Abstract

Developing an ultraviolet (UV) imaging spectrometer is challenging due to a low level of incident power of photon flux, large chromatic aberration, and relatively low quantum efficiency of imaging sensor in UV waveband. In this paper, a large-aperture UV (250~400 nm) Fourier transform imaging spectrometer is presented for close-range hyperspectral sensing with high spatial resolution and decent spectral resolution. An advanced design based on a modified solid Sagnac interferometer working in UV waveband of 250~400 nm is introduced to improve the interferometric stability. A large-aperture and a reflective-transmissive filtering system are used to increase the spectral purity of the incident UV radiation, and air-spaced achromatic doublets are designed to address the chromatic aberration. The finished spectrometer has a spatial resolution of 23.44 μm on the target plane, a wavelengths resolution of 1.59 nm at 250 nm, and can provide approximately 59 wavelength samples over the waveband of 250~400 nm. The proposed imaging spectrometer acquires a hyperspectral data cube through push-broom scanning in a few minutes. Examples of UV hyperspectral imaging are demonstrated with a sample of resolution test chart, and a cotton sample with vitamin C (VC) and vitamin B6 (VB6) traces. Based on the analysis of spectra, monochromatic images, and k-Means clustering results, it can be concluded that the spectrometer is capable of UV hyperspectral imaging with excellent spectral accuracy, spatial performance, compactness, and robustness. The potential applications of the proposed instrument include materials analysis and traces detection with UV spectral characteristics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High resolution ultraviolet imaging spectrometer for latent image analysis

Hang Lyu, Ningfang Liao, Hongsong Li, and Wenmin Wu
Opt. Express 24(6) 6459-6468 (2016)

Multichannel tunable imager architecture for hyperspectral imaging in relevant spectral domains

Chhavi Goenka, Joshua Semeter, John Noto, Jeffrey Baumgardner, Juanita Riccobono, Mike Migliozzi, Hanna Dahlgren, Robert Marshall, Sudha Kapali, Michael Hirsch, Donald Hampton, and Hassanali Akbari
Appl. Opt. 55(12) 3149-3157 (2016)

Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer

Marco Pisani and Massimo Zucco
Opt. Express 17(10) 8319-8331 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
    [Crossref] [PubMed]
  2. R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).
  3. F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
    [Crossref] [PubMed]
  4. C. Zhang, F. Liu, and Y. He, “Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis,” Sci. Rep. 8(1), 2166 (2018).
    [Crossref] [PubMed]
  5. S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
    [Crossref]
  6. J. Lang, B. J. Kent, W. Paustian, C. M. Brown, C. Keyser, M. R. Anderson, G. C. Case, R. A. Chaudry, A. M. James, C. M. Korendyke, C. D. Pike, B. J. Probyn, D. J. Rippington, J. F. Seely, J. A. Tandy, and M. C. R. Whillock, “Laboratory calibration of the extreme-ultraviolet imaging spectrometer for the Solar-B satellite,” Appl. Opt. 45(34), 8689–8705 (2006).
    [Crossref] [PubMed]
  7. F. Lohberger, G. Hönninger, and U. Platt, “Ground-based imaging differential optical absorption spectroscopy of atmospheric gases,” Appl. Opt. 43(24), 4711–4717 (2004).
    [Crossref] [PubMed]
  8. D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17(10), 303–390 (1963).
    [Crossref]
  9. J. Li and R. K. Chan, “Toward a UV-visible-near-infrared hyperspectral imaging platform for fast multiplex reflection spectroscopy,” Opt. Lett. 35(20), 3330–3332 (2010).
    [Crossref] [PubMed]
  10. A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).
  11. H. Lyu, N. Liao, H. Li, and W. Wu, “High resolution ultraviolet imaging spectrometer for latent image analysis,” Opt. Express 24(6), 6459–6468 (2016).
    [Crossref] [PubMed]
  12. Y. Liu, N. Liao, T. Bai, H. Lye, and Y. Liang, “Study of the structure of large aperture ultraviolet Fourier transform imaging spectrometer,” Acta Opt. Sin. 34(03), 298–303 (2014).
  13. T. Johansson and A. Pettersson, “Imaging spectrometer for ultraviolet–near-infrared microspectroscopy,” Rev. Sci. Instrum. 68(5), 1962–1971 (1997).
    [Crossref]
  14. T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
    [Crossref]
  15. M. Zucco, V. Caricato, A. Egidi, and M. Pisani, “A hyperspectral camera in the UVA band,” IEEE Trans. Instrum. Meas. 64(6), 1 (2015).
    [Crossref]
  16. J. G. Hirschberg and E. Kohen, “Pentaferometer: a solid Sagnac interferometer,” Appl. Opt. 38(1), 136–138 (1999).
    [Crossref] [PubMed]
  17. S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
    [Crossref]
  18. H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).
  19. B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).
  20. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
    [Crossref] [PubMed]
  21. H. Lyu, N. Liao, W. Wu, Y. Li, and B. Cao, “Interferogram baseline correction method based on self-adaptive differential filtering,” Acta Opt. Sin. 35(10), 296–303 (2013).
  22. A. Filler, “Apodization and interpolation in Fourier-transform spectroscopy,” JOSA 54(6), 762–767 (1964).
    [Crossref]
  23. C. J. Sansonetti, M. L. Salit, and J. Reader, “Wavelengths of spectral lines in mercury pencil lamps,” Appl. Opt. 35(1), 74–77 (1996).
    [Crossref] [PubMed]
  24. W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
    [Crossref]
  25. P. J. Curran and J. L. Dungan, “Estimation of signal-to-noise: a new procedure applied to AVIRIS data,” IEEE T. Geosci. Remote 27(5), 620–628 (1989).
    [Crossref]
  26. S. Wang, L. B. Li, and H. F. Pi, “[Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer],” Guangpuxue Yu Guangpu Fenxi 34(3), 851–856 (2014).
    [PubMed]

