Abstract

Lately, a fiber-based optical tweezer that traps and arranges the micro/nano-particles is crucial in practical applications, because such a device can trap the biological samples and drive them to the designated position in a microfluidic system or vessel without harming them. Here, we report a new type of fiber optical tweezer, which can trap and arrange erythrocytes. It is prepared by coating graphene on the cross section of a microfiber. Our results demonstrate that thermal-gradient-induced natural convection flow and thermophoresis can trap the erythrocytes under low incident power, and the optical scattering force can arrange them precisely under higher incident power. The proposed optical tweezer has high flexibility, easy fabrication, and high integration with lab-on-a-chip, and shows considerable potential for application in various fields, such as biophysics, biochemistry, and life sciences.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the behaviour of erythrocytes in an optical trapping system

S.C. Grover, R.C. Gauthier, and A.G. Skirtach
Opt. Express 7(13) 533-539 (2000)

Micro particle launcher/cleaner based on optical trapping technology

Zhihai Liu, Peibo Liang, Yu Zhang, Yaxun Zhang, Enming Zhao, Jun Yang, and Libo Yuan
Opt. Express 23(7) 8650-8658 (2015)

Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles

Jiajie Chen, Zhiwen Kang, Siu Kai Kong, and Ho-Pui Ho
Opt. Lett. 40(17) 3926-3929 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  2. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  3. R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
    [Crossref]
  4. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
    [Crossref] [PubMed]
  5. H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
    [Crossref]
  6. H. Wang, X. Wu, and D. Shen, “Trapping and manipulating nanoparticles in photonic nanojets,” Opt. Lett. 41(7), 1652–1655 (2016).
    [Crossref] [PubMed]
  7. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
    [Crossref] [PubMed]
  8. Q. Rong, Y. Zhou, X. Yin, Z. Shao, and X. Qiao, “Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber,” Biomed. Opt. Express 8(9), 4096–4107 (2017).
    [Crossref] [PubMed]
  9. Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
    [Crossref] [PubMed]
  10. H. Rubin, “Cell-cell contact interactions conditionally determine suppression and selection of the neoplastic phenotype,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6215–6221 (2008).
    [Crossref] [PubMed]
  11. H. W. Hwang, E. A. Wentzel, and J. T. Mendell, “Cell-cell contact globally activates microRNA biogenesis,” Proc. Natl. Acad. Sci. U.S.A. 106(17), 7016–7021 (2009).
    [Crossref] [PubMed]
  12. J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
    [Crossref] [PubMed]
  13. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref] [PubMed]
  14. J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
    [Crossref] [PubMed]
  15. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [Crossref]
  16. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  17. Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
    [Crossref]
  18. J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
    [Crossref]
  19. J. P. Zheng, X. B. Xing, J. Evans, and S. L. He, “Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly,” NPG Asia Mater. 8(4), e257 (2016).
    [Crossref]
  20. J. Chen, Z. Kang, S. K. Kong, and H. P. Ho, “Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles,” Opt. Lett. 40(17), 3926–3929 (2015).
    [Crossref] [PubMed]
  21. J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
    [Crossref] [PubMed]
  22. Z. Kang, J. Chen, and H. P. Ho, “Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands,” Nanoscale 8(19), 10266–10272 (2016).
    [Crossref] [PubMed]
  23. Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
    [Crossref]
  24. Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
    [Crossref]
  25. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [Crossref]
  26. J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, “Bio-inspired, bioengineered and biomimetic drug delivery carriers,” Nat. Rev. Drug Discov. 10(7), 521–535 (2011).
    [Crossref] [PubMed]
  27. Y. Gong, C. Zhang, Q. F. Liu, Y. Wu, H. Wu, Y. Rao, and G. D. Peng, “Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity,” Opt. Express 23(3), 3762–3769 (2015).
    [Crossref] [PubMed]
  28. C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).
  29. R. M. Gelfand, S. Wheaton, and R. Gordon, “Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles,” Opt. Lett. 39(22), 6415–6417 (2014).
    [Crossref] [PubMed]
  30. H. Li, Y. Zhang, J. Li, and L. Qiang, “Observation of microsphere movement driven by optical pulse,” Opt. Lett. 36(11), 1996–1998 (2011).
    [Crossref] [PubMed]
  31. Y. Liu, F. Stief, and M. Yu, “Subwavelength optical trapping with a fiber-based surface plasmonic lens,” Opt. Lett. 38(5), 721–723 (2013).
    [Crossref] [PubMed]
  32. J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
    [Crossref] [PubMed]
  33. Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
    [Crossref] [PubMed]
  34. Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
    [Crossref] [PubMed]
  35. H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
    [Crossref] [PubMed]
  36. Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
    [Crossref] [PubMed]
  37. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
    [Crossref] [PubMed]
  38. B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
    [Crossref] [PubMed]
  39. L. Sun, Y. Semenova, Q. Wu, D. J. Liu, J. H. Yuan, T. Ma, X. Z. Sang, B. B. Yan, K. R. Wang, C. X. Yu, and G. Farrell, “High sensitivity ammonia gas sensor based on a silica-gel-coated microfiber coupler,” J. Lightwave Technol. 35(14), 2864–2870 (2017).
    [Crossref]
  40. Z. Kang, J. Chen, S. Y. Wu, and H. P. Ho, “Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films,” RSC Advances 5(127), 105409 (2015).
    [Crossref]
  41. L. Korson, W. Drost-Hansen, and F. J. Millero, “Viscosity of water at various temperatures,” J. Phys. Chem. 73(1), 34–39 (1969).
    [Crossref]
  42. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
    [Crossref]

