Abstract

A silicon photonic waveguide switch using adiabatic couplers with lateral comb-drive actuators is designed, fabricated, and tested for microelectromechanical optical matrix switch. One of the waveguides of the adiabatic coupler is moved laterally by three actuators for varying the coupler gap, which enables to switch the path of the waveguides. The coupler waveguides with 250 nm thickness consist of a movable tapered waveguide from 400 nm to 500 nm in width and 50 μm in length and a straight waveguide of 400 nm in width. The three actuators are ultra-small electrostatic comb-drive and move the two movable tapered waveguides. The switch’s transmission characteristics were measured as a function of the coupler gap. Around a coupler gap of 109 nm, the port isolation of 16.7 dB was obtained. The switch’s insertion loss was roughly estimated to be less than 1 dB. The switching time was 36.7 μsec under the present experimental condition. Moreover, 64 switches were arrayed in a 125 μm period square mash waveguide and an 8 x 8 matrix switch was composed. The matrix switch was also tested.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-small silicon waveguide coupler switch using gap-variable mechanism

Yuta Akihama, Yoshiaki Kanamori, and Kazuhiro Hane
Opt. Express 19(24) 23658-23663 (2011)

Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers

Tae Joon Seok, Niels Quack, Sangyoon Han, Richard S. Muller, and Ming C. Wu
Optica 3(1) 64-70 (2016)

A tunable notch filter using microelectromechanical microring with gap-variable busline coupler

Taro Ikeda and Kazuhiro Hane
Opt. Express 21(19) 22034-22042 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  2. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
    [Crossref]
  3. A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(2), L383–L385 (2001).
    [Crossref]
  4. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
  5. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
  6. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  7. Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
    [Crossref]
  8. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
    [Crossref]
  9. F. Tian, G. Zhou, F. S. Chau, J. Deng, Y. Du, X. Tang, R. Akkipeddi, and Y. C. Loke, “Tuning of split-ladder cavity by its intrinsic nano-deformation,” Opt. Express 20(25), 27697–27707 (2012).
    [Crossref] [PubMed]
  10. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [Crossref] [PubMed]
  11. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
    [Crossref] [PubMed]
  12. Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
    [Crossref]
  13. P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010).
    [Crossref] [PubMed]
  14. K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, H. Kawashima, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
    [Crossref] [PubMed]
  15. L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7(1), 42306 (2017).
    [Crossref] [PubMed]
  16. Y. Akihama, Y. Kanamori, and K. Hane, “Ultra-small silicon waveguide coupler switch using gap-variable mechanism,” Opt. Express 19(24), 23658–23663 (2011).
    [Crossref] [PubMed]
  17. Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
    [Crossref]
  18. S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
    [Crossref]
  19. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
    [Crossref]
  20. T. J. Seok, N. Quack, S. Han, R. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  21. K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128×128 silicon photonic MEMS Switch with scalable row/column Addressing,” Conference on Lasers and Electro-Optics, SF1A.4 (2018).
    [Crossref]
  22. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS Switches,” J. Lightwave Technol. 36(10), 1824–1830 (2018).
    [Crossref]
  23. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
    [Crossref]
  24. T. Tanae, H. Sameshima, and K. Hane, “Design and fabrication of GaN crystal ultra-small lateral comb-drive actuators,” J. Vac. Sci. Technol. B 30(1), 012001 (2012).
    [Crossref]

2018 (1)

2017 (2)

2016 (1)

2015 (1)

2013 (2)

S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

2012 (3)

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[Crossref]

T. Tanae, H. Sameshima, and K. Hane, “Design and fabrication of GaN crystal ultra-small lateral comb-drive actuators,” J. Vac. Sci. Technol. B 30(1), 012001 (2012).
[Crossref]

F. Tian, G. Zhou, F. S. Chau, J. Deng, Y. Du, X. Tang, R. Akkipeddi, and Y. C. Loke, “Tuning of split-ladder cavity by its intrinsic nano-deformation,” Opt. Express 20(25), 27697–27707 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Akihama, Y. Kanamori, and K. Hane, “Ultra-small silicon waveguide coupler switch using gap-variable mechanism,” Opt. Express 19(24), 23658–23663 (2011).
[Crossref] [PubMed]

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

2010 (3)

2009 (1)

2007 (1)

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

2006 (3)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

2005 (1)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).

2004 (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

2001 (1)

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(2), L383–L385 (2001).
[Crossref]

Abe, S.

S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

Akihama, Y.

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[Crossref]

Y. Akihama, Y. Kanamori, and K. Hane, “Ultra-small silicon waveguide coupler switch using gap-variable mechanism,” Opt. Express 19(24), 23658–23663 (2011).
[Crossref] [PubMed]

Akkipeddi, R.

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(2), L383–L385 (2001).
[Crossref]

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Bogaerts, W.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Cai, H.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Chau, F. S.

Cheben, P.

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7(1), 42306 (2017).
[Crossref] [PubMed]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Delâge, A.

Deng, J.

Densmore, A.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Du, Y.

F. Tian, G. Zhou, F. S. Chau, J. Deng, Y. Du, X. Tang, R. Akkipeddi, and Y. C. Loke, “Tuning of split-ladder cavity by its intrinsic nano-deformation,” Opt. Express 20(25), 27697–27707 (2012).
[Crossref] [PubMed]

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

Dumon, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Fang, Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Fathpour, S.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Han, S.

