Abstract

In this work, a sensitivity-enhanced surface plasmon resonance (SPR) sensor, which is integrated with MoSe2 as modification overlayer, is proposed and investigated. The sensor is constructed by physically depositing MoSe2 onto the surface of a conventional SPR sensor based on Krestchman configuration. Thanks to the commendable properties of MoSe2 including high carrier mobility, high refractive index (RI), large surface area, and so forth, adding an overlayer within a certain thickness can effectively improve the RI sensitivity. Experimental results show that, with the increased number of deposition cycles—which positively correlates with the duty ratio and the MoSe2 overlayer’s thickness—the sensitivity at first increases, and then declines. The highest sensitivity of 2524.8 nm/RIU is achieved experimentally, which corresponds to the 2 deposition cycles. This shows an improvement of 36.3%, compared with the case without the MoSe2 modification. The ease of fabrication, efficiency of performance enhancement, and great potentials (such as the large surface area of MoSe2 for linking abundant functional groups) allow the method presented in this paper to contribute to the development of performance-enhanced SPR sensors for the biological, chemical, and medical fields.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Titanium dioxide nanoparticle modified plasmonic interface for enhanced refractometric and biomolecular sensing

Hui Zhang, Yaofei Chen, Hao Wang, Shiqi Hu, Kai Xia, Xin Xiong, Wenjuan Huang, Huihui Lu, Jianhui Yu, Heyuan Guan, Miao He, Weiping Liu, Jun Zhang, Yunhan Luo, Zhiping Xie, and Zhe Chen
Opt. Express 26(25) 33226-33237 (2018)

Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer

Hao Wang, Hui Zhang, Jiangli Dong, Shiqi Hu, Wenguo Zhu, Wentao Qiu, Huihui Lu, Jianhui Yu, Heyuan Guan, Shecheng Gao, Zhaohui Li, Weiping Liu, Miao He, Jun Zhang, Zhe Chen, and Yunhan Luo
Photon. Res. 6(6) 485-491 (2018)

Side-polished flexible SPR sensor modified by graphene with in situ temperature self-compensation

Penghao Zhang, Bingyu Lu, Yanwen Sun, Haixia Yu, Kexin Xu, and Dachao Li
Biomed. Opt. Express 10(1) 215-225 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. B. Schasfoort, Handbook of surface plasmon resonance (Royal Society of Chemistry, 2017).
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  3. A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
    [PubMed]
  4. K. Knez, D. Spasic, F. Delport, and J. Lammertyn, “Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR,” Biosens. Bioelectron. 67, 394–399 (2015).
    [Crossref] [PubMed]
  5. V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
    [Crossref] [PubMed]
  6. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  7. L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
    [Crossref]
  8. Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
    [Crossref] [PubMed]
  9. A. Shalabney and I. Abdulhalim, “Sensitivity‐enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
    [Crossref]
  10. A. Lahav, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Opt. Lett. 33(21), 2539–2541 (2008).
    [Crossref] [PubMed]
  11. R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic spr sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2016).
  12. M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
    [Crossref] [PubMed]
  13. M. Chhowalla, Z. Liu, and H. Zhang, “Two-dimensional transition metal dichalcogenide (TMD) nanosheets,” Chem. Soc. Rev. 44(9), 2584–2586 (2015).
    [Crossref] [PubMed]
  14. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  15. R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
    [Crossref] [PubMed]
  16. J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, “Recent advances in sensing applications of two‐dimensional transition metal dichalcogenide nanosheets and their composites,” Adv. Funct. Mater. 27(19), 1605817 (2017).
    [Crossref]
  17. G. Yang, C. Zhu, D. Du, J. Zhu, and Y. Lin, “Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine,” Nanoscale 7(34), 14217–14231 (2015).
    [Crossref] [PubMed]
  18. D. Higgins, P. Zamani, A. Yu, and Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress,” Energy Environ. Sci. 9(2), 357–390 (2016).
    [Crossref]
  19. A. Eftekhari, “Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics,” Appl. Mater. Today 8, 1–17 (2017).
    [Crossref]
  20. D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
    [Crossref]
  21. J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
    [Crossref]
  22. K.-J. Huang, H.-L. Shuai, and Y.-X. Chen, “Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application,” Sens,” Actuator B-Chem. 225, 391–397 (2016).
    [Crossref]
  23. K.-J. Huang, H.-L. Shuai, and J.-Z. Zhang, “Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification,” Biosens. Bioelectron. 77, 69–75 (2016).
    [Crossref] [PubMed]
  24. Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
    [Crossref] [PubMed]
  25. Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
    [Crossref]
  26. X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
    [Crossref] [PubMed]
  27. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
    [Crossref]
  28. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂,” Opt. Express 21(4), 4908–4916 (2013).
    [Crossref] [PubMed]
  29. H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
    [Crossref]
  30. H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
    [Crossref]
  31. T. Wu, Y. Shao, Y. Wang, S. Cao, W. Cao, F. Zhang, C. Liao, J. He, Y. Huang, M. Hou, and Y. Wang, “Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber,” Opt. Express 25(17), 20313–20322 (2017).
    [Crossref] [PubMed]
  32. S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, and Y. Wang, “Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber,” Opt. Express 26(4), 3988–3994 (2018).
    [Crossref] [PubMed]
  33. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuator A-Phys. 159(1), 24–32 (2010).
    [Crossref]
  34. W. Lee and D. Kim, “Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 29(7), 1367–1376 (2012).
    [Crossref] [PubMed]
  35. H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors (Basel) 15(5), 10481–10510 (2015).
    [Crossref] [PubMed]