2018 (4)

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

2017 (6)

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
[Crossref] [PubMed]

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

Q. Rong, Y. Zhou, X. Yin, Z. Shao, and X. Qiao, “Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber,” Biomed. Opt. Express 8(9), 4096–4107 (2017).
[Crossref] [PubMed]

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

L. Sun, Y. Semenova, Q. Wu, D. J. Liu, J. H. Yuan, T. Ma, X. Z. Sang, B. B. Yan, K. R. Wang, C. X. Yu, and G. Farrell, “High sensitivity ammonia gas sensor based on a silica-gel-coated microfiber coupler,” J. Lightwave Technol. 35(14), 2864–2870 (2017).
[Crossref]

2016 (6)

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

J. P. Zheng, X. B. Xing, J. Evans, and S. L. He, “Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly,” NPG Asia Mater. 8(4), e257 (2016).
[Crossref]

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

H. Wang, X. Wu, and D. Shen, “Trapping and manipulating nanoparticles in photonic nanojets,” Opt. Lett. 41(7), 1652–1655 (2016).
[Crossref] [PubMed]

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

Z. Kang, J. Chen, and H. P. Ho, “Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands,” Nanoscale 8(19), 10266–10272 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

R. M. Gelfand, S. Wheaton, and R. Gordon, “Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles,” Opt. Lett. 39(22), 6415–6417 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Liu, F. Stief, and M. Yu, “Subwavelength optical trapping with a fiber-based surface plasmonic lens,” Opt. Lett. 38(5), 721–723 (2013).
[Crossref] [PubMed]

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

2011 (7)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

H. Li, Y. Zhang, J. Li, and L. Qiang, “Observation of microsphere movement driven by optical pulse,” Opt. Lett. 36(11), 1996–1998 (2011).
[Crossref] [PubMed]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, “Bio-inspired, bioengineered and biomimetic drug delivery carriers,” Nat. Rev. Drug Discov. 10(7), 521–535 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (1)

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

2009 (2)

J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
[Crossref] [PubMed]

H. W. Hwang, E. A. Wentzel, and J. T. Mendell, “Cell-cell contact globally activates microRNA biogenesis,” Proc. Natl. Acad. Sci. U.S.A. 106(17), 7016–7021 (2009).
[Crossref] [PubMed]

2008 (3)

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
[Crossref] [PubMed]

H. Rubin, “Cell-cell contact interactions conditionally determine suppression and selection of the neoplastic phenotype,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6215–6221 (2008).
[Crossref] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

2007 (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1969 (1)

L. Korson, W. Drost-Hansen, and F. J. Millero, “Viscosity of water at various temperatures,” J. Phys. Chem. 73(1), 34–39 (1969).
[Crossref]

Acimovic, S. S.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Ahmed, D.

J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Berthelot, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Bhuiya, A. M.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

Bragheri, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Cai, W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Cai, X.

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Chen, J.

Z. Kang, J. Chen, and H. P. Ho, “Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands,” Nanoscale 8(19), 10266–10272 (2016).
[Crossref] [PubMed]

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

J. Chen, Z. Kang, S. K. Kong, and H. P. Ho, “Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles,” Opt. Lett. 40(17), 3926–3929 (2015).
[Crossref] [PubMed]

Z. Kang, J. Chen, S. Y. Wu, and H. P. Ho, “Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films,” RSC Advances 5(127), 105409 (2015).
[Crossref]

Chen, M.

