser before side polishing, and beat signal (c) and optical spectrum (d) of the DFB fiber laser after side polishing.
Fig. 5
Fig. 5 Beat frequency and lasing wavelength of the DFB fiber laser under various axial strains; Beat signals (a) and optical spectra (c) of the DFB fiber laser under different weights, and Beat frequency (b) and lasing wavelength (d) of the DFB fiber laser as a function of hung weights.
Fig. 6
Fig. 6 Beat frequency (BF) evolutions of the side-polished DFB fiber laser using abrasive papers of varying roughness. (a1), (a2), and (a3) Microscope images of the side-polished surfaces of EDFs with various roughness of 7000, 5000, and 3000 mesh; (b1), (b2), and (b3) Beat frequency evolutions with increasing polished thickness; (c1), (c2), and (c3) Beat frequency and SNR as a function of polished thickness.
Fig. 7
Fig. 7 Beat frequencies of DFB fiber lasers side polished in different directions (i.e. θ = 0°, + 90°, and + 45°) as a function of polished thickness.
Fig. 8
Fig. 8 (a) Beat frequency evolutions during a two-dimensional side polishing process; (b) Beat frequency as a function of polished thickness (inset: the schematic of a two-dimensional side-polished DFB fiber laser, surface1 and 2 represent the orthogonal first and secondary side-polished fiber surfaces, respectively).
Fig. 9
Fig. 9 Side polishing used for realizing a single-polarization DFB fiber laser. (a) Beat signals of the DFB fiber laser; (b) Optical spectra of the DFB fiber laser. (a1 and b1 correspond to the original dual-polarization DFB fiber laser at a pump power of 80 mW; a2 and b2 correspond to the single-polarization side-polished DFB fiber laser with a polished thickness of 4.2 μm at the same pump power of 80 mW; a3 and b3 correspond to the dual-polarization side-polished DFB fiber laser with a polished thickness of 4.2 μm at an increased pump power of 90 mW).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ x =2 n x Λ, λ y =2 n y Λ,
Δλ= λ x λ y =2BΛ,
Δν= ν x ν y = c λ x c λ y = cB n 0 λ 0 .
δB= δΔv n 0 λ 0 c = δΔv λ 0 2 2cΛ .

Metrics