2018 (4)

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, and Y. Wang, “Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber,” Opt. Express 26(4), 3988–3994 (2018).
[Crossref] [PubMed]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

2017 (6)

T. Wu, Y. Shao, Y. Wang, S. Cao, W. Cao, F. Zhang, C. Liao, J. He, Y. Huang, M. Hou, and Y. Wang, “Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber,” Opt. Express 25(17), 20313–20322 (2017).
[Crossref] [PubMed]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, “Recent advances in sensing applications of two‐dimensional transition metal dichalcogenide nanosheets and their composites,” Adv. Funct. Mater. 27(19), 1605817 (2017).
[Crossref]

A. Eftekhari, “Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics,” Appl. Mater. Today 8, 1–17 (2017).
[Crossref]

2016 (8)

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic spr sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2016).

K.-J. Huang, H.-L. Shuai, and Y.-X. Chen, “Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application,” Sens,” Actuator B-Chem. 225, 391–397 (2016).
[Crossref]

K.-J. Huang, H.-L. Shuai, and J.-Z. Zhang, “Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification,” Biosens. Bioelectron. 77, 69–75 (2016).
[Crossref] [PubMed]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

D. Higgins, P. Zamani, A. Yu, and Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress,” Energy Environ. Sci. 9(2), 357–390 (2016).
[Crossref]

V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

2015 (6)

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

K. Knez, D. Spasic, F. Delport, and J. Lammertyn, “Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR,” Biosens. Bioelectron. 67, 394–399 (2015).
[Crossref] [PubMed]

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors (Basel) 15(5), 10481–10510 (2015).
[Crossref] [PubMed]

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

M. Chhowalla, Z. Liu, and H. Zhang, “Two-dimensional transition metal dichalcogenide (TMD) nanosheets,” Chem. Soc. Rev. 44(9), 2584–2586 (2015).
[Crossref] [PubMed]

G. Yang, C. Zhu, D. Du, J. Zhu, and Y. Lin, “Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine,” Nanoscale 7(34), 14217–14231 (2015).
[Crossref] [PubMed]

2014 (2)

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

2013 (1)

2012 (2)

W. Lee and D. Kim, “Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 29(7), 1367–1376 (2012).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

2011 (2)

A. Shalabney and I. Abdulhalim, “Sensitivity‐enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
[PubMed]

2010 (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuator A-Phys. 159(1), 24–32 (2010).
[Crossref]

2008 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1-2), 3–15 (1999).
[Crossref]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Sensitivity‐enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuator A-Phys. 159(1), 24–32 (2010).
[Crossref]

A. Lahav, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Opt. Lett. 33(21), 2539–2541 (2008).
[Crossref] [PubMed]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Albrecht, M.

Andrén, P. E.

A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
[PubMed]

Auslender, M.

Baek, J.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Börner, J.

Böttger, P.

Bougouma, M.

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Bratschitsch, R.

Cao, S.

Cao, W.

Chen, H.

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

Chen, P.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Chen, Y.-X.

K.-J. Huang, H.-L. Shuai, and Y.-X. Chen, “Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application,” Sens,” Actuator B-Chem. 225, 391–397 (2016).
[Crossref]

Chen, Z.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

D. Higgins, P. Zamani, A. Yu, and Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress,” Energy Environ. Sci. 9(2), 357–390 (2016).
[Crossref]

Cheng, Z.

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

Chhowalla, M.

