Abstract

In this paper, transmission performances of directly modulated laser (DML), electro-absorption modulated laser (EML) and Mach-Zehnder modulator (MZM) are experimentally compared in dispersion-unmanaged high-speed transmission systems with digital signal processing (DSP). We show that, although the DML based transmitter is often believed to be less favorable in C-band high-speed transmissions, it exhibits superior performance over the other two transmitters when either linear or nonlinear digital signal processing is adopted. By theoretical and experimental analysis, we reveal that the superiority of DML can be attributed to the compensation of fiber power fading by its inherent adiabatic chirp as well as the mitigation of chirp induced distortions by the linear or nonlinear equalization. Experimental results of 56Gb/s 4-level pulse amplitude modulation (PAM4) signals under various equalization schemes including linear feedforward equalization, simplified nonlinear Volterra equalization and partial response signaling are presented. Particularly, we show that for DML a 40km transmission distance can be achieved to satisfy the extended range-4 (ER4) Ethernet interconnect using a simplified Volterra equalizer, and a 20km transmission distance can be supported using a linear equalizer. In contrast, for MZM and EML, the achievable transmission distances are respectively 20km and 15km using the Volterra equalizer, respectively, and 15km and 10km using linear equalizer, respectively. Moreover, we show that even using the combination of the Volterra equalizer and partial response signaling, the transmission distances of MZM and EML based systems are limited to 30km and 20km.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission

Kuo Zhang, Qunbi Zhuge, Haiyun Xin, Mohamed Morsy-Osman, Eslam El-Fiky, Lilin Yi, Weisheng Hu, and David V. Plant
Opt. Express 25(23) 28123-28135 (2017)

Amplifier-free 4×96 Gb/s PAM8 transmission enabled by modified Volterra equalizer for short-reach applications using directly modulated lasers

Di Li, Lei Deng, Yao Ye, Yucheng Zhang, Haiping Song, Mengfan Cheng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Express 27(13) 17927-17939 (2019)

100 Gbit/s VSB-PAM-n IM/DD transmission system based on 10 GHz DML with optical filtering and joint nonlinear equalization

