Abstract

A simple, compact, and high-sensitivity optical sensor for salinity measurement is reported based on an optical microfiber coil resonator (MCR). The MCR is manufactured by initially wrapping microfiber on a polymethylmethacrylate (PMMA) rod, which is dissolved to leave a hollow cylindrical fluidic channel within the coil for measurement. Based on the light propagation through the MCR, the device’s spectrum moves to long wavelengths with increased salinity in the fluid. The MCR device’s sensitivity can reach up to 15.587 nm/% with a resolution of 1.28 × 10-3%. It is also confirmed that the temperature dependence is 79.87 pm/°C, which results from the strong thermal-expansion coefficient of the low refractive index epoxy. The experimental results indicate that the device can be widely used as a high sensitivity salinity sensor in water and other liquids due to its stability, compactness, electromagnetic immunity, and high sensitivity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high-resolution detection of Pb2+ ions using a black phosphorus functionalized microfiber coil resonator

Yu Yin, Shi Li, Shunbin Wang, Shijie Jia, Jing Ren, Gerald Farrell, Elfed Lewis, and Pengfei Wang
Photon. Res. 7(6) 622-629 (2019)

Teflon-coated microfiber resonator with weak temperature dependence

Ye Chen, Fei Xu, and Yan-qing Lu
Opt. Express 19(23) 22923-22928 (2011)

Optical microfiber coil resonator refractometric sensor

Fei Xu, Peter Horak, and Gilberto Brambilla
Opt. Express 15(12) 7888-7893 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao, Y. Liao, B. Zhang, and S. Lai, “Monitoring technology of salinity in water with optical fiber sensor,” J. Lightwave Technol. 21(5), 1334–1338 (2003).
    [Crossref]
  2. N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
    [Crossref]
  3. C. Gabarró, J. Font, A. Camps, M. Vall-llossera, and A. Julià, “A new empirical model of sea surface microwave emissivity for salinity remote sensing,” Geophys. Res. Lett. 31(1), 1309 (2004).
    [Crossref]
  4. D. A. Pereira, O. Frazao, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
    [Crossref]
  5. R. A. Cox, F. Culkin, and J. P. Riley, “The electrical conductivity/chlorinity relationship in natural sea water,” Deep-Sea Res. 14(2), 203–220 (1967).
  6. G. I. Roden and J. D. Irish, “Electronic digitization and sensor response effects on salinity computation from CTD field measurements,” J. Phys. Oceanogr. 5(1), 195–199 (1975).
    [Crossref]
  7. Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuators A Phys. 233, 22–25 (2015).
    [Crossref]
  8. S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
    [Crossref] [PubMed]
  9. S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1–9 (2016).
    [Crossref]
  10. N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
    [Crossref]
  11. J. Cong, X. Zhang, K. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B Chem. 87(3), 487–490 (2002).
    [Crossref]
  12. G. Brambilla and F. Xu, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 5742 (2008).
  13. Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
    [Crossref] [PubMed]
  14. S. Yan, B. Zheng, J. Chen, F. Xu, and Y. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107(5), 53502 (2015).
    [Crossref]
  15. M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004).
    [Crossref] [PubMed]
  16. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  17. G. Y. Chen, T. Lee, X. L. Zhang, G. Brambilla, and T. P. Newson, “Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators,” Opt. Commun. 285(23), 4677–4683 (2012).
    [Crossref]
  18. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [Crossref] [PubMed]
  19. Y. Yin, J. Yu, Y. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. Wang, “Investigation of temperature dependence of microfibre coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
    [Crossref]
  20. X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
    [Crossref]

2018 (2)

N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
[Crossref]

Y. Yin, J. Yu, Y. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. Wang, “Investigation of temperature dependence of microfibre coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

2016 (1)

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

2015 (2)

S. Yan, B. Zheng, J. Chen, F. Xu, and Y. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107(5), 53502 (2015).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuators A Phys. 233, 22–25 (2015).
[Crossref]

2014 (1)

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

2012 (2)

