Abstract

Femtosecond laser micromachining holds significant promise for advanced manufacturing, however uptake has been limited by the low processing speed. Altering the beam shape from its typical Gaussian profile has been attempted to improve efficiency, however virtually all reliable methods for quantifying the efficiency assume a Gaussian beam shape. Here, we describe an approach for quantifying the ablation threshold fluence – the key parameter for comparing efficiency – suitable for weakly focused non-Gaussian beams. We successfully demonstrate this method for Bessel and vortex beams, finding that the ablation threshold depends not just on the material, but the beam shape as well.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses

Leandro Matiolli Machado, Ricardo Elgul Samad, Wagner de Rossi, and Nilson Dias Vieira Junior
Opt. Express 20(4) 4114-4123 (2012)

Simultaneously spatially and temporally focused femtosecond vortex beams for laser micromachining

Weibo Cheng, Xiao-Long Liu, and Pavel Polynkin
J. Opt. Soc. Am. B 35(10) B16-B19 (2018)

Femtosecond laser volume ablation rate and threshold measurements by differential weighing

D Pietroy, Y Di Maio, B Moine, E Baubeau, and E Audouard
Opt. Express 20(28) 29900-29908 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
    [Crossref]
  3. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
    [Crossref]
  4. K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  5. J. Krüger and W. Kautek, “Ultrashort Pulse Laser Interaction with Dielectrics and Polymers” in Polymers and Light, T. K. Lippert, Editor (Springer, 2004).
  6. J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
    [Crossref]
  7. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  8. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [Crossref]
  9. S.-S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys., A Mater. Sci. Process. 69(1), S99–S107 (1999).
  10. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and Ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
    [Crossref]
  11. A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O’Connor, “Laser scribing of thin dielectrics with polarised ultrashort pulses,” Opt. Lasers Eng. 60, 18–24 (2014).
    [Crossref]
  12. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
    [Crossref]
  13. M. Lebugle, N. Sanner, O. Utéza, and M. Sentis, “Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 129–142 (2014).
    [Crossref]
  14. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15(26), 17855–17862 (2007).
    [Crossref] [PubMed]
  15. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  16. W. de Rossi, L. M. Machado, N. D. Vieira, and R. E. Samad, “D-Scan Measurement of the Ablation Threshold and Incubation Parameter of Optical Materials in the Ultrafast Regime,” Phys. Procedia 39(0), 642–649 (2012).
    [Crossref]
  17. L. M. Machado, R. E. Samad, W. de Rossi, and N. D. Vieira Junior, “D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses,” Opt. Express 20(4), 4114–4123 (2012).
    [Crossref] [PubMed]
  18. A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
    [Crossref]
  19. R. E. Samad, S. L. Baldochi, and N. D. Vieira, “Diagonal scan measurement of Cr:LiSAF 20 ps ablation threshold,” Appl. Opt. 47(7), 920–924 (2008).
    [Crossref] [PubMed]
  20. R. E. Samad and N. D. Vieira, “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006).
    [Crossref]
  21. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
    [Crossref]
  22. R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
    [Crossref]
  23. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  24. E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
    [Crossref]
  25. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
    [Crossref] [PubMed]
  26. W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, “Internal modification for cutting transparent glass using femtosecond Bessel beams,” Opt. Eng. 53(5), 051503 (2013).
    [Crossref]
  27. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
    [Crossref]
  28. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
    [Crossref]
  29. E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
    [Crossref]
  30. J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
    [Crossref] [PubMed]
  31. R. Sahin, T. Ersoy, and S. Akturk, “Ablation of metal thin films using femtosecond laser Bessel vortex beams,” Appl. Phys., A Mater. Sci. Process. 118(1), 125–129 (2015).
    [Crossref]
  32. R. N. Oosterbeek, S. Ashforth, O. Bodley, and M. C. Simpson, “Theoretical basis of the diagonal scan method for determining the laser ablation threshold for femtosecond vortex pulses,” arXiv:1802.10332 [physics.optics] (2018).
  33. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Adv. Comput. Math. 5(1), 329–359 (1996).
    [Crossref]
  34. R. G. Bartle and D. R. Sherbert, “Introduction to Real Analysis” (John Wiley & Sons Inc., 2000).
  35. V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre–Gaussian beams by axicon,” Opt. Commun. 184(1–4), 105–112 (2000).
    [Crossref]
  36. D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [Crossref]
  37. P. Wu, C. Sui, and W. Huang, “Theoretical analysis of a quasi-Bessel beam for laser ablation,” Photon. Res. 2(3), 82–86 (2014).
    [Crossref]
  38. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).
    [Crossref]
  39. J. Fang and Q. Cao, “Throughput enhancement in femtosecond laser ablation of silicon by N-type doping,” in Frontiers in Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FW4A.6.
  40. M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24(10), 106102 (2014).
    [Crossref]
  41. R. N. Oosterbeek, C. Corazza, S. Ashforth, and M. C. Simpson, “Effects of dopant type and concentration on the femtosecond laser ablation threshold and incubation behaviour of silicon,” Appl. Phys., A Mater. Sci. Process. 122(4), 449 (2016).
    [Crossref]
  42. F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
    [Crossref] [PubMed]
  43. R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2017).
    [Crossref] [PubMed]
  44. S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Y. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B Condens. Matter Mater. Phys. 79(14), 144120 (2009).
    [Crossref]
  45. M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
    [Crossref] [PubMed]
  46. A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453(Supplement C), 501–505 (2004).
    [Crossref]
  47. A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
    [Crossref]
  48. S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
    [Crossref]
  49. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
    [Crossref]
  50. C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
    [Crossref] [PubMed]
  51. S. Butkus, D. Paipulas, D. Kaskelyte, E. Gaizauskas, and V. Sirutkaitis, “Improvement of Cut Quality in Rapid-Cutting of Glass Method via Femtosecond Laser Filamentation,” J. Laser Micro Nanoeng. 10(1), 59–63 (2015).
    [Crossref]

