Abstract

We demonstrate fast high-precision non-contact distance measurements to technical surfaces using a pair of dual-color electro-optic frequency combs for synthetic-wavelength interferometry (SWI). The dual-color combs are generated from continuous-wave (cw) lasers at 1300 nm and 1550 nm, which are jointly fed to a pair of high-speed dual-drive Mach-Zehnder modulators. The dual-color approach is used for continuous and dead-zone-free compensation of temperature-induced fiber drift. We achieve standard deviations below 2 µm at an acquisition time of 9.1 µs for measurements through 7 m of single-mode fiber. Despite the technical simplicity of our scheme, our concept can well compete with other comb-based distance metrology approaches, and it can maintain its accuracy even under industrial operating conditions. The viability of the concept is demonstrated by attaching the fiber-coupled sensor head to an industrial coordinate measuring machine for acquisition of surface profiles of various technical samples. Exploiting real-time signal processing along with continuous fiber drift compensation, we demonstrate the acquisition of point clouds of up to 5 million data points during continuous movement of the sensor head.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension

Claudius Weimann, Markus Fratz, Harald Wölfelschneider, Wolfgang Freude, Heinrich Höfler, and Christian Koos
Appl. Opt. 54(20) 6334-6343 (2015)

Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement

Zebin Zhu, Guangyao Xu, Kai Ni, Qian Zhou, and Guanhao Wu
Opt. Express 26(5) 5747-5757 (2018)

Silicon photonic integrated circuit for fast and precise dual-comb distance metrology

C. Weimann, M. Lauermann, F. Hoeller, W. Freude, and C. Koos
Opt. Express 25(24) 30091-30104 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  2. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [Crossref] [PubMed]
  3. K. Minoshima and H. Matsumoto, “High-Accuracy Measurement of 240-m Distance in an Optical Tunnel by use of a Compact Femtosecond Laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  4. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
    [Crossref]
  5. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  6. S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
    [Crossref] [PubMed]
  7. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  8. N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
    [Crossref]
  9. M. U. Piracha, D. Nguyen, I. Ozdur, and P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
    [Crossref] [PubMed]
  10. Q. D. Pham and Y. Hayasaki, “Optical frequency comb interference profilometry using compressive sensing,” Opt. Express 21(16), 19003–19011 (2013).
    [Crossref] [PubMed]
  11. S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17337 (2009).
    [Crossref] [PubMed]
  12. X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
    [Crossref]
  13. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  14. K. Minoshima, T. Tomita, H. Nakayama, Y. Yamaoka, and H. Matsumoto, “Ultrahigh-resolution distance meter using a frequency comb of a femtosecond mode-locked laser,” in The Thirteenth International Conference on Ultrafast Phenomena (OSA, 2002), pp. TuB3.
  15. V. Ataie, P. P. Kuo, A. Wiberg, Z. Tong, C. Huynh, N. Alic, and S. Radic, “Ultrafast Absolute Ranging by Coherent Parametric Comb,” in Optical Fiber Communication Conference (Optical Society of America, 2013), OTh3D2.
  16. H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact Dual-Comb Absolute Distance Ranging With an Electric Reference,” IEEE Photonics J. 7(3), 1–8 (2015).
    [Crossref]
  17. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
    [Crossref] [PubMed]
  18. M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
    [Crossref] [PubMed]
  19. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [Crossref] [PubMed]
  20. S. Hyun, M. Choi, B. J. Chun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces,” Opt. Express 21(8), 9780–9791 (2013).
    [Crossref] [PubMed]
  21. C. Weimann, M. Fratz, H. Wölfelschneider, W. Freude, H. Höfler, and C. Koos, “Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension,” Appl. Opt. 54(20), 6334–6343 (2015).
    [Crossref] [PubMed]
  22. X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
    [Crossref] [PubMed]
  23. E. Baumann, F. R. Giorgetta, J.-D. Deschênes, W. C. Swann, I. Coddington, and N. R. Newbury, “Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance,” Opt. Express 22(21), 24914–24928 (2014).
    [Crossref] [PubMed]
  24. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
    [Crossref] [PubMed]
  25. H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
    [Crossref]
  26. H. Hofler, C. Baulig, A. Blug, M. Dambacher, N. Dimopoulos, H. Wolfelschneider, W. Osten, C. Gorecki, and E. L. Novak, “SPIE Proceedings,” pp. 296–306.
  27. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  28. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [Crossref] [PubMed]
  29. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
    [Crossref]
  30. R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
    [Crossref]
  31. C. Weimann, D. Meier, S. Wolf, Y. Schleitzer, M. Totzeck, A. Heinrich, F. Hoeller, J. Leuthold, W. Freude, and C. Koos, “Fast high-precision distance measurements on scattering technical surfaces using frequency combs,” in Conference on Lasers and Electro-Optics2013, CTu2I3.
  32. C. E. Towers, D. P. Towers, D. T. Reid, W. N. MacPherson, R. R. J. Maier, and J. D. C. Jones, “Fiber interferometer for simultaneous multiwavelength phase measurement with a broadband femtosecond laser,” Opt. Lett. 29(23), 2722–2724 (2004).
    [Crossref] [PubMed]
  33. S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).
  34. R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
    [Crossref]
  35. A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
    [Crossref]
  36. Corning, SMF-28e+ Optical Fiber Product Information, 2014.
  37. C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
    [Crossref]
  38. P.-E. Dupouy, M. Büchner, P. Paquier, G. Trénec, and J. Vigué, “Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica,” Appl. Opt. 49(4), 678–682 (2010).
    [Crossref] [PubMed]
  39. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” ArXiv e-prints, 0805.0091 (2008).
  40. P. de Groot and S. Kishner, “Synthetic wavelength stabilization for two-color laser-diode interferometry,” Appl. Opt. 30(28), 4026–4033 (1991).
    [Crossref] [PubMed]
  41. C. Koos, C. Weimann, and J. Leuthold, Multiscale distance measurement with frequency combs, US9976843B2.
  42. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  43. J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
    [Crossref]
  44. T. G. McRae, M. T. L. Hsu, C. H. Freund, D. A. Shaddock, J. Herrmann, and M. B. Gray, “Linearization and minimization of cyclic error with heterodyne laser interferometry,” Opt. Lett. 37(13), 2448–2450 (2012).
    [Crossref] [PubMed]
  45. L. S. Schuetz, J. H. Cole, J. Jarzynski, N. Lagakos, and J. A. Bucaro, “Dynamic thermal response of single-mode optical fiber for interferometric sensors,” Appl. Opt. 22(3), 478–483 (1983).
    [Crossref] [PubMed]
  46. P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 3rd ed. (McGraw-Hill, ©2003).
  47. U. Vry, “Absolute Statistical Error in Two-wavelength Rough-surface Interferometry (ROSI),” Opt. Acta (Lond.) 33(10), 1221–1225 (1986).
    [Crossref]
  48. P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
    [Crossref] [PubMed]
  49. C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
    [Crossref] [PubMed]
  50. M. Lauermann, C. Weimann, A. Knopf, W. Heni, R. Palmer, S. Koeber, D. L. Elder, W. Bogaerts, J. Leuthold, L. R. Dalton, C. Rembe, W. Freude, and C. Koos, “Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology,” Opt. Express 24(11), 11694–11707 (2016).
    [Crossref] [PubMed]
  51. C. Weimann, M. Lauermann, F. Hoeller, W. Freude, and C. Koos, “Silicon photonic integrated circuit for fast and precise dual-comb distance metrology,” Opt. Express 25(24), 30091–30104 (2017).
    [Crossref] [PubMed]
  52. Carl Zeiss Industrielle Messtechnik GmbH, O-INSPECT. Multisensor-Messgeräte, 2013.
  53. KMG angewendet für Längenmessungen. (ISO 10360–2:2009) (Beuth, 2010).
  54. N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-Dimensional Surface Topography Acquisition and Analysis for Firearm Identification,” J. Forensic Sci. 51(2), 282–295 (2006).
    [Crossref] [PubMed]
  55. U. Sakarya, U. M. Leloğlu, and E. Tunali, “Three-dimensional surface reconstruction for cartridge cases using photometric stereo,” Forensic Sci. Int. 175(2-3), 209–217 (2008).
    [Crossref] [PubMed]
  56. Z. J. Geradts, J. Bijhold, R. Hermsen, and F. Murtagh, “Image matching algorithms for breech face marks and firing pins in a database of spent cartridge cases of firearms,” Forensic Sci. Int. 119(1), 97–106 (2001).
    [Crossref] [PubMed]
  57. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [Crossref] [PubMed]
  58. S. O. Rice, “Mathematical Analysis of Random Noise,” Bell Syst. Tech. J. 23(3), 282–332 (1944).
    [Crossref]