Jiao Zhang, Jianjun Yu, Xinying Li, Yiran Wei, Kaihui Wang, Li Zhao, Wen Zhou, Miao Kong, Xiaolong Pan, Bo Liu, and Xiangjun Xin
Opt. Express 27(5) 6098-6105 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
    [Crossref]
  2. D. Sadot, G. Dorman, A. Gorshtein, E. Sonkin, and O. Vidal, “Single channel 112Gbit/sec PAM4 at 56Gbaud with digital signal processing for data centers applications,” Opt. Express 23(2), 991–997 (2015).
    [Crossref] [PubMed]
  3. H. Xin, K. Zhang, H. He, W. Hu, and M. Zhang, “Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4,” Opt. Express 25(5), 5559–5570 (2017).
    [Crossref] [PubMed]
  4. M. Xiang, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, F. Zhang, and D. V. Plant, “Experimental study of performance enhanced IM/DD transmissions based on constellation switching,” Opt. Express 26(12), 15480–15489 (2018).
    [Crossref] [PubMed]
  5. J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
    [Crossref]
  6. X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.
  7. F. Chang and S. Bhoja, “New paradigm shift to PAM4 signalling at 100/400G for cloud data centers: a performance review,” in Proceedings of European Conference on Optical Communication (ECOC) (2017), paper W.1.A.5.
    [Crossref]
  8. D. V. Plant, M. Morsy-Osman, and M. Chagnon, “Optical communication systems for datacenter networks,” in Optical Fiber Communications Conference (OFC) (2017), paper W3B.1.
    [Crossref]
  9. F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Opt. Express 25(7), 7230–7237 (2017).
    [Crossref] [PubMed]
  10. K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
    [Crossref]
  11. Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.
  12. E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
    [Crossref]
  13. B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser,” Opt. Express 25(11), 12152–12160 (2017).
    [Crossref] [PubMed]
  14. C.-C. Wei, H.-L. Cheng, and W.-X. Huang, “On adiabatic chirp and compensation for nonlinear distortion in DML-based OFDM transmission,” J. Lightwave Technol. 36(16), 3502–3513 (2018).
    [Crossref]
  15. K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
    [Crossref]
  16. H. Kim, “High-speed optical transmission system using 1.55-um directly modulated lasers,” in Proceedings of International Conference on Optical Instruments and Technology (ICOIT) (2017).
  17. J. Binder and U. Kohn, “10 Gbit/s-dispersion optimized transmission at 1.55 μm wavelength on standard single mode fiber,” IEEE Photonics Technol. Lett. 6(4), 558–560 (1994).
    [Crossref]
  18. C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communications Conference (OFC) (2015), paper Th4A.5.
    [Crossref]
  19. F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).
    [Crossref]
  20. M. Kim, S. Bae, H. Kim, and Y. C. Chung, “Transmission of 56-Gb/s PAM-4 signal over 20 km of SSMF using a 1.55-μm directly-modulated laser,” in Optical Fiber Communication Conference (OFC) (2017), paper Tu2D.6.
    [Crossref]
  21. K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
    [Crossref]
  22. H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).
  23. L. A. Neto, D. Erasme, N. Genay, P. Chanclou, Q. Deniel, F. Traore, T. Anfray, R. Hmadou, and C. Aupetit-Berthelemot, “Simple estimation of fiber dispersion and laser chirp parameters using the downhill simplex fitting algorithm,” J. Lightwave Technol. 31(2), 334–342 (2013).
    [Crossref]
  24. P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE Trans. Commun. 23(9), 921–934 (1975).
    [Crossref]
  25. X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
    [Crossref] [PubMed]
  26. N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G ethernet-based fronthaul architecture,” J. Lightwave Technol. 36(10), 1807–1814 (2018).
    [Crossref]
  27. N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
    [Crossref]
  28. E. Batista and R. Seara, “On the performance of adaptive pruned Volterra filters,” Signal Processing 93(7), 1909–1920 (2013).
    [Crossref]
  29. D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
    [Crossref]
  30. L. Spiekman, “Extended range 100 gigabit ethernet,” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2016), paper Th.A5.1.
  31. Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55 GHz bandwidth distributed reflector Laser,” J. Lightwave Technol. 35(3), 397–403 (2017).
    [Crossref]
  32. O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
    [Crossref]
  33. Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDMPON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

2018 (5)

2017 (8)

H. Xin, K. Zhang, H. He, W. Hu, and M. Zhang, “Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4,” Opt. Express 25(5), 5559–5570 (2017).
[Crossref] [PubMed]

Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55 GHz bandwidth distributed reflector Laser,” J. Lightwave Technol. 35(3), 397–403 (2017).
[Crossref]

F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Opt. Express 25(7), 7230–7237 (2017).
[Crossref] [PubMed]

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser,” Opt. Express 25(11), 12152–12160 (2017).
[Crossref] [PubMed]

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).
[Crossref]

2015 (2)

2014 (1)

2013 (2)

2010 (1)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

1994 (1)

J. Binder and U. Kohn, “10 Gbit/s-dispersion optimized transmission at 1.55 μm wavelength on standard single mode fiber,” IEEE Photonics Technol. Lett. 6(4), 558–560 (1994).
[Crossref]

1991 (1)

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

1975 (1)

P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE Trans. Commun. 23(9), 921–934 (1975).
[Crossref]

Adams, D.

Anfray, T.

Asyngier, T.

Aupetit-Berthelemot, C.

Bae, S.

M. Kim, S. Bae, H. Kim, and Y. C. Chung, “Transmission of 56-Gb/s PAM-4 signal over 20 km of SSMF using a 1.55-μm directly-modulated laser,” in Optical Fiber Communication Conference (OFC) (2017), paper Tu2D.6.
[Crossref]

Bae, S. H.

Bao, Y.

Batista, E.

E. Batista and R. Seara, “On the performance of adaptive pruned Volterra filters,” Signal Processing 93(7), 1909–1920 (2013).
[Crossref]

Bergmann, E.

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Bhoja, S.