2018 (2)

C. Zhang, F. Liu, and Y. He, “Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis,” Sci. Rep. 8(1), 2166 (2018).
[Crossref] [PubMed]

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

2016 (2)

H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).

H. Lyu, N. Liao, H. Li, and W. Wu, “High resolution ultraviolet imaging spectrometer for latent image analysis,” Opt. Express 24(6), 6459–6468 (2016).
[Crossref] [PubMed]

2015 (2)

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).

M. Zucco, V. Caricato, A. Egidi, and M. Pisani, “A hyperspectral camera in the UVA band,” IEEE Trans. Instrum. Meas. 64(6), 1 (2015).
[Crossref]

2014 (4)

Y. Liu, N. Liao, T. Bai, H. Lye, and Y. Liang, “Study of the structure of large aperture ultraviolet Fourier transform imaging spectrometer,” Acta Opt. Sin. 34(03), 298–303 (2014).

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

S. Wang, L. B. Li, and H. F. Pi, “[Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer],” Guangpuxue Yu Guangpu Fenxi 34(3), 851–856 (2014).
[PubMed]

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

2013 (1)

H. Lyu, N. Liao, W. Wu, Y. Li, and B. Cao, “Interferogram baseline correction method based on self-adaptive differential filtering,” Acta Opt. Sin. 35(10), 296–303 (2013).

2011 (1)

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

2010 (2)

2009 (1)

B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).

2006 (1)

2004 (1)

2002 (1)

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

1999 (2)

1998 (1)

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

1997 (1)

T. Johansson and A. Pettersson, “Imaging spectrometer for ultraviolet–near-infrared microspectroscopy,” Rev. Sci. Instrum. 68(5), 1962–1971 (1997).
[Crossref]

1996 (1)

1989 (1)

P. J. Curran and J. L. Dungan, “Estimation of signal-to-noise: a new procedure applied to AVIRIS data,” IEEE T. Geosci. Remote 27(5), 620–628 (1989).
[Crossref]

1964 (1)

A. Filler, “Apodization and interpolation in Fourier-transform spectroscopy,” JOSA 54(6), 762–767 (1964).
[Crossref]

1963 (1)

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17(10), 303–390 (1963).
[Crossref]

A’Hearn, M.

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Anderson, M. R.

Armstrong, P. S.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Arnold, J.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Bai, T.

Y. Liu, N. Liao, T. Bai, H. Lye, and Y. Liang, “Study of the structure of large aperture ultraviolet Fourier transform imaging spectrometer,” Acta Opt. Sin. 34(03), 298–303 (2014).

Bai, X.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Barducci, A.

Bertaux, J. L.

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Brown, C. M.

Brown, G.

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

Cao, B.