2018 (1)

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

2017 (2)

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2017).
[Crossref] [PubMed]

S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
[Crossref]

2016 (1)

R. N. Oosterbeek, C. Corazza, S. Ashforth, and M. C. Simpson, “Effects of dopant type and concentration on the femtosecond laser ablation threshold and incubation behaviour of silicon,” Appl. Phys., A Mater. Sci. Process. 122(4), 449 (2016).
[Crossref]

2015 (4)

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

S. Butkus, D. Paipulas, D. Kaskelyte, E. Gaizauskas, and V. Sirutkaitis, “Improvement of Cut Quality in Rapid-Cutting of Glass Method via Femtosecond Laser Filamentation,” J. Laser Micro Nanoeng. 10(1), 59–63 (2015).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

R. Sahin, T. Ersoy, and S. Akturk, “Ablation of metal thin films using femtosecond laser Bessel vortex beams,” Appl. Phys., A Mater. Sci. Process. 118(1), 125–129 (2015).
[Crossref]

2014 (6)

P. Wu, C. Sui, and W. Huang, “Theoretical analysis of a quasi-Bessel beam for laser ablation,” Photon. Res. 2(3), 82–86 (2014).
[Crossref]

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O’Connor, “Laser scribing of thin dielectrics with polarised ultrashort pulses,” Opt. Lasers Eng. 60, 18–24 (2014).
[Crossref]

M. Lebugle, N. Sanner, O. Utéza, and M. Sentis, “Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 129–142 (2014).
[Crossref]

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24(10), 106102 (2014).
[Crossref]

2013 (3)

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, “Internal modification for cutting transparent glass using femtosecond Bessel beams,” Opt. Eng. 53(5), 051503 (2013).
[Crossref]