F. Chang and S. Bhoja, “New paradigm shift to PAM4 signalling at 100/400G for cloud data centers: a performance review,” in Proceedings of European Conference on Optical Communication (ECOC) (2017), paper W.1.A.5.
[Crossref]

Bi, M.

Binder, J.

J. Binder and U. Kohn, “10 Gbit/s-dispersion optimized transmission at 1.55 μm wavelength on standard single mode fiber,” IEEE Photonics Technol. Lett. 6(4), 558–560 (1994).
[Crossref]

Cai, Y.

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

Carey, G.

Cartledge, J. C.

Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.

Chagnon, M.

D. V. Plant, M. Morsy-Osman, and M. Chagnon, “Optical communication systems for datacenter networks,” in Optical Fiber Communications Conference (OFC) (2017), paper W3B.1.
[Crossref]

Chanclou, P.

Chang, F.

F. Chang and S. Bhoja, “New paradigm shift to PAM4 signalling at 100/400G for cloud data centers: a performance review,” in Proceedings of European Conference on Optical Communication (ECOC) (2017), paper W.1.A.5.
[Crossref]

Chen, C.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communications Conference (OFC) (2015), paper Th4A.5.
[Crossref]

Cheng, H.-L.

Chi, N.

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

Chung, Y. C.

B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser,” Opt. Express 25(11), 12152–12160 (2017).
[Crossref] [PubMed]

M. Kim, S. Bae, H. Kim, and Y. C. Chung, “Transmission of 56-Gb/s PAM-4 signal over 20 km of SSMF using a 1.55-μm directly-modulated laser,” in Optical Fiber Communication Conference (OFC) (2017), paper Tu2D.6.
[Crossref]

Daghighian, H. M.

Deng, L.

Deniel, Q.

Dochhan, A.

Dorman, G.

Eiselt, M.

Eiselt, N.

Elbers, J.-P.

El-Fiky, E.

Engenhardt, K. M.

Erasme, D.

Fan, S.

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Fu, S.

Gaiarin, S.

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

Gao, F.

Gao, Y.

Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.

Genay, N.

Gorshtein, A.

Griesser, H.

He, H.

K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
[Crossref]

H. Xin, K. Zhang, H. He, W. Hu, and M. Zhang, “Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4,” Opt. Express 25(5), 5559–5570 (2017).
[Crossref] [PubMed]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDMPON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).

Hmadou, R.

Hoang, T. M.

Hu, W.

K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
[Crossref]

H. Xin, K. Zhang, H. He, W. Hu, and M. Zhang, “Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4,” Opt. Express 25(5), 5559–5570 (2017).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDMPON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Huang, S.

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Huang, W.-X.

Huo, J.

Jacobsen, G.

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

Kabal, P.

P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE Trans. Commun. 23(9), 921–934 (1975).
[Crossref]

Kakkar, A.

Karinou, F.

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).
[Crossref]

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

Kim, B. G.

Kim, H.

B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser,” Opt. Express 25(11), 12152–12160 (2017).
[Crossref] [PubMed]

M. Kim, S. Bae, H. Kim, and Y. C. Chung, “Transmission of 56-Gb/s PAM-4 signal over 20 km of SSMF using a 1.55-μm directly-modulated laser,” in Optical Fiber Communication Conference (OFC) (2017), paper Tu2D.6.
[Crossref]

H. Kim, “High-speed optical transmission system using 1.55-um directly modulated lasers,” in Proceedings of International Conference on Optical Instruments and Technology (ICOIT) (2017).

Kim, M.

M. Kim, S. Bae, H. Kim, and Y. C. Chung, “Transmission of 56-Gb/s PAM-4 signal over 20 km of SSMF using a 1.55-μm directly-modulated laser,” in Optical Fiber Communication Conference (OFC) (2017), paper Tu2D.6.
[Crossref]

Kohn, U.

J. Binder and U. Kohn, “10 Gbit/s-dispersion optimized transmission at 1.55 μm wavelength on standard single mode fiber,” IEEE Photonics Technol. Lett. 6(4), 558–560 (1994).
[Crossref]

Kuo, C.

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Lau, A. P. T.

Li, J.

Li, X.