H. Lyu, N. Liao, W. Wu, Y. Li, and B. Cao, “Interferogram baseline correction method based on self-adaptive differential filtering,” Acta Opt. Sin. 35(10), 296–303 (2013).

Cao, W.

H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).

Carder, K. L.

Caricato, V.

M. Zucco, V. Caricato, A. Egidi, and M. Pisani, “A hyperspectral camera in the UVA band,” IEEE Trans. Instrum. Meas. 64(6), 1 (2015).
[Crossref]

Case, G. C.

Caudill, T. R.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Chan, R. K.

Chang, L.

B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).

Chaudry, R. A.

Chave, R.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

Chen, H.

H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).

Chen, L.

B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).

Cheng, H.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Curran, P. J.

P. J. Curran and J. L. Dungan, “Estimation of signal-to-noise: a new procedure applied to AVIRIS data,” IEEE T. Geosci. Remote 27(5), 620–628 (1989).
[Crossref]

Deng, C.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Dubroca, T.

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

Dungan, J. L.

P. J. Curran and J. L. Dungan, “Estimation of signal-to-noise: a new procedure applied to AVIRIS data,” IEEE T. Geosci. Remote 27(5), 620–628 (1989).
[Crossref]

Durkin, A. J.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

Edwards, A.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Egidi, A.

M. Zucco, V. Caricato, A. Egidi, and M. Pisani, “A hyperspectral camera in the UVA band,” IEEE Trans. Instrum. Meas. 64(6), 1 (2015).
[Crossref]

Fan, J.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Farkas, D. L.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

Feldman, P. D.

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Festou, M. C.

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Filler, A.

A. Filler, “Apodization and interpolation in Fourier-transform spectroscopy,” JOSA 54(6), 762–767 (1964).
[Crossref]

Gibson, W.

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Guzzi, D.

He, Y.

C. Zhang, F. Liu, and Y. He, “Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis,” Sci. Rep. 8(1), 2166 (2018).
[Crossref] [PubMed]

Hirschberg, J. G.

Hönninger, G.

Hummel, R. E.

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

James, A. M.

Johansson, T.

T. Johansson and A. Pettersson, “Imaging spectrometer for ultraviolet–near-infrared microspectroscopy,” Rev. Sci. Instrum. 68(5), 1962–1971 (1997).
[Crossref]

Jones, B. A.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Kent, B. J.

Keyser, C.

Kohen, E.

Korendyke, C. M.

Kouba, E. T.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Lane, J.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Lang, J.

Lastri, C.

Lee, Z.

Li, H.

Li, J.

Li, L. B.

S. Wang, L. B. Li, and H. F. Pi, “[Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer],” Guangpuxue Yu Guangpu Fenxi 34(3), 851–856 (2014).
[PubMed]

Li, Y.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

H. Lyu, N. Liao, W. Wu, Y. Li, and B. Cao, “Interferogram baseline correction method based on self-adaptive differential filtering,” Acta Opt. Sin. 35(10), 296–303 (2013).

Liang, S.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Liang, Y.

Y. Liu, N. Liao, T. Bai, H. Lye, and Y. Liang, “Study of the structure of large aperture ultraviolet Fourier transform imaging spectrometer,” Acta Opt. Sin. 34(03), 298–303 (2014).

Liao, N.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

H. Lyu, N. Liao, H. Li, and W. Wu, “High resolution ultraviolet imaging spectrometer for latent image analysis,” Opt. Express 24(6), 6459–6468 (2016).
[Crossref] [PubMed]

H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).

Y. Liu, N. Liao, T. Bai, H. Lye, and Y. Liang, “Study of the structure of large aperture ultraviolet Fourier transform imaging spectrometer,” Acta Opt. Sin. 34(03), 298–303 (2014).

H. Lyu, N. Liao, W. Wu, Y. Li, and B. Cao, “Interferogram baseline correction method based on self-adaptive differential filtering,” Acta Opt. Sin. 35(10), 296–303 (2013).

Lindsley, E. H.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

Liu, F.

C. Zhang, F. Liu, and Y. He, “Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis,” Sci. Rep. 8(1), 2166 (2018).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, N. Liao, T. Bai, H. Lye, and Y. Liang, “Study of the structure of large aperture ultraviolet Fourier transform imaging spectrometer,” Acta Opt. Sin. 34(03), 298–303 (2014).

Lockwood, R. B.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Lohberger, F.