2012 (3)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

W. de Rossi, L. M. Machado, N. D. Vieira, and R. E. Samad, “D-Scan Measurement of the Ablation Threshold and Incubation Parameter of Optical Materials in the Ultrafast Regime,” Phys. Procedia 39(0), 642–649 (2012).
[Crossref]

L. M. Machado, R. E. Samad, W. de Rossi, and N. D. Vieira Junior, “D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses,” Opt. Express 20(4), 4114–4123 (2012).
[Crossref] [PubMed]

2011 (2)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[Crossref]

2010 (4)

C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
[Crossref] [PubMed]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
[Crossref]

2009 (4)

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
[Crossref] [PubMed]

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Y. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B Condens. Matter Mater. Phys. 79(14), 144120 (2009).
[Crossref]

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

2008 (2)

R. E. Samad, S. L. Baldochi, and N. D. Vieira, “Diagonal scan measurement of Cr:LiSAF 20 ps ablation threshold,” Appl. Opt. 47(7), 920–924 (2008).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

2006 (1)

R. E. Samad and N. D. Vieira, “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006).
[Crossref]

2005 (1)

D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

2004 (2)

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453(Supplement C), 501–505 (2004).
[Crossref]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

2002 (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and Ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

2000 (1)

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre–Gaussian beams by axicon,” Opt. Commun. 184(1–4), 105–112 (2000).
[Crossref]

1999 (3)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).
[Crossref]

S.-S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys., A Mater. Sci. Process. 69(1), S99–S107 (1999).

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

1997 (2)

J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
[Crossref]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[Crossref]

1982 (1)

Akturk, S.

R. Sahin, T. Ersoy, and S. Akturk, “Ablation of metal thin films using femtosecond laser Bessel vortex beams,” Appl. Phys., A Mater. Sci. Process. 118(1), 125–129 (2015).
[Crossref]

Allahyari, E.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

Amoruso, S.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

Anoop, K. K.

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Ashforth, S.

R. N. Oosterbeek, C. Corazza, S. Ashforth, and M. C. Simpson, “Effects of dopant type and concentration on the femtosecond laser ablation threshold and incubation behaviour of silicon,” Appl. Phys., A Mater. Sci. Process. 122(4), 449 (2016).
[Crossref]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).
[Crossref]

Baldochi, S. L.

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Baumert, T.

Bhuyan, M. K.

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
[Crossref] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Brantov, A. V.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Y. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B Condens. Matter Mater. Phys. 79(14), 144120 (2009).
[Crossref]

Bruzzese, R.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

Bussiere, B.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Butkus, S.

S. Butkus, D. Paipulas, D. Kaskelyte, E. Gaizauskas, and V. Sirutkaitis, “Improvement of Cut Quality in Rapid-Cutting of Glass Method via Femtosecond Laser Filamentation,” J. Laser Micro Nanoeng. 10(1), 59–63 (2015).
[Crossref]

Bychenkov, V. Y.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Y. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B Condens. Matter Mater. Phys. 79(14), 144120 (2009).
[Crossref]

Cardano, F.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

Chan, Y. K.

A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O’Connor, “Laser scribing of thin dielectrics with polarised ultrashort pulses,” Opt. Lasers Eng. 60, 18–24 (2014).
[Crossref]

Cheng, C.-W.

W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, “Internal modification for cutting transparent glass using femtosecond Bessel beams,” Opt. Eng. 53(5), 051503 (2013).
[Crossref]

Cheng, G.

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

Cheng, J.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Chichkov, B. N.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Collins, A.

A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O’Connor, “Laser scribing of thin dielectrics with polarised ultrashort pulses,” Opt. Lasers Eng. 60, 18–24 (2014).
[Crossref]

Colombier, J. P.

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

Corazza, C.

R. N. Oosterbeek, C. Corazza, S. Ashforth, and M. C. Simpson, “Effects of dopant type and concentration on the femtosecond laser ablation threshold and incubation behaviour of silicon,” Appl. Phys., A Mater. Sci. Process. 122(4), 449 (2016).
[Crossref]

Corless, R. M.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[Crossref]

Couairon, A.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

Courvoisier, F.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
[Crossref] [PubMed]

Coustillier, G.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

de Rossi, W.

