Abstract

In this paper, we experimentally demonstrate a 450-nm laser underwater wireless optical transmission system by using adaptive bit-power loading discrete multi-tone (DMT) and Volterra series based post nonlinear equalization. Post nonlinear equalization mitigates the nonlinear impairment of the UWOC system. By incorporating post nonlinear equalization with a 3rd-order diagonal plane kernel, the received signal-to-noise ratio (SNR) can be improved by ~2 dB compared with a linear equalization method. The measured transmission capacity of the UWOC system is 16.6 Gbps over 5 m, 13.2 Gbps over 35 m, and 6.6 Gbps over 55 m tap water channel, with bit error rates (BERs) below the standard hard-decision forward error correction (HD-FEC) limit of 3.8 × 10−3. The used electrical signal bandwidth is 2.75 GHz, corresponding to electrical spectrum efficiency of ∼6 bit/s/Hz. The distance-datarate product reaches 462 Gbps*m at 35 m tap water transmission. To the best of our knowledge, both the data rate and distance-data rate product are the largest reported for single laser diode.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
20-meter underwater wireless optical communication link with 1.5 Gbps data rate

Chao Shen, Yujian Guo, Hassan M. Oubei, Tien Khee Ng, Guangyu Liu, Ki-Hong Park, Kang-Ting Ho, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 24(22) 25502-25509 (2016)

34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation

Xiaoyan Liu, Suyu Yi, Xiaolin Zhou, Zhilai Fang, Zhi-Jun Qiu, Laigui Hu, Chunxiao Cong, Lirong Zheng, Ran Liu, and Pengfei Tian
Opt. Express 25(22) 27937-27947 (2017)

Underwater wireless optical communication system using a 16-QAM modulated 450-nm laser diode based on an FPGA

Jingjing Wang, Changfeng Tian, Xinghai Yang, Wei Shi, Qiuna Niu, and T. Aaron Gulliver
Appl. Opt. 58(16) 4553-4559 (2019)

References

  • View by:
  • |
  • |
  • |

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
    [Crossref]
  2. S. Sendra, J. V. Lamparero, J. Lloret, and M. Ardid, “Study of the optimum frequency at 2.4 GHz ISM band for underwater wireless ad hoc communications,” in Proc. Int. Conf. Ad-Hoc Netw. Wireless, 2012, 260–273.
  3. E. Jimenez, G. Quintana, P. Mena, P. Dorta, I. Perez-Alvarez, S. Zazo, M. Perez, and E. Quevedo, “Investigation on radio wave propagation in shallow seawater: Simulations and measurements,” in Proc. IEEE 3rd Underwater Commun.Netw. Conf. (UComms), Aug./Sep.2016,1–5.
    [Crossref]
  4. G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
    [Crossref]
  5. C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
    [Crossref]
  6. A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
    [Crossref]
  7. C. Li, H. Lu, W. Tsai, Z. Wang, C. Hung, C. Su, and Y. Lu, “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J. 10(3), (2018).
    [Crossref]
  8. H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  9. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
    [Crossref]
  10. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
    [Crossref] [PubMed]
  11. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
    [Crossref] [PubMed]
  12. F. Wang, Y. Liu, F. Jiang, and Nan Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).
  13. N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Express 26(20), 26700–26712 (2018).
    [Crossref] [PubMed]
  14. X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
    [Crossref] [PubMed]
  15. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
    [Crossref] [PubMed]
  16. C. Fei, J. W. Zhang, G. W. Zhang, Y. J. Wu, X. Z. Hong, and S. He, “Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization,” J. Lightwave Technol. 36(3), 728–734 (2018).
    [Crossref]
  17. Y. Huang, C. Tsai, Y. Chi, D. Huang, and G. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightwave Technol. 36(9), 1739–1745 (2018).
    [Crossref]
  18. S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Express 26(17), 21685–21699 (2018).
    [Crossref] [PubMed]
  19. T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17-11_leg2_all.pdf .
  20. J. Shen, J. Wang, X. Chen, C. Zhang, M. Kong, Z. Tong, and J. Xu, “Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter,” Opt. Express 26(18), 23565–23571 (2018).
    [Crossref] [PubMed]
  21. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(40480), 40480 (2017).
    [Crossref] [PubMed]
  22. T. K. Biswas and W. F. McGee, “Volterra series analysis of semiconductor laser diode,” IEEE Photonics Technol. Lett. 3(8), 706–708 (1991).
    [Crossref]
  23. J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
    [Crossref]
  24. J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
    [Crossref]
  25. L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
    [Crossref]
  26. C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a-RF-tone based VSSB-OFDM system with a frequency-domain Volterra series equalizer,” J. Lightwave Technol. 33(23), 4997–5006 (2015).
    [Crossref]
  27. G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
    [Crossref]
  28. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-Speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
    [Crossref]
  29. C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process. 45(1), 223–227 (1997).
    [Crossref]
  30. F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express 20(2), 1360–1369 (2012).
    [Crossref] [PubMed]
  31. G. Zhang, J. Zhang, X. Hong, and S. He, “Low-complexity frequency domain nonlinear compensation for OFDM based high-speed visible light communication systems with light emitting diodes,” Opt. Express 25(4), 3780–3794 (2017).
    [Crossref] [PubMed]
  32. P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
    [Crossref]
  33. J. G. Proakis and M. Salehi, Digital communications Communications (McGraw-Hill, 2008).