G. Y. Chen, T. Lee, X. L. Zhang, G. Brambilla, and T. P. Newson, “Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators,” Opt. Commun. 285(23), 4677–4683 (2012).
[Crossref]

S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

2008 (1)

G. Brambilla and F. Xu, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 5742 (2008).

2007 (1)

2004 (4)

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004).
[Crossref] [PubMed]

C. Gabarró, J. Font, A. Camps, M. Vall-llossera, and A. Julià, “A new empirical model of sea surface microwave emissivity for salinity remote sensing,” Geophys. Res. Lett. 31(1), 1309 (2004).
[Crossref]

D. A. Pereira, O. Frazao, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

2003 (1)

2002 (1)

J. Cong, X. Zhang, K. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B Chem. 87(3), 487–490 (2002).
[Crossref]

1975 (1)

G. I. Roden and J. D. Irish, “Electronic digitization and sensor response effects on salinity computation from CTD field measurements,” J. Phys. Oceanogr. 5(1), 195–199 (1975).
[Crossref]

1967 (1)

R. A. Cox, F. Culkin, and J. P. Riley, “The electrical conductivity/chlorinity relationship in natural sea water,” Deep-Sea Res. 14(2), 203–220 (1967).

Alory, G.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Boutin, J.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Brambilla, G.

G. Y. Chen, T. Lee, X. L. Zhang, G. Brambilla, and T. P. Newson, “Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators,” Opt. Commun. 285(23), 4677–4683 (2012).
[Crossref]

G. Brambilla and F. Xu, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 5742 (2008).

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[Crossref] [PubMed]

Camps, A.

C. Gabarró, J. Font, A. Camps, M. Vall-llossera, and A. Julià, “A new empirical model of sea surface microwave emissivity for salinity remote sensing,” Geophys. Res. Lett. 31(1), 1309 (2004).
[Crossref]

Chapron, B.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Chen, G. Y.

G. Y. Chen, T. Lee, X. L. Zhang, G. Brambilla, and T. P. Newson, “Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators,” Opt. Commun. 285(23), 4677–4683 (2012).
[Crossref]

Chen, J.

S. Yan, B. Zheng, J. Chen, F. Xu, and Y. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107(5), 53502 (2015).
[Crossref]

Chen, K.

J. Cong, X. Zhang, K. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B Chem. 87(3), 487–490 (2002).
[Crossref]

Chen, X.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Chen, Y.

Cong, J.

J. Cong, X. Zhang, K. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B Chem. 87(3), 487–490 (2002).
[Crossref]

Cox, R. A.

R. A. Cox, F. Culkin, and J. P. Riley, “The electrical conductivity/chlorinity relationship in natural sea water,” Deep-Sea Res. 14(2), 203–220 (1967).

Culkin, F.

R. A. Cox, F. Culkin, and J. P. Riley, “The electrical conductivity/chlorinity relationship in natural sea water,” Deep-Sea Res. 14(2), 203–220 (1967).

Delwart, S.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Farrell, G.

Font, J.

C. Gabarró, J. Font, A. Camps, M. Vall-llossera, and A. Julià, “A new empirical model of sea surface microwave emissivity for salinity remote sensing,” Geophys. Res. Lett. 31(1), 1309 (2004).
[Crossref]

Fournier, S.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Frazao, O.

D. A. Pereira, O. Frazao, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Gabarró, C.

C. Gabarró, J. Font, A. Camps, M. Vall-llossera, and A. Julià, “A new empirical model of sea surface microwave emissivity for salinity remote sensing,” Geophys. Res. Lett. 31(1), 1309 (2004).
[Crossref]

Hernandez, O.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Horak, P.

Irish, J. D.

G. I. Roden and J. D. Irish, “Electronic digitization and sensor response effects on salinity computation from CTD field measurements,” J. Phys. Oceanogr. 5(1), 195–199 (1975).
[Crossref]

Jiang, Y.

Julià, A.