M. Chhowalla, Z. Liu, and H. Zhang, “Two-dimensional transition metal dichalcogenide (TMD) nanosheets,” Chem. Soc. Rev. 44(9), 2584–2586 (2015).
[Crossref] [PubMed]

Cho, N.-J.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Coquet, P.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Dai, X.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Delport, F.

K. Knez, D. Spasic, F. Delport, and J. Lammertyn, “Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR,” Biosens. Bioelectron. 67, 394–399 (2015).
[Crossref] [PubMed]

Dinh, X.-Q.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Doneux, T.

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Dong, J.

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Du, D.

G. Yang, C. Zhu, D. Du, J. Zhu, and Y. Lin, “Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine,” Nanoscale 7(34), 14217–14231 (2015).
[Crossref] [PubMed]

Eftekhari, A.

A. Eftekhari, “Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics,” Appl. Mater. Today 8, 1–17 (2017).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Fan, D.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

Fan, Z.

J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, “Recent advances in sensing applications of two‐dimensional transition metal dichalcogenide nanosheets and their composites,” Adv. Funct. Mater. 27(19), 1605817 (2017).
[Crossref]

Gao, S.

Gao, Y.

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1-2), 3–15 (1999).
[Crossref]

Gordan, O.

Gu, M. B.

V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
[Crossref] [PubMed]

Guan, H.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

Guo, J.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

Guo, L.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Gupta, B. D.

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic spr sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2016).

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

He, J.

He, M.

He, R.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

He, S.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Higgins, D.

D. Higgins, P. Zamani, A. Yu, and Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress,” Energy Environ. Sci. 9(2), 357–390 (2016).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1-2), 3–15 (1999).
[Crossref]

Hong, L.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Hong, S.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Hong, Y. K.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Hou, M.

Hsu, C.-L.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Hu, S.

Huang, K.-J.

K.-J. Huang, H.-L. Shuai, and J.-Z. Zhang, “Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification,” Biosens. Bioelectron. 77, 69–75 (2016).
[Crossref] [PubMed]

K.-J. Huang, H.-L. Shuai, and Y.-X. Chen, “Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application,” Sens,” Actuator B-Chem. 225, 391–397 (2016).
[Crossref]

Huang, P.

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

Huang, T.

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

Huang, Y.

Hur, J.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Im, H.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Jackman, J. A.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Jiang, L.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Jung, C.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kang, S.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors (Basel) 15(5), 10481–10510 (2015).
[Crossref] [PubMed]

Kim, B. C.

V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
[Crossref] [PubMed]

Kim, D.

Kim, D.-H.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Kim, M.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors (Basel) 15(5), 10481–10510 (2015).
[Crossref] [PubMed]

Kim, S.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Kim, S. K.

V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
[Crossref] [PubMed]

Kim, S. M.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kloc, C.

Knez, K.

K. Knez, D. Spasic, F. Delport, and J. Lammertyn, “Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR,” Biosens. Bioelectron. 67, 394–399 (2015).
[Crossref] [PubMed]

Koh, K.

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

Lahav, A.

Lammertyn, J.

K. Knez, D. Spasic, F. Delport, and J. Lammertyn, “Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR,” Biosens. Bioelectron. 67, 394–399 (2015).
[Crossref] [PubMed]

Late, D. J.

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Lee, W.

Li, L.-J.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Li, M.-Y.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Li, Z.

Liao, C.

Liebig, A.

Lin, Y.

G. Yang, C. Zhu, D. Du, J. Zhu, and Y. Lin, “Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine,” Nanoscale 7(34), 14217–14231 (2015).
[Crossref] [PubMed]

Liu, H.-L.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Liu, M.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Liu, N.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Liu, W.

Liu, Z.

M. Chhowalla, Z. Liu, and H. Zhang, “Two-dimensional transition metal dichalcogenide (TMD) nanosheets,” Chem. Soc. Rev. 44(9), 2584–2586 (2015).
[Crossref] [PubMed]

Lu, H.

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Lu, S.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

Luo, Y.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

Lv, R.

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

Madeira, A.

A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
[PubMed]

Mallouk, T. E.

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

Michaelis de Vasconcellos, S.

Nguyen, H. H.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors (Basel) 15(5), 10481–10510 (2015).
[Crossref] [PubMed]

Nguyen, V.-T.

V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
[Crossref] [PubMed]

Nilsson, A.

A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
[PubMed]

Omkaram, I.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Ouyang, Q.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Pan, J.

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

Park, J.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors (Basel) 15(5), 10481–10510 (2015).
[Crossref] [PubMed]

Ping, J.