2018 (2)

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref] [PubMed]

2017 (2)

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

C. Weimann, M. Lauermann, F. Hoeller, W. Freude, and C. Koos, “Silicon photonic integrated circuit for fast and precise dual-comb distance metrology,” Opt. Express 25(24), 30091–30104 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (2)

2014 (3)

2013 (5)

2012 (3)

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

T. G. McRae, M. T. L. Hsu, C. H. Freund, D. A. Shaddock, J. Herrmann, and M. B. Gray, “Linearization and minimization of cyclic error with heterodyne laser interferometry,” Opt. Lett. 37(13), 2448–2450 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (4)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

P.-E. Dupouy, M. Büchner, P. Paquier, G. Trénec, and J. Vigué, “Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica,” Appl. Opt. 49(4), 678–682 (2010).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

2009 (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17337 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[Crossref] [PubMed]

U. Sakarya, U. M. Leloğlu, and E. Tunali, “Three-dimensional surface reconstruction for cartridge cases using photometric stereo,” Forensic Sci. Int. 175(2-3), 209–217 (2008).
[Crossref] [PubMed]

2007 (2)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

2006 (2)

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-Dimensional Surface Topography Acquisition and Analysis for Firearm Identification,” J. Forensic Sci. 51(2), 282–295 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (2)

2001 (2)

Z. J. Geradts, J. Bijhold, R. Hermsen, and F. Murtagh, “Image matching algorithms for breech face marks and firing pins in a database of spent cartridge cases of firearms,” Forensic Sci. Int. 119(1), 97–106 (2001).
[Crossref] [PubMed]

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

2000 (2)

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

K. Minoshima and H. Matsumoto, “High-Accuracy Measurement of 240-m Distance in an Optical Tunnel by use of a Compact Femtosecond Laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

1997 (1)

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

1994 (1)

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

1992 (1)

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
[Crossref]

1991 (2)

P. de Groot and S. Kishner, “Synthetic wavelength stabilization for two-color laser-diode interferometry,” Appl. Opt. 30(28), 4026–4033 (1991).
[Crossref] [PubMed]

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

1986 (1)

U. Vry, “Absolute Statistical Error in Two-wavelength Rough-surface Interferometry (ROSI),” Opt. Acta (Lond.) 33(10), 1221–1225 (1986).
[Crossref]

1983 (1)

1944 (1)

S. O. Rice, “Mathematical Analysis of Random Noise,” Bell Syst. Tech. J. 23(3), 282–332 (1944).
[Crossref]

Abou-Zeid, A.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Alcoz, J. J.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
[Crossref]

Alloatti, L.

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Araki, T.

Atkins, R. A.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
[Crossref]

Auracher, F.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

Bartolo, R. E.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

Baumann, E.

Bekele, D.

Bhattacharya, N.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Bijhold, J.

Z. J. Geradts, J. Bijhold, R. Hermsen, and F. Murtagh, “Image matching algorithms for breech face marks and firing pins in a database of spent cartridge cases of firearms,” Forensic Sci. Int. 119(1), 97–106 (2001).
[Crossref] [PubMed]

Bogaerts, W.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Bouma, B.

Bucaro, J. A.

Büchner, M.

Chang, S.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

Choi, M.

Chuang, W.-C.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

Chun, B. J.

Coddington, I.

Cole, J. H.

Cui, M.

Dalton, L. R.

Dandridge, A.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

de Boer, J.

de Groot, P.

Delfyett, P. J.

Deschênes, J.-D.