W. de Rossi, L. M. Machado, N. D. Vieira, and R. E. Samad, “D-Scan Measurement of the Ablation Threshold and Incubation Parameter of Optical Materials in the Ultrafast Regime,” Phys. Procedia 39(0), 642–649 (2012).
[Crossref]

L. M. Machado, R. E. Samad, W. de Rossi, and N. D. Vieira Junior, “D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses,” Opt. Express 20(4), 4114–4123 (2012).
[Crossref] [PubMed]

Dearden, G.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

Dholakia, K.

D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Dudley, J. M.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
[Crossref] [PubMed]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Dutouquet, C.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453(Supplement C), 501–505 (2004).
[Crossref]

Englert, L.

Ersoy, T.

R. Sahin, T. Ersoy, and S. Akturk, “Ablation of metal thin films using femtosecond laser Bessel vortex beams,” Appl. Phys., A Mater. Sci. Process. 118(1), 125–129 (2015).
[Crossref]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Fang, R.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2017).
[Crossref] [PubMed]

Fedosejevs, R.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Y. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B Condens. Matter Mater. Phys. 79(14), 144120 (2009).
[Crossref]

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Fittipaldi, R.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

Freitas, A. Z.

A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
[Crossref]

Freschi, L. R.

A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
[Crossref]

Fryer, B. J.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24(10), 106102 (2014).
[Crossref]

Furfaro, L.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
[Crossref] [PubMed]

Gagnon, J. E.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24(10), 106102 (2014).
[Crossref]

Gaizauskas, E.

S. Butkus, D. Paipulas, D. Kaskelyte, E. Gaizauskas, and V. Sirutkaitis, “Improvement of Cut Quality in Rapid-Cutting of Glass Method via Femtosecond Laser Filamentation,” J. Laser Micro Nanoeng. 10(1), 59–63 (2015).
[Crossref]

Gamaly, E. G.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and Ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Giust, R.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

Gonnet, G. H.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[Crossref]

Gouw-Soares, S. C.

A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
[Crossref]

Gu, C.-J.

W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, “Internal modification for cutting transparent glass using femtosecond Bessel beams,” Opt. Eng. 53(5), 051503 (2013).
[Crossref]

Güdde, J.

S.-S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys., A Mater. Sci. Process. 69(1), S99–S107 (1999).

Guo, C.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2017).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[Crossref]

Gupta, P. K.

S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
[Crossref]

Haag, L.

Hare, D. E. G.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[Crossref]

Hnatovsky, C.

Hohlfeld, J.

S.-S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys., A Mater. Sci. Process. 69(1), S99–S107 (1999).

Horng, J.-B.

W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, “Internal modification for cutting transparent glass using femtosecond Bessel beams,” Opt. Eng. 53(5), 051503 (2013).
[Crossref]

Huang, W.

Itina, T.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Itina, T. E.

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Jacobs, H.

Jacquot, M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
[Crossref] [PubMed]

Jarutis, V.

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre–Gaussian beams by axicon,” Opt. Commun. 184(1–4), 105–112 (2000).
[Crossref]

Jeffrey, D. J.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[Crossref]

Jukna, V.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

Kaskelyte, D.

S. Butkus, D. Paipulas, D. Kaskelyte, E. Gaizauskas, and V. Sirutkaitis, “Improvement of Cut Quality in Rapid-Cutting of Glass Method via Femtosecond Laser Filamentation,” J. Laser Micro Nanoeng. 10(1), 59–63 (2015).
[Crossref]

Kautek, W.

J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
[Crossref]

Khishchenko, K. V.

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Kirkwood, S. E.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Y. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B Condens. Matter Mater. Phys. 79(14), 144120 (2009).
[Crossref]

Knuth, D. E.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[Crossref]

Krausz, F.

J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
[Crossref]

Krolikowski, W.