2018 (6)

2017 (5)

2016 (1)

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

2015 (4)

2013 (2)

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

2012 (1)

2009 (1)

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

2008 (1)

2005 (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

2004 (1)

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

2001 (1)

J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
[Crossref]

1997 (1)

C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process. 45(1), 223–227 (1997).
[Crossref]

1995 (2)

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

1991 (1)

T. K. Biswas and W. F. McGee, “Volterra series analysis of semiconductor laser diode,” IEEE Photonics Technol. Lett. 3(8), 706–708 (1991).
[Crossref]

Akyildiz, I. F.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Ali, T.

Alouini, M. S.

Ardid, M.

S. Sendra, J. V. Lamparero, J. Lloret, and M. Ardid, “Study of the optimum frequency at 2.4 GHz ISM band for underwater wireless ad hoc communications,” in Proc. Int. Conf. Ad-Hoc Netw. Wireless, 2012, 260–273.

Baiden, G.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

Bingham, J.

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

Bissiri, Y.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

Biswas, T. K.

T. K. Biswas and W. F. McGee, “Volterra series analysis of semiconductor laser diode,” IEEE Photonics Technol. Lett. 3(8), 706–708 (1991).
[Crossref]

Blondel, M.

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

Bourennane, S.

Chen, W.

Chen, X.

Chen, Y.

Chi, N.

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Express 26(20), 26700–26712 (2018).
[Crossref] [PubMed]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-Speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Chi, Y.

Chi, Y. C.

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

Chun, H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

Cong, C.

Dawson, M. D.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Deng, N.

Ding, L.

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Duran, J. R.

Eun, C.

C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process. 45(1), 223–227 (1997).
[Crossref]

Fang, Z.

Faulkner, G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Fei, C.

Ferreira, R. X. G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Fletcher, A. S.

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

Froidure, J.-C.

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

Gabriel, C.

Giardina, C. R.

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Goerg, P.

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

Gu, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Guiomar, F. P.

Guo, C.

Hamilton, S. A.

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

Han, J.

Hanson, F.

He, J. H.

He, S.

Hong, X.

Hong, X. Z.

Hu, L.

Hu, S.

Huang, D.

Huang, X.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-Speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Huang, Y.

Janjua, B.

Jaunart, E.

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

Jiang, F.

F. Wang, Y. Liu, F. Jiang, and Nan Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).

Ju, C.

Kelly, A. E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Kenney, J. S.

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Khalighi, M.

Kim, J.

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
[Crossref]

Kong, M.

Konstantinou, K.

J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
[Crossref]

Kuo, H. C.

Lamparero, J. V.

S. Sendra, J. V. Lamparero, J. Lloret, and M. Ardid, “Study of the optimum frequency at 2.4 GHz ISM band for underwater wireless ad hoc communications,” in Proc. Int. Conf. Ad-Hoc Netw. Wireless, 2012, 260–273.

Lamquin, M.

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

Lebrun, C.

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

Léon, P.

Lin, G.

Lin, G. R.

Liu, N.

Liu, R.

Liu, X.

Liu, Y.

F. Wang, Y. Liu, F. Jiang, and Nan Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).

Lloret, J.