Doloca, N. R.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Dupouy, P.-E.

Ebberg, A.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Elder, D.

Elder, D. L.

Fratini, P.

N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-Dimensional Surface Topography Acquisition and Analysis for Firearm Identification,” J. Forensic Sci. 51(2), 282–295 (2006).
[Crossref] [PubMed]

Fratz, M.

Freude, W.

Freund, C. H.

Ganin, D.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Garofano, L.

N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-Dimensional Surface Topography Acquisition and Analysis for Firearm Identification,” J. Forensic Sci. 51(2), 282–295 (2006).
[Crossref] [PubMed]

Gaukel, G.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Geradts, Z. J.

Z. J. Geradts, J. Bijhold, R. Hermsen, and F. Murtagh, “Image matching algorithms for breech face marks and firing pins in a database of spent cartridge cases of firearms,” Forensic Sci. Int. 119(1), 97–106 (2001).
[Crossref] [PubMed]

Gibler, W. N.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
[Crossref]

Giorgetta, F. R.

Gogineni, S. P.

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

Gray, M. B.

Groppetti, R.

N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-Dimensional Surface Topography Acquisition and Analysis for Firearm Identification,” J. Forensic Sci. 51(2), 282–295 (2006).
[Crossref] [PubMed]

Hagihara, Y.

Haimov, S.

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

Han, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

Hati, A.

Hayasaki, Y.

He, M.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Heni, W.

Hermsen, R.

Z. J. Geradts, J. Bijhold, R. Hermsen, and F. Murtagh, “Image matching algorithms for breech face marks and firing pins in a database of spent cartridge cases of firearms,” Forensic Sci. Int. 119(1), 97–106 (2001).
[Crossref] [PubMed]

Herrmann, J.

Hoeller, F.

Höfler, H.

Hsu, C.-C.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

Hsu, M. T. L.

Huang, T.-H.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

Hyun, S.

Iftimia, N.

Iwakuni, K.

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

Jarzynski, J.

Jones, J. D. C.

Joo, K.-N.

Karpov, M.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

Kim, S.

S. Hyun, M. Choi, B. J. Chun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces,” Opt. Express 21(8), 9780–9791 (2013).
[Crossref] [PubMed]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

Kim, S.-W.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

S. Hyun, M. Choi, B. J. Chun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces,” Opt. Express 21(8), 9780–9791 (2013).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

Kim, Y.-J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

S. Hyun, M. Choi, B. J. Chun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces,” Opt. Express 21(8), 9780–9791 (2013).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kippenberg, T. J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Kishner, S.

Knopf, A.

Koeber, S.

Kok, G. J.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Koos, C.

Kordts, A.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Korn, D.

Krockenberger, J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Krüger, U.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Lagakos, N.

Langkilde, G.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Lauermann, M.

Le Floch, S.

Lee, C. E.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
[Crossref]

Lee, J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Leloglu, U. M.

U. Sakarya, U. M. Leloğlu, and E. Tunali, “Three-dimensional surface reconstruction for cartridge cases using photometric stereo,” Forensic Sci. Int. 175(2-3), 209–217 (2008).
[Crossref] [PubMed]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Leung, C.-Y.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

Leuthold, J.

Lévêque, S.

Li, J.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Li, Y.

Liu, T.-A.

MacPherson, W. N.

Madsen, T. L.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Maier, R. R. J.

Marin-Palomo, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Matsumoto, H.

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

K. Minoshima and H. Matsumoto, “High-Accuracy Measurement of 240-m Distance in an Optical Tunnel by use of a Compact Femtosecond Laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

K. Minoshima, T. Tomita, H. Nakayama, Y. Yamaoka, and H. Matsumoto, “Ultrahigh-resolution distance meter using a frequency comb of a femtosecond mode-locked laser,” in The Thirteenth International Conference on Ultrafast Phenomena (OSA, 2002), pp. TuB3.

McRae, T. G.

Meiners-Hagen, K.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Melikov, A. K.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Minoshima, K.

K. Minoshima and H. Matsumoto, “High-Accuracy Measurement of 240-m Distance in an Optical Tunnel by use of a Compact Femtosecond Laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

K. Minoshima, T. Tomita, H. Nakayama, Y. Yamaoka, and H. Matsumoto, “Ultrahigh-resolution distance meter using a frequency comb of a femtosecond mode-locked laser,” in The Thirteenth International Conference on Ultrafast Phenomena (OSA, 2002), pp. TuB3.

Murtagh, F.

Z. J. Geradts, J. Bijhold, R. Hermsen, and F. Murtagh, “Image matching algorithms for breech face marks and firing pins in a database of spent cartridge cases of firearms,” Forensic Sci. Int. 119(1), 97–106 (2001).
[Crossref] [PubMed]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Nakayama, H.

K. Minoshima, T. Tomita, H. Nakayama, Y. Yamaoka, and H. Matsumoto, “Ultrahigh-resolution distance meter using a frequency comb of a femtosecond mode-locked laser,” in The Thirteenth International Conference on Ultrafast Phenomena (OSA, 2002), pp. TuB3.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

Nguyen, D.

Noe, R.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Noll, B.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Ozdur, I.

Palmer, R.

Paquier, P.

Pavlicek, P.

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Pfeiffer, M. H. P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Pfeifle, J.

Pham, Q. D.

Pierni, M.

N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-Dimensional Surface Topography Acquisition and Analysis for Firearm Identification,” J. Forensic Sci. 51(2), 282–295 (2006).
[Crossref] [PubMed]

Piracha, M. U.

Pollinger, F.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Qu, X.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Randel, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Reid, D. T.

Rembe, C.

Ren, L.

Rice, S. O.

S. O. Rice, “Mathematical Analysis of Random Noise,” Bell Syst. Tech. J. 23(3), 282–332 (1944).
[Crossref]

Rieker, G. B.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Rodler, H.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Ronnau, J.

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

Sakarya, U.

U. Sakarya, U. M. Leloğlu, and E. Tunali, “Three-dimensional surface reconstruction for cartridge cases using photometric stereo,” Forensic Sci. Int. 175(2-3), 209–217 (2008).
[Crossref] [PubMed]

Salvadé, Y.