Krueger, J.

J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
[Crossref]

Kumar, S.

S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
[Crossref]

Lacourt, P. A.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34(20), 3163–3165 (2009).
[Crossref] [PubMed]

Lebugle, M.

M. Lebugle, N. Sanner, O. Utéza, and M. Sentis, “Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 129–142 (2014).
[Crossref]

Lenzner, M.

J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
[Crossref]

Leray, A.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Levashov, P. R.

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Liu, C.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

Liu, D.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

Liu, J. M.

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and Ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Machado, L. M.

W. de Rossi, L. M. Machado, N. D. Vieira, and R. E. Samad, “D-Scan Measurement of the Ablation Threshold and Incubation Parameter of Optical Materials in the Ultrafast Regime,” Phys. Procedia 39(0), 642–649 (2012).
[Crossref]

L. M. Machado, R. E. Samad, W. de Rossi, and N. D. Vieira Junior, “D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses,” Opt. Express 20(4), 4114–4123 (2012).
[Crossref] [PubMed]

Marrucci, L.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

Matthias, E.

S.-S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys., A Mater. Sci. Process. 69(1), S99–S107 (1999).

Mauclair, C.

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Milián, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Nivas, J. J.

Nivas, J. J. J.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

Nolte, S.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

O’Connor, G. M.

A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O’Connor, “Laser scribing of thin dielectrics with polarised ultrashort pulses,” Opt. Lasers Eng. 60, 18–24 (2014).
[Crossref]

Oosterbeek, R. N.

R. N. Oosterbeek, C. Corazza, S. Ashforth, and M. C. Simpson, “Effects of dopant type and concentration on the femtosecond laser ablation threshold and incubation behaviour of silicon,” Appl. Phys., A Mater. Sci. Process. 122(4), 449 (2016).
[Crossref]

Ouadghiri-Idrissi, I.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Paipulas, D.

S. Butkus, D. Paipulas, D. Kaskelyte, E. Gaizauskas, and V. Sirutkaitis, “Improvement of Cut Quality in Rapid-Cutting of Glass Method via Femtosecond Laser Filamentation,” J. Laser Micro Nanoeng. 10(1), 59–63 (2015).
[Crossref]

Paparo, D.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

Paškauskas, R.

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre–Gaussian beams by axicon,” Opt. Commun. 184(1–4), 105–112 (2000).
[Crossref]

Perrie, W.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Povarnitsyn, M. E.

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Prieto, C.

A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O’Connor, “Laser scribing of thin dielectrics with polarised ultrashort pulses,” Opt. Lasers Eng. 60, 18–24 (2014).
[Crossref]

Rethfeld, B.

Richardson, K.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

Richardson, M.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

Rode, A. V.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
[Crossref] [PubMed]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and Ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).
[Crossref]

Rostohar, D.

A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O’Connor, “Laser scribing of thin dielectrics with polarised ultrashort pulses,” Opt. Lasers Eng. 60, 18–24 (2014).
[Crossref]

Rubano, A.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Sahin, R.

R. Sahin, T. Ersoy, and S. Akturk, “Ablation of metal thin films using femtosecond laser Bessel vortex beams,” Appl. Phys., A Mater. Sci. Process. 118(1), 125–129 (2015).
[Crossref]

Salut, R.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Samad, R. E.

W. de Rossi, L. M. Machado, N. D. Vieira, and R. E. Samad, “D-Scan Measurement of the Ablation Threshold and Incubation Parameter of Optical Materials in the Ultrafast Regime,” Phys. Procedia 39(0), 642–649 (2012).
[Crossref]

L. M. Machado, R. E. Samad, W. de Rossi, and N. D. Vieira Junior, “D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses,” Opt. Express 20(4), 4114–4123 (2012).
[Crossref] [PubMed]

A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
[Crossref]

R. E. Samad, S. L. Baldochi, and N. D. Vieira, “Diagonal scan measurement of Cr:LiSAF 20 ps ablation threshold,” Appl. Opt. 47(7), 920–924 (2008).
[Crossref] [PubMed]

R. E. Samad and N. D. Vieira, “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006).
[Crossref]

Sanner, N.