S. Sendra, J. V. Lamparero, J. Lloret, and M. Ardid, “Study of the optimum frequency at 2.4 GHz ISM band for underwater wireless ad hoc communications,” in Proc. Int. Conf. Ad-Hoc Netw. Wireless, 2012, 260–273.

Lu, X.

Ma, Z.

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Masoti, A.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

McGee, W. F.

T. K. Biswas and W. F. McGee, “Volterra series analysis of semiconductor laser diode,” IEEE Photonics Technol. Lett. 3(8), 706–708 (1991).
[Crossref]

McKendry, J. J. D.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Megret, P.

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

Melodia, T.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Mi, L.

Moores, J. D.

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

Morgan, D. R.

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Nan Chi,

F. Wang, Y. Liu, F. Jiang, and Nan Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).

Ng, T. K.

O’Brien, D. C.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Ooi, B. S.

Oubei, H. M.

Penty, R. V.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Pinto, A. N.

Pompili, D.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Powers, E. J.

C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process. 45(1), 223–227 (1997).
[Crossref]

Qiu, Z. J.

Radic, S.

Rajbhandari, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Reis, J. D.

Rigaud, V.

Sarwar, R.

Sendra, S.

S. Sendra, J. V. Lamparero, J. Lloret, and M. Ardid, “Study of the optimum frequency at 2.4 GHz ISM band for underwater wireless ad hoc communications,” in Proc. Int. Conf. Ad-Hoc Netw. Wireless, 2012, 260–273.

Shen, J.

Shi, J.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-Speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Shi, M.

Siuzdak, J.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Stepniak, G.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Sun, B.

Tao, L.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-Speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Tasia, T.

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

Teixeira, A. L.

Tian, P.

Tong, Z.

Tsai, C.

Tsai, C. T.

Wang, F.

F. Wang, Y. Liu, F. Jiang, and Nan Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).

Wang, H. Y.

Wang, J.

Wang, Y.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-Speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Watson, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

White, I. H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(40480), 40480 (2017).
[Crossref] [PubMed]

Wu, Y. J.

Xie, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Xu, J.

Yi, S.

Zhang, C.

Zhang, G.

Zhang, G. W.

Zhang, J.

Zhang, J. W.

Zhang, S.

Zhang, Z.

Zhao, Y.

Zheng, L.

Zhou, G.

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Zhou, T.

Zhou, X.

Zou, P.

Zwierko, P.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Ad Hoc Netw. (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
[Crossref]

IEEE Commun. Mag. (1)

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

IEEE Photonics J. (1)

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-Speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (4)

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

T. K. Biswas and W. F. McGee, “Volterra series analysis of semiconductor laser diode,” IEEE Photonics Technol. Lett. 3(8), 706–708 (1991).
[Crossref]

J.-C. Froidure, C. Lebrun, P. Megret, E. Jaunart, P. Goerg, T. Tasia, M. Lamquin, and M. Blondel, “Theoretical and experimental study of second-order distortions in CATV DFB laser diodes,” IEEE Photonics Technol. Lett. 7(3), 266–268 (1995).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

IEEE Trans. Commun. (2)

L. Ding, G. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

IEEE Trans. Signal Process. (1)

C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process. 45(1), 223–227 (1997).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Ocean Eng. (1)

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

Opt. Commun. (1)

F. Wang, Y. Liu, F. Jiang, and Nan Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).

Opt. Express (9)

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Express 26(20), 26700–26712 (2018).
[Crossref] [PubMed]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Express 26(17), 21685–21699 (2018).
[Crossref] [PubMed]

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

J. Shen, J. Wang, X. Chen, C. Zhang, M. Kong, Z. Tong, and J. Xu, “Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter,” Opt. Express 26(18), 23565–23571 (2018).
[Crossref] [PubMed]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express 20(2), 1360–1369 (2012).
[Crossref] [PubMed]

G. Zhang, J. Zhang, X. Hong, and S. He, “Low-complexity frequency domain nonlinear compensation for OFDM based high-speed visible light communication systems with light emitting diodes,” Opt. Express 25(4), 3780–3794 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(40480), 40480 (2017).
[Crossref] [PubMed]

Other (5)

J. G. Proakis and M. Salehi, Digital communications Communications (McGraw-Hill, 2008).

C. Li, H. Lu, W. Tsai, Z. Wang, C. Hung, C. Su, and Y. Lu, “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J. 10(3), (2018).
[Crossref]

S. Sendra, J. V. Lamparero, J. Lloret, and M. Ardid, “Study of the optimum frequency at 2.4 GHz ISM band for underwater wireless ad hoc communications,” in Proc. Int. Conf. Ad-Hoc Netw. Wireless, 2012, 260–273.