Lye, H.

Y. Liu, N. Liao, T. Bai, H. Lye, and Y. Liang, “Study of the structure of large aperture ultraviolet Fourier transform imaging spectrometer,” Acta Opt. Sin. 34(03), 298–303 (2014).

Lyu, H.

H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).

H. Lyu, N. Liao, H. Li, and W. Wu, “High resolution ultraviolet imaging spectrometer for latent image analysis,” Opt. Express 24(6), 6459–6468 (2016).
[Crossref] [PubMed]

H. Lyu, N. Liao, W. Wu, Y. Li, and B. Cao, “Interferogram baseline correction method based on self-adaptive differential filtering,” Acta Opt. Sin. 35(10), 296–303 (2013).

Ma, X.

B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).

MacKinnon, N.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

Makrushin, A.

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).

Marcoionni, P.

Meigs, A. D.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Mobley, C. D.

Nardino, V.

Nie, H.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Osweiler, V.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Otten, L. J.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Patch, J. S.

Paustian, W.

Pettersson, A.

T. Johansson and A. Pettersson, “Imaging spectrometer for ultraviolet–near-infrared microspectroscopy,” Rev. Sci. Instrum. 68(5), 1962–1971 (1997).
[Crossref]

Pi, H. F.

S. Wang, L. B. Li, and H. F. Pi, “[Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer],” Guangpuxue Yu Guangpu Fenxi 34(3), 851–856 (2014).
[PubMed]

Pike, C. D.

Pippi, I.

Pisani, M.

M. Zucco, V. Caricato, A. Egidi, and M. Pisani, “A hyperspectral camera in the UVA band,” IEEE Trans. Instrum. Meas. 64(6), 1 (2015).
[Crossref]

Platt, U.

Probyn, B. J.

Quarles, R.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Reader, J.

Rippington, D. J.

Russell, J.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Saager, R. B.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

Salit, M. L.

Sansonetti, C. J.

Scheidat, T.

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).

Scherrer, J.

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Seely, J. F.

Slater, D. C.

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Stern, S. A.

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Steward, R. G.

Tandy, J. A.

Tong, L.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Vasefi, F.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

Vielhauer, C.

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).

Wang, J.

H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).

Wang, R.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Wang, S.

S. Wang, L. B. Li, and H. F. Pi, “[Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer],” Guangpuxue Yu Guangpu Fenxi 34(3), 851–856 (2014).
[PubMed]

Wetlaufer, D. B.

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17(10), 303–390 (1963).
[Crossref]

Whillock, M. C. R.

Wu, W.

H. Lyu, N. Liao, H. Li, and W. Wu, “High resolution ultraviolet imaging spectrometer for latent image analysis,” Opt. Express 24(6), 6459–6468 (2016).
[Crossref] [PubMed]

H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).

H. Lyu, N. Liao, W. Wu, Y. Li, and B. Cao, “Interferogram baseline correction method based on self-adaptive differential filtering,” Acta Opt. Sin. 35(10), 296–303 (2013).

Xiong, S.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Xue, B.

B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).

Yan, B.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Yang, J.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).

Yang, W.

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Yarbrough, S.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

Zerong, Q. I.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Zhang, C.

C. Zhang, F. Liu, and Y. He, “Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis,” Sci. Rep. 8(1), 2166 (2018).
[Crossref] [PubMed]

Zhao, B.

B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).

Zhao, F.

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Zucco, M.

M. Zucco, V. Caricato, A. Egidi, and M. Pisani, “A hyperspectral camera in the UVA band,” IEEE Trans. Instrum. Meas. 64(6), 1 (2015).
[Crossref]

Acta Geol. Sin-Engl. (1)

R. Wang, S. Xiong, H. Nie, S. Liang, Q. I. Zerong, J. Yang, B. Yan, F. Zhao, J. Fan, and L. Tong, “Remote sensing technology and its application in aeological exploration,” Acta Geol. Sin-Engl. 85(11), 1699–1743 (2011).

Acta Opt. Sin. (3)

Y. Liu, N. Liao, T. Bai, H. Lye, and Y. Liang, “Study of the structure of large aperture ultraviolet Fourier transform imaging spectrometer,” Acta Opt. Sin. 34(03), 298–303 (2014).