Hane, K.

S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

T. Tanae, H. Sameshima, and K. Hane, “Design and fabrication of GaN crystal ultra-small lateral comb-drive actuators,” J. Vac. Sci. Technol. B 30(1), 012001 (2012).
[Crossref]

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[Crossref]

Y. Akihama, Y. Kanamori, and K. Hane, “Ultra-small silicon waveguide coupler switch using gap-variable mechanism,” Opt. Express 19(24), 23658–23663 (2011).
[Crossref] [PubMed]

Hara, G.

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(2), L383–L385 (2001).
[Crossref]

Hasama, T.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Ikeda, K.

Inoue, T.

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Ishikawa, H.

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jalali, B.

Janz, S.

Kanamori, Y.

Kawashima, H.

Kintaka, K.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Kwong, D.-L.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

Lapointe, J.

Lee, M.-C. M.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

Leuenberger, D.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

Liow, T.-Y.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Lo, G. Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Lo, G.-Q.

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

Loke, Y. C.

Ma, R.

Matsuura, H.

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).

Muller, R.

Muller, R. S.

Namiki, S.

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7(1), 42306 (2017).
[Crossref] [PubMed]

Quack, N.

Reano, R. M.

Sakai, A.

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(2), L383–L385 (2001).
[Crossref]

Sameshima, H.

T. Tanae, H. Sameshima, and K. Hane, “Design and fabrication of GaN crystal ultra-small lateral comb-drive actuators,” J. Vac. Sci. Technol. B 30(1), 012001 (2012).
[Crossref]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).

Schmid, J. H.

Seok, T. J.

Shoji, Y.

Song, J. F.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Suda, S.

Sun, P.

Suzuki, K.

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Tan, C. W.

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

Tanae, T.

T. Tanae, H. Sameshima, and K. Hane, “Design and fabrication of GaN crystal ultra-small lateral comb-drive actuators,” J. Vac. Sci. Technol. B 30(1), 012001 (2012).
[Crossref]

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7(1), 42306 (2017).
[Crossref] [PubMed]

Tang, X.

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Tanizawa, K.

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Tian, F.

Vachon, M.

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

Wu, M. C.

Xu, D.-X.

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Yao, J.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

Yeoh, W. G.

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

Yoo, B.-W.

Yu, K.

Yu, M. B.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

Zhang, J.

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

Zhang, Q. X.

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

Zhou, G.

Electron. Lett. (1)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).

IEEE J. Sel. Top. Quantum Electron. (5)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, W. G. Yeoh, G.-Q. Lo, and D.-L. Kwong, “A silicon platform with MEMS active alignment function and its potential application,” IEEE J. Sel. Top. Quantum Electron. 16(1), 267–275 (2010).
[Crossref]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).

IEEE Photonics Technol. Lett. (2)

S. Abe and K. Hane, “Variable-gap silicon photonic waveguide coupler switch with a nanolatch mechanism,” IEEE Photonics Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Vac. Sci. Technol. B (1)

T. Tanae, H. Sameshima, and K. Hane, “Design and fabrication of GaN crystal ultra-small lateral comb-drive actuators,” J. Vac. Sci. Technol. B 30(1), 012001 (2012).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(2), L383–L385 (2001).
[Crossref]

Light Sci. Appl. (1)

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[Crossref]

Opt. Express (6)

Optica (2)

Sci. Rep. (1)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7(1), 42306 (2017).
[Crossref] [PubMed]

Other (1)

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128×128 silicon photonic MEMS Switch with scalable row/column Addressing,” Conference on Lasers and Electro-Optics, SF1A.4 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic diagrams of (a) matrix switch (8x8), (b) single switch and mesh waveguide, (c) waveguide crossing, (d) single switch without waveguide crossing, (e) adiabatic waveguide coupler.
Fig. 2
Fig. 2 (a) Light intensity distribution in the adiabatic waveguide coupler calculated at the gap of 100 nm, (b) intensities at the drop and through ports calculated as a function of coupler gap at the wavelength of 1550 nm.
Fig. 3
Fig. 3 Transmittance at the drop port of the adiabatic waveguide coupler calculated as a function of wavelength.
Fig. 4
Fig. 4 (a) Scanning electron micrograph of the fabricated waveguide coupler switch, (b) magnified image of the adiabatic waveguide coupler at the position A, (c) the adiabatic waveguide coupler at the position B.
Fig. 5
Fig. 5 Actuator displacement as a function of voltage.
Fig. 6
Fig. 6 Normalized intensities at the drop and through ports measured as a function of coupler gap. The inset shows the normalized intensities in linear scale.
Fig. 7
Fig. 7 Relative intensities measured as a function of wavelength at the drop and through ports in the switch-on state.
Fig. 8
Fig. 8 Output intensities at the drop port measured as a function of time (a) for step rise and (b) step fall with the applied voltage waveforms.
Fig. 9
Fig. 9 Electron micrographs of the fabricated 8 x 8 matrix switch, (a) whole view, (b) magnified view of single switch.
Fig. 10
Fig. 10 Extinction ratio at the drop port measured as a function of the number of passed switch cells.

Metrics