Schindler, P. C.

Schmogrow, R.

Schuetz, L. S.

Schuhler, N.

Senin, N.

N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-Dimensional Surface Topography Acquisition and Analysis for Firearm Identification,” J. Forensic Sci. 51(2), 282–295 (2006).
[Crossref] [PubMed]

Shaddock, D. A.

Shieh, J.-Y.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

Sinclair, L. C.

Soubusta, J.

Suh, M.-G.

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref] [PubMed]

Swann, W.

Swann, W. C.

Takahashi, S.

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Takamasu, K.

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Taylor, H. F.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
[Crossref]

Tearney, G.

Tomita, T.

K. Minoshima, T. Tomita, H. Nakayama, Y. Yamaoka, and H. Matsumoto, “Ultrahigh-resolution distance meter using a frequency comb of a femtosecond mode-locked laser,” in The Thirteenth International Conference on Ultrafast Phenomena (OSA, 2002), pp. TuB3.

Towers, C. E.

Towers, D. P.

Trénec, G.

Trocha, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

Tsai, Y.-S.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

Tunali, E.

U. Sakarya, U. M. Leloğlu, and E. Tunali, “Three-dimensional surface reconstruction for cartridge cases using photometric stereo,” Forensic Sci. Int. 175(2-3), 209–217 (2008).
[Crossref] [PubMed]

Tveten, A. B.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

Urbach, H. P.

Vahala, K. J.

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref] [PubMed]

van den Berg, S. A.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Vigué, J.

Vry, U.

U. Vry, “Absolute Statistical Error in Two-wavelength Rough-surface Interferometry (ROSI),” Opt. Acta (Lond.) 33(10), 1221–1225 (1986).
[Crossref]

Wang, X.

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Wang, Z.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Wedde, M.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Wei, H.

Weimann, C.

Wittmann, J.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Wolf, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref] [PubMed]

Wölfelschneider, H.

Wu, H.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Wu, X.

Xue, B.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Yamaoka, Y.

K. Minoshima, T. Tomita, H. Nakayama, Y. Yamaoka, and H. Matsumoto, “Ultrahigh-resolution distance meter using a frequency comb of a femtosecond mode-locked laser,” in The Thirteenth International Conference on Ultrafast Phenomena (OSA, 2002), pp. TuB3.

Yasui, T.

Yeh, Y.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
[Crossref]

Yokoyama, S.

Yokoyama, T.

Yu, H.

Yun, S.

Zeitouny, M. G.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.

Zhang, K.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Zhao, T.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Zhou, G.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Appl. Opt. (8)

K. Minoshima and H. Matsumoto, “High-Accuracy Measurement of 240-m Distance in an Optical Tunnel by use of a Compact Femtosecond Laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[Crossref] [PubMed]

C. Weimann, M. Fratz, H. Wölfelschneider, W. Freude, H. Höfler, and C. Koos, “Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension,” Appl. Opt. 54(20), 6334–6343 (2015).
[Crossref] [PubMed]

X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
[Crossref] [PubMed]

P.-E. Dupouy, M. Büchner, P. Paquier, G. Trénec, and J. Vigué, “Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica,” Appl. Opt. 49(4), 678–682 (2010).
[Crossref] [PubMed]

P. de Groot and S. Kishner, “Synthetic wavelength stabilization for two-color laser-diode interferometry,” Appl. Opt. 30(28), 4026–4033 (1991).
[Crossref] [PubMed]

P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
[Crossref] [PubMed]

L. S. Schuetz, J. H. Cole, J. Jarzynski, N. Lagakos, and J. A. Bucaro, “Dynamic thermal response of single-mode optical fiber for interferometric sensors,” Appl. Opt. 22(3), 478–483 (1983).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111(25), 251901 (2017).
[Crossref]

Bell Syst. Tech. J. (1)

S. O. Rice, “Mathematical Analysis of Random Noise,” Bell Syst. Tech. J. 23(3), 282–332 (1944).
[Crossref]

Build. Environ. (1)

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Electron. Lett. (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

Forensic Sci. Int. (2)

U. Sakarya, U. M. Leloğlu, and E. Tunali, “Three-dimensional surface reconstruction for cartridge cases using photometric stereo,” Forensic Sci. Int. 175(2-3), 209–217 (2008).
[Crossref] [PubMed]

Z. J. Geradts, J. Bijhold, R. Hermsen, and F. Murtagh, “Image matching algorithms for breech face marks and firing pins in a database of spent cartridge cases of firearms,” Forensic Sci. Int. 119(1), 97–106 (2001).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

IEEE Photonics J. (1)

H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact Dual-Comb Absolute Distance Ranging With an Electric Reference,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

J. Forensic Sci. (1)

N. Senin, R. Groppetti, L. Garofano, P. Fratini, and M. Pierni, “Three-Dimensional Surface Topography Acquisition and Analysis for Firearm Identification,” J. Forensic Sci. 51(2), 282–295 (2006).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of polarization handling methods in coherent optical systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Meas. Sci. Technol. (2)

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201–45209 (2013).
[Crossref]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Nat. Photonics (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Opt. Acta (Lond.) (1)

U. Vry, “Absolute Statistical Error in Two-wavelength Rough-surface Interferometry (ROSI),” Opt. Acta (Lond.) 33(10), 1221–1225 (1986).
[Crossref]

Opt. Eng. (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Opt. Express (14)

E. Baumann, F. R. Giorgetta, J.-D. Deschênes, W. C. Swann, I. Coddington, and N. R. Newbury, “Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance,” Opt. Express 22(21), 24914–24928 (2014).
[Crossref] [PubMed]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

S. Hyun, M. Choi, B. J. Chun, S. Kim, S.-W. Kim, and Y.-J. Kim, “Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces,” Opt. Express 21(8), 9780–9791 (2013).
[Crossref] [PubMed]

M. U. Piracha, D. Nguyen, I. Ozdur, and P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
[Crossref] [PubMed]

Q. D. Pham and Y. Hayasaki, “Optical frequency comb interference profilometry using compressive sensing,” Opt. Express 21(16), 19003–19011 (2013).
[Crossref] [PubMed]