J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, “Recent advances in sensing applications of two‐dimensional transition metal dichalcogenide nanosheets and their composites,” Adv. Funct. Mater. 27(19), 1605817 (2017).
[Crossref]

Ping, P. S.

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

Qian, J.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Qiu, W.

Qu, J.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Robinson, J. A.

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

Schaak, R. E.

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

Schmidt, R.

Seo, H. B.

V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
[Crossref] [PubMed]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Sensitivity‐enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuator A-Phys. 159(1), 24–32 (2010).
[Crossref]

Shao, Y.

Shen, C.-C.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Shuai, H.-L.

K.-J. Huang, H.-L. Shuai, and Y.-X. Chen, “Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application,” Sens,” Actuator B-Chem. 225, 391–397 (2016).
[Crossref]

K.-J. Huang, H.-L. Shuai, and J.-Z. Zhang, “Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification,” Biosens. Bioelectron. 77, 69–75 (2016).
[Crossref] [PubMed]

Sindoro, M.

J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, “Recent advances in sensing applications of two‐dimensional transition metal dichalcogenide nanosheets and their composites,” Adv. Funct. Mater. 27(19), 1605817 (2017).
[Crossref]

Sjögren, B.

A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
[PubMed]

Song, C.-S.

V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
[Crossref] [PubMed]

Spasic, D.

K. Knez, D. Spasic, F. Delport, and J. Lammertyn, “Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR,” Biosens. Bioelectron. 67, 394–399 (2015).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Su, S.-H.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Sun, D.

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

Sun, Y.

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

Svenningsson, P.

A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
[PubMed]

Tabassum, R.

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic spr sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2016).

Tang, J.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Terrones, M.

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

Tonndorf, P.

Vikeved, E.

A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
[PubMed]

Wang, H.

Wang, Q.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, X.

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

Wang, Y.

Wu, B.

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

Wu, L.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

Wu, T.

Wu, X.

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

Wu, Y.

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

Xiang, Y.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

Xiong, X.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Xu, G.

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Yang, G.

G. Yang, C. Zhu, D. Du, J. Zhu, and Y. Lin, “Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine,” Nanoscale 7(34), 14217–14231 (2015).
[Crossref] [PubMed]

Yang, H.-H.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Yang, M.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yin, D.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Ying, Y.

J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, “Recent advances in sensing applications of two‐dimensional transition metal dichalcogenide nanosheets and their composites,” Adv. Funct. Mater. 27(19), 1605817 (2017).
[Crossref]

Yong, K.-T.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Yoon, Y.

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Yu, A.

D. Higgins, P. Zamani, A. Yu, and Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress,” Energy Environ. Sci. 9(2), 357–390 (2016).
[Crossref]

Yu, J.

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Zahn, D. R.

Zamani, P.

D. Higgins, P. Zamani, A. Yu, and Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress,” Energy Environ. Sci. 9(2), 357–390 (2016).
[Crossref]

Zeng, S.

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Zhang, F.

Zhang, H.

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, “Recent advances in sensing applications of two‐dimensional transition metal dichalcogenide nanosheets and their composites,” Adv. Funct. Mater. 27(19), 1605817 (2017).
[Crossref]

M. Chhowalla, Z. Liu, and H. Zhang, “Two-dimensional transition metal dichalcogenide (TMD) nanosheets,” Chem. Soc. Rev. 44(9), 2584–2586 (2015).
[Crossref] [PubMed]

Zhang, J.

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS 2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

Zhang, J.-Z.

K.-J. Huang, H.-L. Shuai, and J.-Z. Zhang, “Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification,” Biosens. Bioelectron. 77, 69–75 (2016).
[Crossref] [PubMed]

Zhang, L.

Zhang, X.

Zhao, X.

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

Zhu, C.

G. Yang, C. Zhu, D. Du, J. Zhu, and Y. Lin, “Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine,” Nanoscale 7(34), 14217–14231 (2015).
[Crossref] [PubMed]

Zhu, J.

G. Yang, C. Zhu, D. Du, J. Zhu, and Y. Lin, “Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine,” Nanoscale 7(34), 14217–14231 (2015).
[Crossref] [PubMed]

Zhu, W.

Zou, F.