M. Lebugle, N. Sanner, O. Utéza, and M. Sentis, “Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 129–142 (2014).
[Crossref]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Sarpe-Tudoran, C.

Sartania, S.

J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
[Crossref]

Semerok, A.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453(Supplement C), 501–505 (2004).
[Crossref]

Sentis, M.

M. Lebugle, N. Sanner, O. Utéza, and M. Sentis, “Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 129–142 (2014).
[Crossref]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Shah, L.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

Shaheen, M. E.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24(10), 106102 (2014).
[Crossref]

Shang, S.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

Sharma, R. P.

S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
[Crossref]

Sharma, S.

S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
[Crossref]

Shutong, H.

Shvedov, V. G.

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Simpson, M. C.

R. N. Oosterbeek, C. Corazza, S. Ashforth, and M. C. Simpson, “Effects of dopant type and concentration on the femtosecond laser ablation threshold and incubation behaviour of silicon,” Appl. Phys., A Mater. Sci. Process. 122(4), 449 (2016).
[Crossref]

Singh, R. K.

S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
[Crossref]

Sirutkaitis, V.

S. Butkus, D. Paipulas, D. Kaskelyte, E. Gaizauskas, and V. Sirutkaitis, “Improvement of Cut Quality in Rapid-Cutting of Glass Method via Femtosecond Laser Filamentation,” J. Laser Micro Nanoeng. 10(1), 59–63 (2015).
[Crossref]

Spielmann, C.

J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
[Crossref]

Srisungsitthisunti, P.

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

Stabinis, A.

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre–Gaussian beams by axicon,” Opt. Commun. 184(1–4), 105–112 (2000).
[Crossref]

Stoian, R.

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).
[Crossref]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sui, C.

Tawney, J.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and Ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Tsai, W.-J.

W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, “Internal modification for cutting transparent glass using femtosecond Bessel beams,” Opt. Eng. 53(5), 051503 (2013).
[Crossref]

Tsui, Y. Y.

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Y. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B Condens. Matter Mater. Phys. 79(14), 144120 (2009).
[Crossref]

Tünnermann, A.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Uma, R.

S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
[Crossref]

Utéza, O.

M. Lebugle, N. Sanner, O. Utéza, and M. Sentis, “Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 129–142 (2014).
[Crossref]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Vecchione, A.

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

Velpula, P. K.

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

Vieira, N. D.

W. de Rossi, L. M. Machado, N. D. Vieira, and R. E. Samad, “D-Scan Measurement of the Ablation Threshold and Incubation Parameter of Optical Materials in the Ultrafast Regime,” Phys. Procedia 39(0), 642–649 (2012).
[Crossref]

A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
[Crossref]

R. E. Samad, S. L. Baldochi, and N. D. Vieira, “Diagonal scan measurement of Cr:LiSAF 20 ps ablation threshold,” Appl. Opt. 47(7), 920–924 (2008).
[Crossref] [PubMed]

R. E. Samad and N. D. Vieira, “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006).
[Crossref]

Vieira Junior, N. D.

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Vorobyev, A.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2017).
[Crossref] [PubMed]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[Crossref]

Watkins, K.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

Wellegehausen, B.

Wellershoff, S.-S.

S.-S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys., A Mater. Sci. Process. 69(1), S99–S107 (1999).

Welling, H.

Wollenhaupt, M.

Wu, P.

Xie, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Zezell, D. M.