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17337 (2009).
[Crossref] [PubMed]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, W. Heni, R. Palmer, S. Koeber, D. L. Elder, W. Bogaerts, J. Leuthold, L. R. Dalton, C. Rembe, W. Freude, and C. Koos, “Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology,” Opt. Express 24(11), 11694–11707 (2016).
[Crossref] [PubMed]

C. Weimann, M. Lauermann, F. Hoeller, W. Freude, and C. Koos, “Silicon photonic integrated circuit for fast and precise dual-comb distance metrology,” Opt. Express 25(24), 30091–30104 (2017).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Precis. Eng. (1)

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Remote Sens. Rev. (1)

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

Science (2)

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref] [PubMed]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “Optical fiber Fabry-Perot sensors for smart structures,” Smart Mater. Struct. 1(2), 123–127 (1992).
[Crossref]

Zhongguo Wuli Xuekan (1)

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, C.-Y. Leung, and et al., “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Zhongguo Wuli Xuekan 38, 437–442 (2000).

Other (10)

C. Weimann, D. Meier, S. Wolf, Y. Schleitzer, M. Totzeck, A. Heinrich, F. Hoeller, J. Leuthold, W. Freude, and C. Koos, “Fast high-precision distance measurements on scattering technical surfaces using frequency combs,” in Conference on Lasers and Electro-Optics2013, CTu2I3.

Corning, SMF-28e+ Optical Fiber Product Information, 2014.

H. Hofler, C. Baulig, A. Blug, M. Dambacher, N. Dimopoulos, H. Wolfelschneider, W. Osten, C. Gorecki, and E. L. Novak, “SPIE Proceedings,” pp. 296–306.

K. Minoshima, T. Tomita, H. Nakayama, Y. Yamaoka, and H. Matsumoto, “Ultrahigh-resolution distance meter using a frequency comb of a femtosecond mode-locked laser,” in The Thirteenth International Conference on Ultrafast Phenomena (OSA, 2002), pp. TuB3.

V. Ataie, P. P. Kuo, A. Wiberg, Z. Tong, C. Huynh, N. Alic, and S. Radic, “Ultrafast Absolute Ranging by Coherent Parametric Comb,” in Optical Fiber Communication Conference (Optical Society of America, 2013), OTh3D2.

C. Koos, C. Weimann, and J. Leuthold, Multiscale distance measurement with frequency combs, US9976843B2.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” ArXiv e-prints, 0805.0091 (2008).

Carl Zeiss Industrielle Messtechnik GmbH, O-INSPECT. Multisensor-Messgeräte, 2013.

KMG angewendet für Längenmessungen. (ISO 10360–2:2009) (Beuth, 2010).