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res. 48(1), 56–64 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interfaces 10(6), 5933–5940 (2018).
[Crossref] [PubMed]

Actuator B-Chem. (1)

K.-J. Huang, H.-L. Shuai, and Y.-X. Chen, “Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application,” Sens,” Actuator B-Chem. 225, 391–397 (2016).
[Crossref]

Adv. Funct. Mater. (1)

J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, “Recent advances in sensing applications of two‐dimensional transition metal dichalcogenide nanosheets and their composites,” Adv. Funct. Mater. 27(19), 1605817 (2017).
[Crossref]

Appl. Mater. Today (1)

A. Eftekhari, “Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics,” Appl. Mater. Today 8, 1–17 (2017).
[Crossref]

Appl. Phys. Lett. (2)

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Biosens. Bioelectron. (4)

K. Knez, D. Spasic, F. Delport, and J. Lammertyn, “Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR,” Biosens. Bioelectron. 67, 394–399 (2015).
[Crossref] [PubMed]

V.-T. Nguyen, H. B. Seo, B. C. Kim, S. K. Kim, C.-S. Song, and M. B. Gu, “Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers,” Biosens. Bioelectron. 86, 293–300 (2016).
[Crossref] [PubMed]

Y. Gao, F. Zou, B. Wu, X. Wang, J. Zhang, K. Koh, and H. Chen, “CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 81, 207–213 (2016).
[Crossref] [PubMed]

K.-J. Huang, H.-L. Shuai, and J.-Z. Zhang, “Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification,” Biosens. Bioelectron. 77, 69–75 (2016).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

M. Chhowalla, Z. Liu, and H. Zhang, “Two-dimensional transition metal dichalcogenide (TMD) nanosheets,” Chem. Soc. Rev. 44(9), 2584–2586 (2015).
[Crossref] [PubMed]

Curr. Protoc. Protein Sci. (1)

A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Curr. Protoc. Protein Sci. 19, 21 (2011).
[PubMed]

Energy Environ. Sci. (1)

D. Higgins, P. Zamani, A. Yu, and Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress,” Energy Environ. Sci. 9(2), 357–390 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic spr sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2016).

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, and K.-T. Yong, “Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight,” J. Phys. Chem. C 121(11), 6282–6289 (2017).
[Crossref]

Laser Photonics Rev. (1)

A. Shalabney and I. Abdulhalim, “Sensitivity‐enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

Nano Res. (1)

J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, S. Hong, S. M. Kim, Y. K. Hong, J. Hur, Y. Yoon, and S. Kim, “A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films,” Nano Res. 10(6), 1861–1871 (2017).
[Crossref]

Nano Today (1)

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Nanoscale (1)

G. Yang, C. Zhu, D. Du, J. Zhu, and Y. Lin, “Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine,” Nanoscale 7(34), 14217–14231 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Photon. Res. (1)

Sci. Rep. (1)

Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K.-T. Yong, “Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor,” Sci. Rep. 6(1), 28190 (2016).
[Crossref] [PubMed]

Sens. Actuator A-Phys. (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuator A-Phys. 159(1), 24–32 (2010).
[Crossref]

Sens. Actuator B-Chem. (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1-2), 3–15 (1999).
[Crossref]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuator B-Chem. 249, 542–548 (2017).
[Crossref]

Sensors (Basel) (2)

X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure,” Sensors (Basel) 18(7), 2056 (2018).
[Crossref] [PubMed]

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors (Basel) 15(5), 10481–10510 (2015).
[Crossref] [PubMed]

Other (1)

R. B. Schasfoort, Handbook of surface plasmon resonance (Royal Society of Chemistry, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagrams of the proposed SPR sensor and the corresponding setup for tests.
Fig. 2
Fig. 2 Raman spectrum of the deposited MoSe2 overlayer.
Fig. 3
Fig. 3 Morphology of the MoSe2 overlayer achieved by SEM. Top views corresponding to (a) 0 and (b) 4 deposition cycles, respectively. (c)-(f) Side views corresponding to 1-4 deposition cycles, respectively.
Fig. 4
Fig. 4 (a) Spectral response to RI change for the SPR sensor without MoSe2 modification. (b) Resonance wavelength depending on RI.
Fig. 5
Fig. 5 In distilled water, (a) the spectra of the sensors with 0-4 deposition cycles, and (b) the calculated effective indexes versus the number of deposition cycles.
Fig. 6
Fig. 6 (a)-(d) Spectral response to the RI change for the sensors deposited with MoSe2 for 1-4 cycles of MoSe2, respectively.
Fig. 7
Fig. 7 (a)-(d) Relationships between the resonance wavelength and RI, and the corresponding linear fitting results for the sensors with 1-4 deposition cycles.
Fig. 8
Fig. 8 Sensitivity depending on the number of deposition cycle.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n d = (dn/dc) vol ΔΓ/h

Metrics