A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
[Crossref]

Adv. Comput. Math. (1)

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

E. Allahyari, J. J. J. Nivas, F. Cardano, R. Bruzzese, R. Fittipaldi, L. Marrucci, D. Paparo, A. Rubano, A. Vecchione, and S. Amoruso, “Simple method for the characterization of intense Laguerre-Gauss vector vortex beams,” Appl. Phys. Lett. 112(21), 211103 (2018).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (7)

R. Sahin, T. Ersoy, and S. Akturk, “Ablation of metal thin films using femtosecond laser Bessel vortex beams,” Appl. Phys., A Mater. Sci. Process. 118(1), 125–129 (2015).
[Crossref]

R. Stoian, J. P. Colombier, C. Mauclair, G. Cheng, M. K. Bhuyan, P. K. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys., A Mater. Sci. Process. 114(1), 119–127 (2014).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

S.-S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys., A Mater. Sci. Process. 69(1), S99–S107 (1999).

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

M. Lebugle, N. Sanner, O. Utéza, and M. Sentis, “Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 129–142 (2014).
[Crossref]

R. N. Oosterbeek, C. Corazza, S. Ashforth, and M. C. Simpson, “Effects of dopant type and concentration on the femtosecond laser ablation threshold and incubation behaviour of silicon,” Appl. Phys., A Mater. Sci. Process. 122(4), 449 (2016).
[Crossref]

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1–4), 101–106 (1999).
[Crossref]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

J. Appl. Phys. (2)

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

J. Laser Micro Nanoeng. (1)

S. Butkus, D. Paipulas, D. Kaskelyte, E. Gaizauskas, and V. Sirutkaitis, “Improvement of Cut Quality in Rapid-Cutting of Glass Method via Femtosecond Laser Filamentation,” J. Laser Micro Nanoeng. 10(1), 59–63 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Part. Beams (1)

S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, “Pulse-compression and self-focusing of Gaussian laser pulses in plasma having relativistic–ponderomotive nonlinearity,” Laser Part. Beams 35(3), 429–436 (2017).
[Crossref]

Laser Photonics Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Laser Phys. (2)

R. E. Samad and N. D. Vieira, “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006).
[Crossref]

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study,” Laser Phys. 24(10), 106102 (2014).
[Crossref]

Laser Phys. Lett. (1)

A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett. 7(3), 236–241 (2010).
[Crossref]

Light Sci. Appl. (2)

K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2017).
[Crossref] [PubMed]

Nat. Photonics (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Opt. Commun. (1)

V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre–Gaussian beams by axicon,” Opt. Commun. 184(1–4), 105–112 (2000).
[Crossref]

Opt. Eng. (1)

W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, “Internal modification for cutting transparent glass using femtosecond Bessel beams,” Opt. Eng. 53(5), 051503 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(0), 88–102 (2013).
[Crossref]

Opt. Lasers Eng. (1)

A. Collins, D. Rostohar, C. Prieto, Y. K. Chan, and G. M. O’Connor, “Laser scribing of thin dielectrics with polarised ultrashort pulses,” Opt. Lasers Eng. 60, 18–24 (2014).
[Crossref]

Opt. Lett. (4)

Photon. Res. (1)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and Ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[Crossref]

Phys. Procedia (1)

W. de Rossi, L. M. Machado, N. D. Vieira, and R. E. Samad, “D-Scan Measurement of the Ablation Threshold and Incubation Parameter of Optical Materials in the Ultrafast Regime,” Phys. Procedia 39(0), 642–649 (2012).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S. E. Kirkwood, Y. Y. Tsui, R. Fedosejevs, A. V. Brantov, and V. Y. Bychenkov, “Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets,” Phys. Rev. B Condens. Matter Mater. Phys. 79(14), 144120 (2009).
[Crossref]

Phys. Rev. Lett. (1)

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Krueger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps,” Proc. SPIE 2991, 40–47 (1997).
[Crossref]

Prog. Quantum Electron. (1)

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

Sci. Rep. (1)

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref] [PubMed]

Thin Solid Films (1)

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453(Supplement C), 501–505 (2004).
[Crossref]

Other (4)

J. Fang and Q. Cao, “Throughput enhancement in femtosecond laser ablation of silicon by N-type doping,” in Frontiers in Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FW4A.6.