C. Gabarró, J. Font, A. Camps, M. Vall-llossera, and A. Julià, “A new empirical model of sea surface microwave emissivity for salinity remote sensing,” Geophys. Res. Lett. 31(1), 1309 (2004).
[Crossref]

Kalli, K.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Kerr, Y.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Lai, S.

Lee, T.

G. Y. Chen, T. Lee, X. L. Zhang, G. Brambilla, and T. P. Newson, “Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators,” Opt. Commun. 285(23), 4677–4683 (2012).
[Crossref]

Lewis, E.

Li, G.

Li, S.

Liao, Y.

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuators A Phys. 233, 22–25 (2015).
[Crossref]

Y. Zhao, Y. Liao, B. Zhang, and S. Lai, “Monitoring technology of salinity in water with optical fiber sensor,” J. Lightwave Technol. 21(5), 1334–1338 (2003).
[Crossref]

Liu, B.

N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
[Crossref]

Liu, H.

N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
[Crossref]

Liu, T.

N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
[Crossref]

Lou, J.

Lu, Y.

S. Yan, B. Zheng, J. Chen, F. Xu, and Y. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107(5), 53502 (2015).
[Crossref]

Lu, Y. Q.

Maes, C.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Mazur, E.

Mecklenburg, S.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Morisset, S.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Newson, T. P.

G. Y. Chen, T. Lee, X. L. Zhang, G. Brambilla, and T. P. Newson, “Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators,” Opt. Commun. 285(23), 4677–4683 (2012).
[Crossref]

Peng, G. D.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Pereira, D. A.

D. A. Pereira, O. Frazao, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Quilfen, Y.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Ren, J.

Reul, N.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Riley, J. P.

R. A. Cox, F. Culkin, and J. P. Riley, “The electrical conductivity/chlorinity relationship in natural sea water,” Deep-Sea Res. 14(2), 203–220 (1967).

Roden, G. I.

G. I. Roden and J. D. Irish, “Electronic digitization and sensor response effects on salinity computation from CTD field measurements,” J. Phys. Oceanogr. 5(1), 195–199 (1975).
[Crossref]

Santos, J. L.

D. A. Pereira, O. Frazao, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Sumetsky, M.

Tenerelli, J.

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Tong, L.

Vall-llossera, M.

C. Gabarró, J. Font, A. Camps, M. Vall-llossera, and A. Julià, “A new empirical model of sea surface microwave emissivity for salinity remote sensing,” Geophys. Res. Lett. 31(1), 1309 (2004).
[Crossref]

Wang, C.

N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
[Crossref]

Wang, J.

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuators A Phys. 233, 22–25 (2015).
[Crossref]

S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
[Crossref] [PubMed]

Wang, P.

Wang, S.

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuators A Phys. 233, 22–25 (2015).
[Crossref]

S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
[Crossref] [PubMed]

Wang, X.

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuators A Phys. 233, 22–25 (2015).
[Crossref]

Webb, D. J.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Xie, N.

N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
[Crossref]

Xu, F.

S. Yan, B. Zheng, J. Chen, F. Xu, and Y. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107(5), 53502 (2015).
[Crossref]

Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
[Crossref] [PubMed]

G. Brambilla and F. Xu, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 5742 (2008).

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[Crossref] [PubMed]

Xu, J.

J. Cong, X. Zhang, K. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B Chem. 87(3), 487–490 (2002).
[Crossref]

Yan, S.

S. Yan, B. Zheng, J. Chen, F. Xu, and Y. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107(5), 53502 (2015).
[Crossref]

Yang, H.

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuators A Phys. 233, 22–25 (2015).
[Crossref]

Yin, Y.

Yu, J.

Zhang, B.

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Zhang, H.

N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
[Crossref]

Zhang, X.

J. Cong, X. Zhang, K. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B Chem. 87(3), 487–490 (2002).
[Crossref]

Zhang, X. L.

G. Y. Chen, T. Lee, X. L. Zhang, G. Brambilla, and T. P. Newson, “Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators,” Opt. Commun. 285(23), 4677–4683 (2012).
[Crossref]

Zhao, Y.

Zheng, B.