E. Jimenez, G. Quintana, P. Mena, P. Dorta, I. Perez-Alvarez, S. Zazo, M. Perez, and E. Quevedo, “Investigation on radio wave propagation in shallow seawater: Simulations and measurements,” in Proc. IEEE 3rd Underwater Commun.Netw. Conf. (UComms), Aug./Sep.2016,1–5.
[Crossref]

T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17-11_leg2_all.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The schematic of the experimental setup and (b) - (e) sections of the UWOC system. (b) Receiver side; (c) Water tank; (d) Transmitter side; (e) Thermal copper module (LD inside) and PCB. AWG: arbitrary waveform generator; M1(2): mirror 1(2); TIA: trans-impedance amplifier; DSA: digital serial analyzer; TEC: thermo-electric cooler.
Fig. 2
Fig. 2 The DSP flow of the adaptive bit-power loading DMT UWOC transmission system. An optimal TD-NE is employed at the receiver side.
Fig. 3
Fig. 3 (a) SNR versus number of effective subcarriers of DMT signals under B2B transmission. (b) SNR versus RF power attenuation for the cases without TD-NE / with TD-NE (3rd-order diagonal line kernel) / with TD-NE (3rd-order diagonal plane kernel) under B2B transmission. (c) Power spectrum of the captured DMT signals under B2B transmission. (d) Received optical power (ROP) and SNR (with/without TD-NE) versus transmission distance under tap water.
Fig. 4
Fig. 4 Comparison of the SNR (with/without TD-NE) of each subcarrier after 0-m, 5-m, 15-m, 25-m, 35-m, 45-m and 55-m water transmission under the corresponding optimized RF power attenuation.
Fig. 5
Fig. 5 The adaptively allocated modulation order (bits per symbol) and power for the cases with/without TD-NE after 0-m, 5-m, 15-m, 25-m, 35-m, 45-m, and 55-m water transmission.
Fig. 6
Fig. 6 The constellation diagrams of different modulation order (bits-per-symbol) for the cases without (a) and with (b) TD-NE.
Fig. 7
Fig. 7 The measured absolute values of the 2nd-order nonlinear coefficient matrix w ^ 2 ( k 1 , k 2 ) and 3rd-order nonlinear coefficient matrix w ^ 3 ( k 1 , k 2 ) of TD-NE in Eq. (3) with a memory length of 10 (for (a)-(d)) and 6 (for (e)-(h)).
Fig. 8
Fig. 8 The highest achievable data rate (measured) and distance-datarate product (with TD-NE) as a function of transmission distance with BER lower than 7% HD-FEC limit of 3.8 × 10−3.

Tables (1)

Tables Icon

Table 1 Comparison of UWOC in recent works.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y(n)= k 1 =0 N 1 1 w 1 ( k 1 )x(n k 1 )+ k 1 =0 N 2 1 k 2 =0 N 2 1 w 2 ( k 1 , k 2 )x(n k 1 ) x(n k 2 )+ k 1 =0 N 3 1 k 2 =0 N 3 1 k 3 =0 N 3 1 w 3 ( k 1 , k 2 , k 3 )x(n k 1 ) x(n k 2 ) x(n k 3 )+
y(n)= k 1 =0 N 1 1 w 1 ( k 1 )x(n k 1 )+ k 1 =0 N 2 1 k 2 =0 N 2 1 w 2 ( k 1 , k 2 )x(n k 1 ) x(n k 2 )+ k 1 =0 N 3 1 k 2 =0 N 3 1 w 3 ( k 1 , k 2 )x(n k 1 ) x 2 (n k 2 )
Y(n)=y(n) k 1 =0 N 2 1 k 2 =0 N 2 1 w ^ 2 ( k 1 , k 2 ) x ^ (n k 1 ) x ^ (n k 2 ) k 1 =0 N 3 1 k 2 =0 N 3 1 w ^ 3 ( k 1 , k 2 ) x ^ (n k 1 ) x ^ 2 (n k 2 )

Metrics