F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Opt. Express 25(7), 7230–7237 (2017).
[Crossref] [PubMed]

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

Li, Z.

Liang, S.

K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
[Crossref]

Ling, W. A.

Liu, D.

Liu, G. N.

Lu, C.

Lu, D.

K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
[Crossref]

Mahgerefteh, D.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

Matsui, Y.

Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55 GHz bandwidth distributed reflector Laser,” J. Lightwave Technol. 35(3), 397–403 (2017).
[Crossref]

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.

McCallion, K.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

Monroy, I. T.

Morsy-Osman, M.

Muench, D.

Navarro, J. R.

Neto, L. A.

Nordwall, F.

Olmedo, M. I.

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

Olmos, J. J. V.

Ozolins, O.

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

Pang, X.

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

Pasupathy, S.

P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE Trans. Commun. 23(9), 921–934 (1975).
[Crossref]

Pham, T.

Plant, D. V.

M. Xiang, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, F. Zhang, and D. V. Plant, “Experimental study of performance enhanced IM/DD transmissions based on constellation switching,” Opt. Express 26(12), 15480–15489 (2018).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).

D. V. Plant, M. Morsy-Osman, and M. Chagnon, “Optical communication systems for datacenter networks,” in Optical Fiber Communications Conference (OFC) (2017), paper W3B.1.
[Crossref]

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Popov, S.

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

Prodaniuc, C.

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).
[Crossref]

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

Qiang, Z.

Rezania, A.

Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.

Roxlo, C.

Sadot, D.

Schatz, R.

Seara, R.

E. Batista and R. Seara, “On the performance of adaptive pruned Volterra filters,” Signal Processing 93(7), 1909–1920 (2013).
[Crossref]

Shi, J.

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

Sonkin, E.

Spiekman, L.

L. Spiekman, “Extended range 100 gigabit ethernet,” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2016), paper Th.A5.1.

Stojanovic, N.

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).
[Crossref]

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

Sudo, T.

Tang, M.

Tang, X.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communications Conference (OFC) (2015), paper Th4A.5.
[Crossref]

Traore, F.

Udalcovs, A.

Vidal, O.

Wei, C.-C.

Wei, W.

Westergren, U.

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

Xiang, M.

M. Xiang, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, F. Zhang, and D. V. Plant, “Experimental study of performance enhanced IM/DD transmissions based on constellation switching,” Opt. Express 26(12), 15480–15489 (2018).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Xiao, S.

Xin, H.

K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
[Crossref]

H. Xin, K. Zhang, H. He, W. Hu, and M. Zhang, “Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4,” Opt. Express 25(5), 5559–5570 (2017).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Xing, Z.

M. Xiang, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, F. Zhang, and D. V. Plant, “Experimental study of performance enhanced IM/DD transmissions based on constellation switching,” Opt. Express 26(12), 15480–15489 (2018).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Xu, X.

Yam, S. S.-H.

Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.

Yang, Q.

Yi, L.

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDMPON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).

Yu, C.

Yu, J.

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

Zhang, F.

Zhang, J.

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

Zhang, K.

K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
[Crossref]

M. Xiang, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, F. Zhang, and D. V. Plant, “Experimental study of performance enhanced IM/DD transmissions based on constellation switching,” Opt. Express 26(12), 15480–15489 (2018).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

H. Xin, K. Zhang, H. He, W. Hu, and M. Zhang, “Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4,” Opt. Express 25(5), 5559–5570 (2017).
[Crossref] [PubMed]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Zhang, L.

Zhang, M.

Zhang, Q.

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).
[Crossref]

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

Zhang, X.

Zhang, Y.

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

Zhang, Z.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communications Conference (OFC) (2015), paper Th4A.5.
[Crossref]

Zhao, L.

K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
[Crossref]

Zheng, X.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

Zhong, K.

Zhong, Q.

Zhou, E.

Zhou, S.

Zhou, X.

Zhuge, Q.

M. Xiang, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, F. Zhang, and D. V. Plant, “Experimental study of performance enhanced IM/DD transmissions based on constellation switching,” Opt. Express 26(12), 15480–15489 (2018).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Zibar, D.

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

Zuo, T.