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Cheng, J. F.

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

Cheng, Y.

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

Cheng, Y. P.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

Chi, B.

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Cong, H.

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

Cristiani, I.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Cui, X.

De Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Di Fabrizio, E.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Discher, D. E.

J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, “Bio-inspired, bioengineered and biomimetic drug delivery carriers,” Nat. Rev. Drug Discov. 10(7), 521–535 (2011).
[Crossref] [PubMed]

Dong, X.

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

Drost-Hansen, W.

L. Korson, W. Drost-Hansen, and F. J. Millero, “Viscosity of water at various temperatures,” J. Phys. Chem. 73(1), 34–39 (1969).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Endo, H.

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

Erni, D.

Evans, J.

J. P. Zheng, X. B. Xing, J. Evans, and S. L. He, “Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly,” NPG Asia Mater. 8(4), e257 (2016).
[Crossref]

Fan, X. D.

C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).

Farrell, G.

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Gelfand, R. M.

Gong, Y.

C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).

Y. Gong, C. Zhang, Q. F. Liu, Y. Wu, H. Wu, Y. Rao, and G. D. Peng, “Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity,” Opt. Express 23(3), 3762–3769 (2015).
[Crossref] [PubMed]

Gordon, R.

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Hafner, C.

He, L.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

He, S. L.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

J. P. Zheng, X. B. Xing, J. Evans, and S. L. He, “Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly,” NPG Asia Mater. 8(4), e257 (2016).
[Crossref]

Ho, H. P.

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

Z. Kang, J. Chen, and H. P. Ho, “Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands,” Nanoscale 8(19), 10266–10272 (2016).
[Crossref] [PubMed]

J. Chen, Z. Kang, S. K. Kong, and H. P. Ho, “Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles,” Opt. Lett. 40(17), 3926–3929 (2015).
[Crossref] [PubMed]

Z. Kang, J. Chen, S. Y. Wu, and H. P. Ho, “Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films,” RSC Advances 5(127), 105409 (2015).
[Crossref]

Hu, X.

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

Hu, X. W.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

Huang, T. J.

J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
[Crossref] [PubMed]

Huang, W.

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

Huang, Y. Z.

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

Hwang, H. W.

H. W. Hwang, E. A. Wentzel, and J. T. Mendell, “Cell-cell contact globally activates microRNA biogenesis,” Proc. Natl. Acad. Sci. U.S.A. 106(17), 7016–7021 (2009).
[Crossref] [PubMed]

Iishi, H.

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

Inoue, M.

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

Irvine, D. J.

J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, “Bio-inspired, bioengineered and biomimetic drug delivery carriers,” Nat. Rev. Drug Discov. 10(7), 521–535 (2011).
[Crossref] [PubMed]

Ishikawa, O.

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

Jia, L. C.

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

Jiang, X. F.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

Jiang, Y. X.

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Juan, M. L.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kang, Z.

Z. Kang, J. Chen, and H. P. Ho, “Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands,” Nanoscale 8(19), 10266–10272 (2016).
[Crossref] [PubMed]

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

J. Chen, Z. Kang, S. K. Kong, and H. P. Ho, “Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles,” Opt. Lett. 40(17), 3926–3929 (2015).
[Crossref] [PubMed]

Z. Kang, J. Chen, S. Y. Wu, and H. P. Ho, “Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films,” RSC Advances 5(127), 105409 (2015).
[Crossref]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Kondo, J.

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

Kong, R.

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

Kong, S. K.

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

J. Chen, Z. Kang, S. K. Kong, and H. P. Ho, “Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles,” Opt. Lett. 40(17), 3926–3929 (2015).
[Crossref] [PubMed]

Korson, L.

L. Korson, W. Drost-Hansen, and F. J. Millero, “Viscosity of water at various temperatures,” J. Phys. Chem. 73(1), 34–39 (1969).
[Crossref]

Kreuzer, M. P.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Lawit, A.

J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
[Crossref] [PubMed]

Lei, H.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Lei, H. X.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, B.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[Crossref]

Li, B. J.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, H.

Li, J.