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 3rd ed. (McGraw-Hill, ©2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Experimental setup. Light from two continuous wave (cw) lasers with wavelengths of λcal = 1300 nm and λobj = 1550 nm and power levels of 15 dBm and 18 dBm, respectively, is split and fed to two Mach-Zehnder modulators (MZM1, MZM2). Light guided to MZM2 is additionally frequency-shifted is additionally frequency-shifted by 80 MHz and 55 MHz, respectively, using acousto-optic modulators (AOM). The MZM are driven with strong sinusoidal signals (peak voltage 6.3 V) at frequencies of 39.957 GHz and 40.000 GHz, respectively. Proper adjustment of phase and amplitude of the driving signal in one arm of a MZM leads to broadband frequency comb generation. In the following, optical paths are described in terms of the points A … E depicted in the setup sketch (bold, orange letters). The signal combs (Inset 1) are split in fiber coupler CPL1. One part is incident on the balanced photodetector (BD) Rxref after propagation over the internal optical path AC. The other part is guided through CPL3 to a sensor head via path AD. A dichroic beam splitter (BS) in the sensor head separates λcal and λobj. The calibration comb centered at λcal is reflected from a fixed calibration mirror, the object comb centered at λobj is scattered back from the object surface. The reflected light is coupled back into the fiber and guided to Rxmeas via path ADD1DE and ADD2DE, respectively. On both receivers, the signal combs are superimposed with the frequency-shifted local oscillator (LO) combs featuring detuned line spacing (Inset 2) for heterodyne detection. Polarization controllers (Pol. control) are adjusted once at each start-up of the setup. The generated photocurrents are acquired by an analog-to-digital (A/D) converter, and a Fourier transformation is used to isolate the discrete beat notes of the signal and LO combs lines. Digital signal processing is implemented on a field-programmable gate array (FPGA) and a personal computer. The optical path lengths D2D and D1D are denoted as z (object height) and zcal. PDFA: Praseodymium-doped fiber amplifier. CMM: Coordinate measuring machine.
Fig. 2
Fig. 2 Detection principle. (a) Schematic optical spectra of signal comb (continuous lines) and LO comb (dashed lines). The line spacings of signal and LO comb are slightly detuned by Δfmod = |fmod,LO − fmod,sig|, and the center frequencies are offset by Δf0. (b) Schematic one-sided power spectrum of the photocurrent. Quadratic detection of signal and LO comb by a photodiode leads to a multitude of sinusoidal IF signals with frequencies | Δ f 0 +mΔ f mod | in the photocurrent. Negative frequencies of the corresponding two-sided spectrum are drawn in gray and mirrored to positive frequencies of the one-sided spectrum. The phases of the IF signals are directly linked to the phase shifts accumulated by the lines of the FC during propagation.
Fig. 3
Fig. 3 Detection principle and data processing. (a) Measured one-sided spectrum of the photocurrent in a resolution bandwidth (RBW) of 110 kHz. The spectral lines of the photocurrent are indexed by m as in Fig. 2. For the object comb (red) m = 0 refers to the spectral line at the offset frequency Δ f 0,obj =55MHz, and for the calibration comb (blue) to the line at offset frequency Δ f 0,cal =80MHz. The appearance of negative frequencies (m < −1 in the present configuration) in the one-sided electrical spectrum is explained in Fig. 2. (b) Differences of the IF phases V ^ m,λ and V ^ m,λ = S λ 2 P m,sig,λ 2 P m,LO,λ R TIA as measured between the reference and the measurement receiver for object and calibration comb as a function of the line index m. Phase values before unwrapping (sawtooth-like shapes) are depicted in light colors, illustrating the 2π-periodicity. The unwrapped phase values follow a linear relationship. The slopes of the fitted straight lines are proportional to the respective optical length differences between reference and measurement paths. Triangles mark the phase slopes according to Eq. (4), where D obj ( t ) and D cal ( t ) are defined in Eq. (6).
Fig. 4
Fig. 4 Influence of fiber temperature drift on the measured object height, and compensation of this drift. (a) Qualitative demonstration. A section of fiber CPL3-D in Fig. 1 is rapidly heated for a few seconds with a heat gun. The measured object height z ^ decreases during the heating period due to expansion of the fiber and approaches its true value z = 0 while cooling down (solid red, λ = 1550 nm). The measured calibration height z ^ cal follows this curve closely (solid blue, λ = 1300 nm), but exhibits more noise because of the lower optical comb power, see inset. The difference x 1 2 κ, which measures the true temperature-compensated object height (black) z with reference to zcal, remains unaffected. (b) Quantitative demonstration. A 0.5 m-long section of the optical fiber path CPL3-D is immersed in a water bath which is heated in 2 K steps. At each temperature step, the distances z ^ and z ^ cal to fixed targets at z and zcal, respectively, are measured 500 times. Blue triangles and red crosses denote the measured averages D z and z ^ cal , respectively (vertical axis on the right). The black squares represent the averages of the differences z ^ comp (vertical axis left), and the error bars indicate ± 1 standard deviation σ z ^ ,comp . The optical fields traverse the heated fiber section twice so that the relevant geometrical path length is Lh = 2 × 0.5 m. While the true height E m,sig ( ω m ) E ^ m,sig,in =( 1 2 κ+ x )cos( ω m t D z ω m c ) y sin( ω m t D z ω m c ) remains constant, the measured object and calibration heights z ^ and z ^ cal change because the optical path length Dh of the heated fiber section for 1550 nm and 1300 nm changes with a linear coefficient of x =Γcos( ( D 2×7m +2z ) ω m c ) y =Γsin( ( D 2×7m +2z ) ω m c ) according to Eq. (4), (5), while z ^ comp remains constant.
Fig. 5
Fig. 5 Allan deviations calculated from repeated measurements to a mirror at a fixed distance. Result for uncompensated measurements shown in red, result for temperature-drift-compensated measurements shown in black.
Fig. 6
Fig. 6 The signal field E sig,in at point A is coupled to the sensor head via the 3 dB coupler CPL3. The field is reflected at the object surface with an amplitude reflection coefficient κ, and the reflected field κ E sig,in /2 is redirected to the optical receiver Rxmeas. A small portion Γ E sig,in of the input light propagates directly to Rxmeas due to the finite isolation Γ of coupler CPL3. For a precise measurement, κ/ 2Γ should hold.
Fig. 7
Fig. 7 Standard deviation of distance measurements (filled symbols) and theoretical curves (solid lines, from Sect. 3.3) as a function of the reflection coefficient κ dB =20lgκ for the 1550 nm signal comb. The theoretical curves were obtained from calculations that are based on measured shapes of the comb spectra. For the 1550 nm signal comb, the total emitted signal comb power is –2.5 dBm at point D in Fig. 1. Noise and temperature fluctuations dictate the standard deviations for the distance measurements at the object wavelength (red, σ z,obj ) and at the calibration wavelength (blue, σ z,cal ). The standard deviation decreases with an increasing reflection coefficient when measuring at the object wavelength, while the return path for the calibration wavelength and therefore the measured standard deviation remains essentially constant. However, because there is less power available for the calibration measurement, we find that σ z,cal > σ z,obj for a high reflection coefficient in the object path. The variance σ z,comp 2 for the compensated distance measurement results from adding the variances σ z,obj 2 and σ z,cal 2 . The smallest standard deviation is σ z,comp =2mand is dominated by the standard deviation of the calibration measurement.
Fig. 8
Fig. 8 Standard deviation σ of distance measurement and acquisition time τ in a double-logarithmic display for published comb-based distance measurement systems exploiting synthetic-wavelength interferometry. The dashed line represents the relation σ=p τ 1/2 for averaging statistically independent noisy samples. The proportionality factor p=2m 9.1s =6× 10 9 m s 1/2 is determined by our experimental data (label ★, σ=2m,τ=9.1s). Demonstrations with smaller p are found below the dashed line and have a smaller standard deviation for a given measurement time. Demonstration [1]** stands out due to a standard deviation of 5 nm at 60 ms acquisition time, which was achieved by combining SWI with classical optical interferometry at a single comb tone. Considering the SWI part only, the standard deviation of demonstration [1] amounts to 3 µm at 0.2 ms acquisition time, indicated by data point [1]*. Considering pure SWI measurements only, our experiment outperforms all previous demonstrations except for [15] and [17], both of which relied on broadband parametric combs with associated complex setups.
Fig. 9
Fig. 9 Demonstration of outlier removal. (a) Photograph of a printed-circuit board (PCB), comprising a variety of surfaces including an integrated circuit (IC) with a black polymer package. (b) Height profile of the sample along a line in x-direction, across the black package of the IC, see Subfigure (a). Black: Raw data. Red: Data after outlier removal. (c) Color-coded surface profile with 1.5 million measurement points resulting from a measurement scan without outlier removal. (d) Color-coded surface profile after outlier removal, comprising 0.8 × 106 measurement points with an r2 better than the threshold 0.99.
Fig. 10
Fig. 10 Comparison of optical measurements to tactile reference measurements. (a) Photograph of steps milled in an aluminum block and prepared with different surface treatments. (b) Scan along the line marked by the arrow on the polished sample. Optical measurements (black) and tactile measurements (red) agree well. Tactile measurements were performed with an industrial coordinate measuring machine (CMM). (c) Color-coded surface profiles of the samples shown in (a), 5.1 × 106 points in total. The measurements show clearly the topography of the “KIT IPQ” engraving (d) Differences of mean values of optical ( z ¯ opt ) and of tactile measurements ( z ¯ tact ) for each step. For all samples, these differences are in the range of a few micrometers.
Fig. 11
Fig. 11 Surface topography measurements of a 20 Euro-cent coin. (a) Photograph of the coin. (b) Color-coded surface profile with 0.7 × 106 points resulting from a scanning optical topography measurement.
Fig. 12
Fig. 12 Surface topography measurements. (a) Photograph of the backside of a used bullet casing. (b) Color-coded surface profile with 0.6 × 106 points resulting from a scanning optical topography measurement. Inset: Zoomed view of a volume, detailing a cross section through the indention caused by the firing pin.
Fig. 13
Fig. 13 Calculated standard deviations of the distance measurements as a function of laser input powers into the MZM comb generators for two different values of the object reflection κdB. Experimental power settings are marked by black dots (calibration laser: 15 dBm, object laser: 18 dBm). The 20 dBm input power limitation of the MZM is indicated by a red line. (a) Individual calculated standard deviations σ z,obj and σ z,cal for κdB = –9 dB. (b) Individual calculated standard deviations σ z,obj and σ z,cal for κdB = –22 dB. (c) Calculated standard deviation σ z,comp for κdB = –9 dB. (d) Calculated standard deviation σ z,comp for κdB = –22 dB.