IEEE J. Sel. Top. Quantum Electron. (1)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

J. Binder and U. Kohn, “10 Gbit/s-dispersion optimized transmission at 1.55 μm wavelength on standard single mode fiber,” IEEE Photonics Technol. Lett. 6(4), 558–560 (1994).
[Crossref]

IEEE Trans. Commun. (1)

P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE Trans. Commun. 23(9), 921–934 (1975).
[Crossref]

J. Lightwave Technol. (8)

N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G ethernet-based fronthaul architecture,” J. Lightwave Technol. 36(10), 1807–1814 (2018).
[Crossref]

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55 GHz bandwidth distributed reflector Laser,” J. Lightwave Technol. 35(3), 397–403 (2017).
[Crossref]

O. Ozolins, X. Pang, M. I. Olmedo, A. Kakkar, A. Udalcovs, S. Gaiarin, J. R. Navarro, K. M. Engenhardt, T. Asyngier, R. Schatz, J. Li, F. Nordwall, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “100 GHz externally modulated laser for Optical interconnects,” J. Lightwave Technol. 35(6), 1174–1179 (2017).
[Crossref]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDMPON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

L. A. Neto, D. Erasme, N. Genay, P. Chanclou, Q. Deniel, F. Traore, T. Anfray, R. Hmadou, and C. Aupetit-Berthelemot, “Simple estimation of fiber dispersion and laser chirp parameters using the downhill simplex fitting algorithm,” J. Lightwave Technol. 31(2), 334–342 (2013).
[Crossref]

C.-C. Wei, H.-L. Cheng, and W.-X. Huang, “On adiabatic chirp and compensation for nonlinear distortion in DML-based OFDM transmission,” J. Lightwave Technol. 36(16), 3502–3513 (2018).
[Crossref]

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
[Crossref]

Opt. Commun. (1)

K. Zhang, H. He, H. Xin, W. Hu, S. Liang, D. Lu, and L. Zhao, “Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML,” Opt. Commun. 407, 63–68 (2018).
[Crossref]

Opt. Express (7)

B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser,” Opt. Express 25(11), 12152–12160 (2017).
[Crossref] [PubMed]

F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Opt. Express 25(7), 7230–7237 (2017).
[Crossref] [PubMed]

D. Sadot, G. Dorman, A. Gorshtein, E. Sonkin, and O. Vidal, “Single channel 112Gbit/sec PAM4 at 56Gbaud with digital signal processing for data centers applications,” Opt. Express 23(2), 991–997 (2015).
[Crossref] [PubMed]

H. Xin, K. Zhang, H. He, W. Hu, and M. Zhang, “Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4,” Opt. Express 25(5), 5559–5570 (2017).
[Crossref] [PubMed]

M. Xiang, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, F. Zhang, and D. V. Plant, “Experimental study of performance enhanced IM/DD transmissions based on constellation switching,” Opt. Express 26(12), 15480–15489 (2018).
[Crossref] [PubMed]

X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

Photonics (1)

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).
[Crossref]

Signal Processing (1)

E. Batista and R. Seara, “On the performance of adaptive pruned Volterra filters,” Signal Processing 93(7), 1909–1920 (2013).
[Crossref]

Other (11)

M. Kim, S. Bae, H. Kim, and Y. C. Chung, “Transmission of 56-Gb/s PAM-4 signal over 20 km of SSMF using a 1.55-μm directly-modulated laser,” in Optical Fiber Communication Conference (OFC) (2017), paper Tu2D.6.
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. V. Plant, “Transmission of 100Gb/s PAM4 signals over 15km dispersion-unmanaged SSMF using a directly modulated laser in C-band,” in Proceedings of European Conference on Optical Communication (ECOC) (2018) (accepted).

L. Spiekman, “Extended range 100 gigabit ethernet,” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2016), paper Th.A5.1.

J. Shi, J. Zhang, N. Chi, Y. Cai, X. Li, Y. Zhang, Q. Zhang, and J. Yu, “Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD System,” in Optical Fiber Communication Conference (OFC) (2018), paper W2A.44.
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, M. I. Olmedo, R. Schatz, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), Paper W.4.P.1.