H. Lyu, N. Liao, W. Wu, W. Cao, J. Wang, and H. Chen, “Zero-order drift of interferograms in ultraviolet imaging spectrometer,” Acta Opt. Sin. 36(9), 104–111 (2016).

H. Lyu, N. Liao, W. Wu, Y. Li, and B. Cao, “Interferogram baseline correction method based on self-adaptive differential filtering,” Acta Opt. Sin. 35(10), 296–303 (2013).

Adv. Protein Chem. (1)

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17(10), 303–390 (1963).
[Crossref]

Adv. Space Res. (1)

S. A. Stern, D. C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J. L. Bertaux, P. D. Feldman, and M. C. Festou, “Alice—an ultraviolet imaging spectrometer for the Rosetta Orbiter,” Adv. Space Res. 21(11), 1517–1525 (1998).
[Crossref]

Appl. Opt. (5)

Guangpuxue Yu Guangpu Fenxi (1)

S. Wang, L. B. Li, and H. F. Pi, “[Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer],” Guangpuxue Yu Guangpu Fenxi 34(3), 851–856 (2014).
[PubMed]

Guangzi Xuebao (1)

B. Zhao, J. Yang, B. Xue, X. Ma, L. Chang, and L. Chen, “Design of solid Sagnac interferometer,” Guangzi Xuebao 38(3), 474–478 (2009).

IEEE T. Geosci. Remote (1)

P. J. Curran and J. L. Dungan, “Estimation of signal-to-noise: a new procedure applied to AVIRIS data,” IEEE T. Geosci. Remote 27(5), 620–628 (1989).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Zucco, V. Caricato, A. Egidi, and M. Pisani, “A hyperspectral camera in the UVA band,” IEEE Trans. Instrum. Meas. 64(6), 1 (2015).
[Crossref]

JOSA (1)

A. Filler, “Apodization and interpolation in Fourier-transform spectroscopy,” JOSA 54(6), 762–767 (1964).
[Crossref]

Opt. Eng. (1)

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (3)

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II. 1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186–198 (2002).
[Crossref]

W. Yang, N. Liao, H. Cheng, Y. Li, X. Bai, and C. Deng, “Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision,” Proc. SPIE 10620, 94 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

T. Johansson and A. Pettersson, “Imaging spectrometer for ultraviolet–near-infrared microspectroscopy,” Rev. Sci. Instrum. 68(5), 1962–1971 (1997).
[Crossref]

Sci. Rep. (2)

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis,” Sci. Rep. 4(1), 4924 (2014).
[Crossref] [PubMed]

C. Zhang, F. Liu, and Y. He, “Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis,” Sci. Rep. 8(1), 2166 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The design and configuration of the designed UV (250~400 nm) imaging spectrometer. The subfigure shows the structure of the modified solid Sagnac interferometer.
Fig. 2
Fig. 2 The procedure of push-broom scanning and hyperspectral data cube reconstruction.
Fig. 3
Fig. 3 Results of spectral calibration. (a) Interferogram of the reference sample with the illumination of a low pressure mercury lamp. (b) Spectrum of the calibration lamp, the curve was normalized to arbitrary units.
Fig. 4
Fig. 4 UV hyperspectral imaging of a 1951 USAF resolution test chart. (a) The hyperspectral data cube. (b) The reflective spectra extracted from selected pixels of the picture. The spectra curves were normalized to arbitrary units. The color of curves refers to the colors of the points in (a). (c) Monochromatic images of the sample from the hyperspectral data cube.
Fig. 5
Fig. 5 Polychromatic measurement results of the vitamin traces sample. (a) Image captured by a color CCD camera with D65 illumination. (b) Image captured by a sCMOS imager with 250~400 nm broad bandpass filter and a deuterium lamp illumination.
Fig. 6
Fig. 6 UV hyperspectral imaging of the white cotton sample with vitamin traces. (a) A view of the interferogram data cube. (b) Monochromatic image at 250.4 nm. (c) Monochromatic image at 279.7 nm. (d) Monochromatic image at 304.1 nm. (e) Monochromatic image at 345.2 nm (f) Monochromatic image at 365.0 nm. (g) Monochromatic image at 399.2 nm. (h) Clustering result of the vitamin traces based on the hyperspectral data cube. (i) Normalized reflective spectra of the vitamin B6, the VC, and the white cotton.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t= OP D max ×f 2 ×N× s px ×tan( 22.5 ο )

Metrics