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

H. Li, Y. Zhang, J. Li, and L. Qiang, “Observation of microsphere movement driven by optical pulse,” Opt. Lett. 36(11), 1996–1998 (2011).
[Crossref] [PubMed]

Li, L.

H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[Crossref]

Li, X.

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Li, Y.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[Crossref]

Li, Y. C.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, Y. Z.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, Z.

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Li, Z. B.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

Liberale, C.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Lin, S. C. S.

J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
[Crossref] [PubMed]

Liu, D. J.

Liu, L. L.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Liu, Q. F.

Liu, X.

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

Liu, Y.

Loo, F. C.

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

Ma, R.

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

Ma, T.

Mao, X.

J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
[Crossref] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Mendell, J. T.

H. W. Hwang, E. A. Wentzel, and J. T. Mendell, “Cell-cell contact globally activates microRNA biogenesis,” Proc. Natl. Acad. Sci. U.S.A. 106(17), 7016–7021 (2009).
[Crossref] [PubMed]

Millero, F. J.

L. Korson, W. Drost-Hansen, and F. J. Millero, “Viscosity of water at various temperatures,” J. Phys. Chem. 73(1), 34–39 (1969).
[Crossref]

Minzioni, P.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Mitragotri, S.

J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, “Bio-inspired, bioengineered and biomimetic drug delivery carriers,” Nat. Rev. Drug Discov. 10(7), 521–535 (2011).
[Crossref] [PubMed]

Murali, S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Ohue, M.

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

Okuyama, H.

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

Özdemir, S. K.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Pan, Y.

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

Peng, G. D.

C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).

Y. Gong, C. Zhang, Q. F. Liu, Y. Wu, H. Wu, Y. Rao, and G. D. Peng, “Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity,” Opt. Express 23(3), 3762–3769 (2015).
[Crossref] [PubMed]

Potts, J. R.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Pu, J.

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

Qiang, L.

Qiao, X.

Qiu, C. W.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Quidant, R.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rao, Y.

Rao, Y. J.

C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).

Renger, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Rong, Q.

Roxworthy, B. J.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

Rubin, H.

H. Rubin, “Cell-cell contact interactions conditionally determine suppression and selection of the neoplastic phenotype,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6215–6221 (2008).
[Crossref] [PubMed]

Ruoff, R. S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Saenz, J. J.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Sang, X. Z.

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Semenova, Y.

Shao, Z.

Shen, D.

Shi, J.

J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
[Crossref] [PubMed]

Shi, M.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Stief, F.

Suk, J. W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Sun, L.

Tang, M.

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

Toussaint, K. C.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

Tsujii, M.

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

Vanka, S. P.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Wang, H.

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

H. Wang, X. Wu, and D. Shen, “Trapping and manipulating nanoparticles in photonic nanojets,” Opt. Lett. 41(7), 1652–1655 (2016).
[Crossref] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Wang, K. R.

Wen, X.

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

Wentzel, E. A.

H. W. Hwang, E. A. Wentzel, and J. T. Mendell, “Cell-cell contact globally activates microRNA biogenesis,” Proc. Natl. Acad. Sci. U.S.A. 106(17), 7016–7021 (2009).
[Crossref] [PubMed]

Wheaton, S.

Wu, H.

Wu, Q.

Wu, S. Y.

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

Z. Kang, J. Chen, S. Y. Wu, and H. P. Ho, “Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films,” RSC Advances 5(127), 105409 (2015).
[Crossref]

Wu, X.

Wu, Y.

C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).

Y. Gong, C. Zhang, Q. F. Liu, Y. Wu, H. Wu, Y. Rao, and G. D. Peng, “Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity,” Opt. Express 23(3), 3762–3769 (2015).
[Crossref] [PubMed]

Xia, Y.

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

Xin, H.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[Crossref]

Xin, H. B.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Xing, X.

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Xing, X. B.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

J. P. Zheng, X. B. Xing, J. Evans, and S. L. He, “Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly,” NPG Asia Mater. 8(4), e257 (2016).
[Crossref]

Xu, R.

H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[Crossref]

Yan, B. B.

Yang, J.

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

Yang, J. X.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

Yang, L.

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Yang, X.

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
[Crossref] [PubMed]

Ye, H.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Yin, X.

Yoo, J. W.

J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, “Bio-inspired, bioengineered and biomimetic drug delivery carriers,” Nat. Rev. Drug Discov. 10(7), 521–535 (2011).
[Crossref] [PubMed]

Yu, C. X.