Tables (1)

Tables Icon

Table 1 Parameters used for the calculated predictions in Section 3.5 and Section 3.6

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

Δ D sig,meas ( t )=( n α L + dn dT ) L sig,meas Δ T sig,meas ( t ).
Δ φ m ( z,t )= m ω mod,sig c [ 2z+ D sig,meas ( t ) D LO,meas ( t )( D sig,ref ( t ) D LO,ref ( t ) ) ]+g( z,t ) ( D LO,meas ( t ) D LO,ref ( t ) ) mΔ ω mod /c
g( z,t )=( 2z+ D sig,meas ( t ) D LO,meas ( t )( D sig,ref ( t ) D LO,ref ( t ) ) ) ω 0,sig /c ( D LO,meas ( t ) D LO,ref ( t ) ) Δ ω 0 /c ,
dΔ φ m ( z,t ) dm dΔ φ m ( z 0 =0, t 0 =0 ) dm ω mod,sig c ( 2z+Δ D sig,meas ( t )Δ D LO,meas ( t )( Δ D sig,ref ( t )Δ D LO,ref ( t ) ) )
( ΔD/ ΔT )/L =10.7 μm/ ( Km ) .
d( Δ φ m,obj ( z,t ) ) dm d( Δ φ m,cal ( z,t ) ) dm = ω mod,sig c [ 2( z z cal )+ D obj ( t ) D cal ( t ) ], D obj ( t )= n λ obj ( t ) L sig,meas ( t ) n λ obj ( t ) L LO,meas ( t ) n λ obj ( t ) L sig,ref ( t )+ n λ obj ( t ) L LO,ref ( t ), D cal ( t )= n λ cal ( t ) L sig,meas ( t ) n λ cal ( t ) L LO,meas ( t ) n λ cal ( t ) L sig,ref ( t )+ n λ cal ( t ) L LO,ref ( t ).
( ( Δ D obj / ΔT )( Δ D cal / ΔT ) )/L =32 nm/ ( Km ) .
Δ z ua = 2πc 2 ω mod,sig = 1 2 Λ 1 , Λ m = c m f mod,sig .
z ^ comp = z ^ z ^ cal ,
σ Allan, z ^ 2 ( τ )= 1 2 ( z ^ n+1 τ z ^ n τ ) 2 n , z ^ n τ = 1 N ν=1 N z ^ n,ν ,τ=NΔt,
σ RIN 2 = λ ( S λ R TIA ) 2 RIN spec,λ P LO,λ P sig,λ Δf,
σ shot 2 =2e λ S λ ( P sig,λ + P LO,λ ) R TIA 2 Δf.
σ TIA 2 = ( R TIA NEP S NEP ) 2 Δf.
V ^ m,λ = S λ 2 P m,sig,λ 2 P m,LO,λ R TI,
SNR m,λ = 1 2 V ^ m,λ 2 σ tot 2 = 1 2 S λ 2 R TIA 2 2 P m,sig,λ 2 P m,LO,λ σ RIN 2 + σ Shot 2 + σ TIA 2 .
V m,λ =( V ^ m,λ +x )cos( ω m t )ysin( ω m t ),x= n ^ cosψ,y= n ^ sinψ.
σ φ,m,λ 2 = y 2 ¯ V ^ m,λ 2 = 1 2 n ^ 2 V ^ m,λ 2 = σ tot 2 V ^ m,λ 2 = 1 2× SNR m,λ .
σ φ,m,λ,meas 2 = 1 2× SNR m,λ,meas , σ φ,m,λ,ref 2 = 1 2× SNR m,λ,ref .
E m,sig ( ω m )= E ^ m,sig,in { 1 2 κexp( j( ω m t D z ω m c ) )+Γexp( j( ω m t D cross ω m c ) ) }.
x =Γcos( ( D 2×7m +2z ) ω m c ) y =Γsin( ( D 2×7m +2z ) ω m c ),
E m,sig ( ω m ) E ^ m,sig,in =( 1 2 κ+ x )cos( ω m t D z ω m c ) y sin( ω m t D z ω m c ).
SNR cross = ( 1 2 κ ) 2 1 2 Γ 2 = ( κ/2 ) 2 Γ 2 .
σ φ,m,cross 2 = 1 2× SNR cross forΓ κ 2 .
σ Δφ,m,λ 2 = σ φ,m,λ,meas 2 + σ φ,m,λ,ref 2 + σ φ,m,cross 2 := σ Δφ,λ 2 .
σ z,λ 2 = σ Δφ,λ 2 N 3 ( ω mod,sig /c ) 2 ( N 2 1 ) ,
ω l,sig = ω 0,sig +l ω mod,sig .
ω m,LO = ω 0,LO +m ω mod,LO =( ω 0,sig +Δ ω 0 )+m( ω mod,sig +Δ ω mod )
E _ sig,meas ( t )= l E ^ l,sig,meas exp( j ω l,sig t )exp( j ( 2z+ D sig,meas ) ω l,sig /c ) E _ LO,meas ( t )= m E ^ m,LO,meas exp( j ω m,LO t )exp( j D LO,meas ω m,LO /c ) .
i meas ( t )= Z 0 1 S{ E _ sig,meas ( t ) E _ LO,meas ( t ) } = Z 0 1 S{ l m E ^ l,sig,meas E ^ m,LO,meas exp( j( Δ ω 0 +( ml ) ω mod,sig +mΔ ω mod )t ) exp( j ( ( 2z+ D sig,meas ) ω l,sig D LO,meas ω m,LO )/c ) }.