S. Yan, B. Zheng, J. Chen, F. Xu, and Y. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107(5), 53502 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Brambilla and F. Xu, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 5742 (2008).

S. Yan, B. Zheng, J. Chen, F. Xu, and Y. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Appl. Phys. Lett. 107(5), 53502 (2015).
[Crossref]

Deep-Sea Res. (1)

R. A. Cox, F. Culkin, and J. P. Riley, “The electrical conductivity/chlorinity relationship in natural sea water,” Deep-Sea Res. 14(2), 203–220 (1967).

Geophys. Res. Lett. (1)

C. Gabarró, J. Font, A. Camps, M. Vall-llossera, and A. Julià, “A new empirical model of sea surface microwave emissivity for salinity remote sensing,” Geophys. Res. Lett. 31(1), 1309 (2004).
[Crossref]

IEEE Photonics J. (1)

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

IEEE Sens. J. (1)

N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, and C. Wang, “In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity,” IEEE Sens. J. 18(21), 8767–8772 (2018).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. Oceanogr. (1)

G. I. Roden and J. D. Irish, “Electronic digitization and sensor response effects on salinity computation from CTD field measurements,” J. Phys. Oceanogr. 5(1), 195–199 (1975).
[Crossref]

Meas. Sci. Technol. (1)

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[Crossref]

Opt. Commun. (1)

G. Y. Chen, T. Lee, X. L. Zhang, G. Brambilla, and T. P. Newson, “Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators,” Opt. Commun. 285(23), 4677–4683 (2012).
[Crossref]

Opt. Eng. (1)

D. A. Pereira, O. Frazao, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Opt. Express (4)

Sens. Actuators A Phys. (1)

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuators A Phys. 233, 22–25 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

J. Cong, X. Zhang, K. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B Chem. 87(3), 487–490 (2002).
[Crossref]

Surv. Geophys. (1)

N. Reul, S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, S. Morisset, Y. Kerr, S. Mecklenburg, and S. Delwart, “Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle,” Surv. Geophys. 35(3), 681–722 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Normalized transmission spectra at two different salinities. (b) Theoretical relationship between resonance wavelength and salinity.
Fig. 2
Fig. 2 (a) Fabrication process of the salinity sensor. (b) Schematic diagram of the experiment system. (c) Transmission spectra of the MCR before and after removal the PMMA rod and after setting into salt solution.
Fig. 3
Fig. 3 (a) Transmission spectra of the salinity sensor at different salinities. (b) Experimental and theoretical relationship between resonance wavelength and salinity.
Fig. 4
Fig. 4 (a) Schematic of the experiment set-ups for the temperature sensitivity measurement. (b) Experimental spectra of the salinity sensor at different temperature. (c) Temperature dependence of the resonance wavelength. The solid line is the linear fit to the experiment data (solid squares).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i d ds [ A1(s) A2(s) A3(s) An2(s) An1(s) An(s) ]=[ 0 k 0 0 0 0 0 k 0 k 0 0 0 0 0 k 0 k 0 0 0 0 0 0 0 0 k 0 0 0 0 0 k 0 k 0 0 0 0 0 k 0 ][ A1(s) A2(s) A3(s) An2(s) An1(s) An(s) ]
[ A1(0) A2(0) A3(0) An2(0) An1(0) An(0) ]=[ 0 0 0 0 0 0 exp iβS 0 0 0 0 0 0 exp iβS 0 0 0 0 0 0 0 0 0 0 0 0 0 exp iβS 0 0 0 0 0 0 exp iβS 0 ][ A1(S) A2(S) A3(S) An2(S) An1(S) An(S) ]+[ A1(0) 0 0 0 0 0 ]
T= An(S)exp(iβS) A1(0)
I=T× T *
{ J 1 ' (U) UJ1(U) + K 1 ' (W) WK1(W) }{ J 1 ' (U) UJ1(U) + n 2 2 K 1 ' (W) n 1 1 WK1(W) }= ( β kn1 ) 2 ( V UW ) 4

Metrics