Yu, M.

Yuan, J. H.

Zhang, C.

Zhang, C. L.

C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).

Zhang, H.

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

Zhang, T.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Zhang, Y.

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

H. Li, Y. Zhang, J. Li, and L. Qiang, “Observation of microsphere movement driven by optical pulse,” Opt. Lett. 36(11), 1996–1998 (2011).
[Crossref] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Zheng, J. P.

J. P. Zheng, X. B. Xing, J. Evans, and S. L. He, “Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly,” NPG Asia Mater. 8(4), e257 (2016).
[Crossref]

Zhou, Y.

Zhu, D.

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Zhu, J.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Zou, L.

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

ACS Nano (3)

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Y. Li, H. Xin, Y. Zhang, H. Lei, T. Zhang, H. Ye, J. J. Saenz, C. W. Qiu, and B. Li, “Living Nanospear for near-field optical probing,” ACS Nano 12(11), 10703–10711 (2018), doi:.
[Crossref] [PubMed]

Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, and B. Li, “Enhancing upconversion fluorescence with a natural bio-microlens,” ACS Nano 11(11), 10672–10680 (2017).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

R. Ma, R. Kong, Y. Xia, X. Li, X. Wen, Y. Pan, and X. Dong, “Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles,” Appl. Phys. Lett. 113(3), 033702 (2018).
[Crossref]

H. Xin, Y. Li, L. Li, R. Xu, and B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[Crossref]

Y. Cheng, J. Yang, Z. Li, D. Zhu, X. Cai, X. Hu, W. Huang, and X. Xing, “Microbubble-assisted optofluidic control using a photothermal waveguide,” Appl. Phys. Lett. 111(15), 151903 (2017).
[Crossref]

J. Yang, Z. Li, H. Wang, D. Zhu, X. Cai, Y. Cheng, M. Chen, X. Hu, and X. Xing, “Optofluidic trapping and delivery of massive mesoscopic matters using mobile vortex array,” Appl. Phys. Lett. 111(19), 191901 (2017).
[Crossref]

Biomed. Opt. Express (1)

ChemElectroChem (1)

Y. X. Jiang, L. Zou, J. F. Cheng, Y. Z. Huang, L. C. Jia, B. Chi, J. Pu, and J. Li, “Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries,” ChemElectroChem 4(12), 3140–3147 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. (1)

L. Korson, W. Drost-Hansen, and F. J. Millero, “Viscosity of water at various temperatures,” J. Phys. Chem. 73(1), 34–39 (1969).
[Crossref]

J. Phys. Chem. C (1)

Z. B. Li, J. X. Yang, M. Shi, L. Yang, Y. P. Cheng, X. W. Hu, X. F. Jiang, X. B. Xing, and S. L. He, “Upconversion luminescence of graphene oxide through hybrid waveguide,” J. Phys. Chem. C 122(29), 16866–16871 (2018).
[Crossref]

Lab Chip (1)

J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, “Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab Chip 9(20), 2890–2895 (2009).
[Crossref] [PubMed]

Light Sci. Appl. (1)

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Nano Lett. (1)

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

Nanoscale (1)

Z. Kang, J. Chen, and H. P. Ho, “Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands,” Nanoscale 8(19), 10266–10272 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Nat. Rev. Drug Discov. (1)

J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, “Bio-inspired, bioengineered and biomimetic drug delivery carriers,” Nat. Rev. Drug Discov. 10(7), 521–535 (2011).
[Crossref] [PubMed]

NPG Asia Mater. (1)

J. P. Zheng, X. B. Xing, J. Evans, and S. L. He, “Optofluidic vortex arrays generated by graphene oxide for tweezers, motors and self-assembly,” NPG Asia Mater. 8(4), e257 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (3)

H. Rubin, “Cell-cell contact interactions conditionally determine suppression and selection of the neoplastic phenotype,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6215–6221 (2008).
[Crossref] [PubMed]

H. W. Hwang, E. A. Wentzel, and J. T. Mendell, “Cell-cell contact globally activates microRNA biogenesis,” Proc. Natl. Acad. Sci. U.S.A. 106(17), 7016–7021 (2009).
[Crossref] [PubMed]

J. Kondo, H. Endo, H. Okuyama, O. Ishikawa, H. Iishi, M. Tsujii, M. Ohue, and M. Inoue, “Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 6235–6240 (2011).
[Crossref] [PubMed]