i ref ( t )= Z 0 1 S{ E _ sig,ref ( t ) E _ LO,ref ( t ) } = Z 0 1 S{ l m E ^ l,sig,ref E ^ m,LO,ref exp( j( Δ ω 0 +( ml ) ω mod,sig +mΔ ω mod )t ) exp( j ( D sig,ref ω l,sig D LO,ref ω m,LO )/c ) }.
f m,l =| Δ f 0 +( ml ) f mod,sig +mΔ f mod |.
V meas ( t )= m V ^ m,meas cos( ( Δ ω 0 +mΔ ω mod )t+ φ m,meas ) , V ^ m,meas =S R TIA 2 P m,sig,meas 2 P m,LO,meas .
φ m,meas ( 2z+ D sig,meas , D LO,meas )=( ( 2z+ D sig,meas ) ω m,sig D LO,meas ω m,LO )/c = ( ( 2z+ D sig,meas ) D LO,meas )( ω 0,sig +m ω mod,sig )/c D LO,meas ( Δ ω 0 +mΔ ω mod )/c =2π( ( 2z+ D sig,meas ) D LO,meas ) Λ m 1 +2π( ( 2z+ D sig,meas ) D LO,meas ) λ 0,sig 1 D LO,meas ( Δ ω 0 +mΔ ω mod )/c .
Λ m =c ( m f mod,sig ) 1
φ m,ref ( D sig,ref , D LO,ref )=( D sig,ref ω m,sig D LO,ref ω m,LO )/c
Δ φ m ( z )= φ m,meas ( 2z+ D sig,meas , D LO,meas ) φ m,ref ( D sig,ref , D LO,ref ) =( 2z+ D sig,meas D LO,meas ( D sig,ref D LO,ref ) ) m ω mod,sig /c +( 2z+ D sig,meas D LO,meas ( D sig,ref D LO,ref ) ) ω 0,sig /c ( D LO,meas D LO,ref ) Δ ω 0 /c ( D LO,meas D LO,ref ) mΔ ω mod /c .
dΔ φ m ( z ) dm = ω mod,sig c ( 2z+ D sig,meas D LO,meas D sig,ref + D LO,ref ). Δ ω mod c ( D LO,meas D LO,ref )
dΔ φ m ( z,t ) dm dΔ φ m ( z 0 =0, t 0 =0 ) dm = ω mod,sig c ( 2z+Δ D sig,meas Δ D LO,meas ( Δ D sig,ref Δ D LO,ref ) ) Δ ω mod c ( Δ D LO,meas Δ D LO,ref ). ω mod,sig c ( 2z+Δ D sig,meas Δ D LO,meas ( Δ D sig,ref Δ D LO,ref ) ).
E sig ( t )=[ E ^ sig + x sig ( t ) ]cos( ω sig t ) y sig ( t )sin( ω sig t ) E LO ( t )=[ E ^ LO + x LO ( t ) ]cos( ω LO t ) y LO ( t )sin( ω LO t ).
E 1 ( t )= 1 2 ( E sig ( t ) E LO ( t ) ) E 2 ( t )= 1 2 ( E sig ( t )+ E LO ( t ) ).
i 1 ( t )= Z 0 1 S E 1 2 ( t ) i 2 ( t )= Z 0 1 S E 2 2 ( t )
i ( t )= i 2 ( t ) i 1 ( t )= Z 0 1 S [ E ^ sig E ^ LO cos( ( ω sig ω LO )t ) + E ^ sig ( x LO ( t )cos( ( ω sig ω LO )t )+ y LO ( t )sin( ( ω sig ω LO )t ) ) + E ^ LO ( x sig ( t )cos( ( ω sig ω LO )t ) y sig ( t )sin( ( ω sig ω LO )t ) ) ].
i RIN,tot 2 = | i RIN,sig | 2 + | i RIN,LO | 2 = 1 2 Z 0 1 S 2 ( E ^ sig 2 ( σ x ,LO 2 + σ y ,LO 2 )+ E ^ LO 2 ( σ x ,sig 2 + σ y ,sig 2 ) ) = Z 0 1 S 2 ( E ^ sig 2 w o,RIN,LO + E ^ LO 2 w o,RIN,sig )Δf =2 S 2 ( P sig w o,RIN,LO + P LO w o,RIN,sig )Δf,
RIN(f)= w i,RIN ( f ) i 2 .
E( t )=[ E ^ + x ( t ) ]cos( ω 0 t ) y ( t )sin( ω 0 t )
i( t )= Z 0 1 S E 2 ( t ) = 1 2 Z 0 1 S( E ^ 2 + x 2 ( t ) + y 2 ( t ) )
Θ i ( f )= + i( t )i( tτ ) exp( j2πτf )dτ
w i ( f )=2 S 2 ( ( 1 2 Z 0 1 E ^ 2 + w o,RIN B ) 2 δ( f )+ w o,RIN Z 0 1 E ^ 2 [ H( f )H( f B 2 ) ] + w o,RIN 2 ( Bf )[ H( f )H( fB ) ] )
RIN( f )= w i2 ( f ) i 2 ={ 2 Z 0 1 S 2 w o,RIN E ^ 2 S 2 P o 2 = 4 w o,RIN P o for0<f< B 2 , 0 else.
w o,RIN,sig = 1 4 RI N spec P sig , w o,RIN,LO = 1 4 RI N spec P LO .
i RIN,tot 2 = S 2 RIN spec P LO P sig Δf.
( S NEP P NEP ) 2 i R 2 + i shot 2 = 1

Metrics