R. G. Bartle and D. R. Sherbert, “Introduction to Real Analysis” (John Wiley & Sons Inc., 2000).

R. N. Oosterbeek, S. Ashforth, O. Bodley, and M. C. Simpson, “Theoretical basis of the diagonal scan method for determining the laser ablation threshold for femtosecond vortex pulses,” arXiv:1802.10332 [physics.optics] (2018).

J. Krüger and W. Kautek, “Ultrashort Pulse Laser Interaction with Dielectrics and Polymers” in Polymers and Light, T. K. Lippert, Editor (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Diagram demonstrating the D-Scan process and how the two lobe feature is formed.
Fig. 2
Fig. 2 Gaussian beam waist (dotted line) and damage radius (blue and red lines) for (a) Gaussian, (b) 1st order vortex, (c) 2nd order vortex, (d) 3rd order vortex, and (e) 4th order vortex beams. For (b-e), the blue line denotes the outer damage radius calculated using the non-principal branch of the Lambert Omega function (W-1), while the red line denotes the inner damage radius calculated using the principal branch of the Lambert Omega function (W0). Radii calculated for the theoretical case where λ = 800 nm, ω0 = 15 µm, Fth = 1.0 J/cm2, E0 = 0.1 mJ. Marked point “x” indicates the point (χ,ρmax).
Fig. 3
Fig. 3 Examples of D-Scan features machined using a femtosecond pulsed laser (800 nm, 110 fs) in (a, c, e) Silicon and (b, d, f) Quartz using (a-b) Gaussian beams, (c-d) 2nd order vortex beams, and (e-f) 1st order Bessel beams; measurements obtained using optical profilometry. The focal plane for Gaussian and vortex beams is marked; -z denotes the sample above the focal plane, while + z denotes the sample below the focal plane.
Fig. 4
Fig. 4 Ablation thresholds and effects of pulse number for (a) quartz and (b) silicon using a femtosecond pulsed laser (800 nm, 110 fs) with Gaussian, Bessel and vortex beam shapes. Solid lines show incubation curve fits according to the Ashkenasi model [38].
Fig. 5
Fig. 5 Schematic illustrating beam shape for Gaussian, 0th order Bessel beam, and 1st order vortex beam, at equal peak fluence. Pulse energy ratio for Gaussian:Bessel0:Vortex1 is 1:0.53:2.72.

Tables (1)

Tables Icon

Table 1 Simplified ablation threshold equations for the first four vortex beams as well as the generalised equation. Note that Bessel beams are not represented here as these require a numerical solution.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

F( r,z )= 2 | l |+1 r 2| l | E 0 | l |!πω ( z ) 2(| l |+1) e 2 r 2 ω ( z ) 2
ρ( z )= | l |ω ( z ) 2 2 W 1 ( ( F th | l |!πω ( z ) 2 2 E 0 | l | | l | ) 1 | l | )
z=±χ= ( | l |+1 ) | l | 2π ω 0 2 E 0 F th | l |! λ 2 e | l |+1 π 2 ω 0 4 λ 2
F th = | l | ( | l |+1 ) | l | | l |!π e | l |+1 W 1 ( | l |+1 | l | e 1+ 1 | l | ) E 0 ρ max 2
N=2 n=0 m ( 1+A n 2 ) | l | e | l |AB n 2
A= ( v y f ρ max ) 2
B= W 1 ( | l |+1 | l | e 1+ 1 | l | )
m= W 1 ( B ε 1 | l | e B ) AB 1 A
F( r,z )= E 0 k r ω 0 [ ( F 1 + F 2 ) 2 J n 2 ( k r r )+ ( F 1 F 2 ) 2 J n1 2 ( k r r ) ]
F 1 = ( z z max + r ω 0 ) n+ 1 2 e ( z z max + r ω 0 ) 2
F 2 = ( z z max r ω 0 ) n+ 1 2 e ( z z max r ω 0 ) 2 H( z z max r ω 0 )

Metrics