RSC Advances (1)

Z. Kang, J. Chen, S. Y. Wu, and H. P. Ho, “Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films,” RSC Advances 5(127), 105409 (2015).
[Crossref]

Sci. Rep. (1)

J. Chen, H. Cong, F. C. Loo, Z. Kang, M. Tang, H. Zhang, S. Y. Wu, S. K. Kong, and H. P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6(1), 35814 (2016).
[Crossref] [PubMed]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Sensor Actuat. Biol. Chem. (1)

C. L. Zhang, Y. Gong, Y. Wu, Y. J. Rao, G. D. Peng, and X. D. Fan, “Lab-on-tip based on photothermal microbubble generation for concentration detection,” Sensor Actuat. Biol. Chem. 255(3), 2504–2509 (2018).

Supplementary Material (2)

NameDescription
» Visualization 1       This movie shows the trapping process of the GCMP under a 980 nm laser at incident power of 8 mW
» Visualization 2       This movie shows the trapping and arrangement processes of the GCMP under a 980 nm laser at incident power of 12 mW.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental configuration of the trapping and arrangement of erythrocytes by GCMP. (a) Schematic illustration of the natural convection flow and thermophoresis; (b) Schematic illustration of the arrangement along with the propagating beam; (c) Optical microscope image of GCMP; (d) SEM image of the graphene coated on the cross section of the microfiber; (e) Schematic of the experimental setup. A 980-nm laser light is focused on the GCMP, which is immersed in an erythrocyte suspension. The fiber tip is sheathed by a glass capillary and is easily manipulated by a six-axis manipulator. A microscope with a CCD camera is used for observation, image capture, and real-time recording. (f) AFM image of an erythrocyte.
Fig. 2
Fig. 2 Sequence of optical microscope images recorded for erythrocyte trapping based on natural convection flow and thermophoresis. (a)-(e) Sequential steps of the trapping process under incident power of 8 mW, which are recorded in detail in Visualization 1. The white arrows denote the direction of particle trapping. (f) Number of assembled erythrocytes as a function of time under incident power of 8 mW.
Fig. 3
Fig. 3 Sequences of optical microscope images recorded for erythrocyte arrangement based on pushing ability. (a)-(d) Erythrocyte trapping and arrangement processes at different instances of time as the incident power increases to 12 mW, which is recorded in detail in Visualization 2. (e)-(h) The corresponding process with increase in incident power to 20 mW. The trapped erythrocytes are indicated by red circles. The navy blue arrows denote the direction in which the erythrocytes are pushed. (i) Average velocity of erythrocytes under the pushing effect along the light propagation direction under optical power of 12 and 20 mW. (j) Number of assembled erythrocytes as a function of time under the incident power of 12 and 20 mW.
Fig. 4
Fig. 4 Theoretical simulation of GCMP. (a) Calculated temperature distribution induced by the focusing of the 980-nm laser beam on the coated graphene at incident power of 10 mW. The inset shows ambient temperature as a function of distance d to graphene along x axis. (b) Temperature variation as a function of laser power of the hot zone; (c, d) Top (c) and cross section (d) views of fluidic velocity distributions on the free surface.
Fig. 5
Fig. 5 (a) Calculated EA; (b, c) EA for particle located at (16.75 μm, 0) (b) and (16.75 μm, 3 μm) (c); (d) Force Fx exerted on particles in (b) along the x-axis; (e) transverse optical force (Fy).

Tables (1)

Tables Icon

Table 1 Comparison of optical functions, temperature increment (ΔT), maximum optical force (Fmax), and required minimum incident power (Pmax) with those of similar optical tweezer devices reported in literature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q e =Re(J E * )/2+Re(iωB H * )/2=(kT+ρ C p Tμ),
F= ( T M n ) dS,
T M = 1 2 Re[ εE E * +μH H * 1 2 ( ε | E | 2 +μ | Η | 2 )I ],
F x = 1 2 S [ 1 2 ( ε 0 ε r | E z | 2 + μ 0 μ r | Η y | 2 μ 0 μ r | Η x | 2 )dy+ μ 0 μ r Re( Η y Η x * )dx ] ,
F y = 1 2 S [ 1 2 ( ε 0 ε r | E z | 2 + μ 0 μ r | Η x | 2 μ 0 μ r | Η y | 2 )dy μ 0 μ r Re( Η y Η x * )dx ] .

Metrics