F. Chang and S. Bhoja, “New paradigm shift to PAM4 signalling at 100/400G for cloud data centers: a performance review,” in Proceedings of European Conference on Optical Communication (ECOC) (2017), paper W.1.A.5.
[Crossref]

D. V. Plant, M. Morsy-Osman, and M. Chagnon, “Optical communication systems for datacenter networks,” in Optical Fiber Communications Conference (OFC) (2017), paper W3B.1.
[Crossref]

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. V. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber Communication Conference (OFC) (2018), paper M1B.5.
[Crossref]

Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.

H. Kim, “High-speed optical transmission system using 1.55-um directly modulated lasers,” in Proceedings of International Conference on Optical Instruments and Technology (ICOIT) (2017).

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communications Conference (OFC) (2015), paper Th4A.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Theoretical responses of a 20km fiber link in MZM, EML and DML based IM-DD systems, (b) decomposition of the DML response, (c) parameters used fortheoretical analysis.
Fig. 2
Fig. 2 (a) Experimental results of 40km fiber response in EML based systems under different bias voltages. (b) Illustration of nonlinear distortions caused by adiabatic chirp in DML based systems.
Fig. 3
Fig. 3 Experimental setup.
Fig. 4
Fig. 4 Optimization of DML parameters. (a) BER performance versus peak-to-peak voltage of RF signals applied to DML. (b) BER performance versus DML output optical power.
Fig. 5
Fig. 5 Optimization of EML parameter. BER performance versus EAM bias voltage for BtB and 10km cases.
Fig. 6
Fig. 6 Measured frequency responses of a 20km link in MZM, EML and DML based systems.
Fig. 7
Fig. 7 BER performances with a linear FFE: (a) DML based system, (b) EML based system and (c) MZM based system. The inserted eye diagrams are under the BtB case and the case of maximum achievable distance. (d) Achieved distance comparison of DML, EML and MZM based systems. (e) FFE tap number analysis of DML, EML and MZM based systems when transmission distance is 20km.
Fig. 8
Fig. 8 BER performances with a simplified nonlinear Volterra filter: (a) DML based system, (b) EML based system and (c) MZM based system. (d) Achieved distance comparison of DML, EML and MZM based systems. (e) Analysis of required 2nd order Volterra tap number for DML, EML and MZM based systems at 20km transmission distance.
Fig. 9
Fig. 9 BER performances of DB-PAM4 signals using linear equalizer: (a) EML based system and (b) MZM based system.
Fig. 10
Fig. 10 BER performances of DB-PAM4 signals using a nonlinear equalizer: (a) EML based system, and (b) MZM based system.

Tables (4)

Tables Icon

Table 1 Small signal fiber channel response in MZM, EML and DML based IM-DD systems

Tables Icon

Table 2 Major performance limiting factors of MZM, EML and DML based systems in the presence of CD

Tables Icon

Table 3 Parameters of MZM, EML and DML in the experiment

Tables Icon

Table 4 Achievable transmission distances of MZM, EML and DML under various equalization schemes

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H IMDD (f,L)=| cos(θ(f,L))sin(θ(f,L)) H IMPM |
θ(f,L)=2 π 2 β 2 f 2 L
Δf= α 4π ( 1 P(t) dP(t) dt transient chirp + κ(P(t) P bias ) adiabatica chirp )
B MZM = 1/(4π β 2 L)
B EML = (π/2 tan 1 α)/(2 π 2 β 2 L)
B DML ( 1/(2π β 2 L) , (3π/2 tan 1 α)/(2 π 2 β 2 L) )
b k =( a k b k1 )mod 4
a k = c k mod 4
y(m)= l 1 =1 L 1 h( l 1 ) x(n l 1 )+ l 1 =1 L 2 l 2 = l 1 L 2 h( l 1 , l 2 ) x(n l 1 )x(n l 2 )
y(m)= l 1 =1 L 1 h( l 1 ) x(n l 1 )+ l 1 =1 L 2 l 2 = l 1 min( L 2 , l 2 +P) h( l 1 , l 2 ) x(n l 1 )x(n l 2 )

Metrics