Abstract

This paper presents an experimental investigation of the possibility of transverse resolution improvement combined with effective numerically focused 3D imaging in full-field swept-source optical coherence microscopy (OCM) by using structured illumination and specific numerical post-processing. The possibility of transverse resolution improvement of the OCM coherence signal combined with the possibility of numerical focusing is demonstrated by imaging a resolution test target in the optical focus and defocus regions. The possibility of numerically focused 3D imaging with high transverse resolution is further demonstrated by imaging a 3D phantom and a biological sample. The results obtained demonstrate the feasibility and prospects of the combination of structured illumination and numerical focusing in Fourier domain OCM.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination

Anton Grebenyuk, Antoine Federici, Vladimir Ryabukho, and Arnaud Dubois
Appl. Opt. 53(8) 1697-1708 (2014)

Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy

Séverine Coquoz, Arno Bouwens, Paul J. Marchand, Jérôme Extermann, and Theo Lasser
Opt. Express 25(24) 30807-30819 (2017)

Numerical correction of coherence gate in full-field swept-source interference microscopy

Anton A. Grebenyuk and Vladimir P. Ryabukho
Opt. Lett. 37(13) 2529-2531 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography (Springer, 2008).
  2. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  3. A. A. Grebenyuk and V. P. Ryabukho, “Theory of imaging and coherence effects in full-field optical coherence microscopy,” in Handbook of full-field optical coherence microscopy, A. Dubois ed. (Pan Stanford Publishing, 2016), pp. 53–89.
  4. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
    [Crossref] [PubMed]
  5. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  6. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy-holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
    [Crossref] [PubMed]
  7. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [Crossref] [PubMed]
  8. A. Grebenyuk, A. Federici, V. Ryabukho, and A. Dubois, “Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination,” Appl. Opt. 53(8), 1697–1708 (2014).
    [Crossref] [PubMed]
  9. A. A. Grebenyuk and V. P. Ryabukho, “Numerical reconstruction of 3D image in Fourier domain confocal optical coherence microscopy,” in Proceedings of the International Conference on Advanced Laser Technologies (ALT)2012 (Bern Open Publishing, 2013), pp. 1–5.
  10. A. A. Grebenyuk and V. P. Ryabukho, “Illumination structure and three-dimensional imaging properties in optical coherence microscopy,” in Proceedings of the International School-Conference for Young Scientists and Specialists “Modern Problems of Physics” (B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 2014), pp. 243–247 [in Russian].
  11. A. A. Grebenyuk and V. P. Ryabukho, “Numerically focused optical coherence microscopy with structured illumination aperture,” Comput. Opt. 42(2), 248–253 (2018).
    [Crossref]
  12. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
    [Crossref] [PubMed]
  13. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
    [Crossref] [PubMed]
  14. J. R. Price, P. R. Bingham, and C. E. Thomas, “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46(6), 827–833 (2007).
    [Crossref] [PubMed]
  15. S. Chowdhury and J. Izatt, “Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging,” Biomed. Opt. Express 4(10), 1795–1805 (2013).
    [Crossref] [PubMed]
  16. P. Lehmann, J. Niehues, and S. Tereschenko, “3-D optical interference microscopy at the lateral resolution,” Int. J. Optomechatronics 8(4), 231–241 (2014).
    [Crossref]
  17. A. Wartak, M. Augustin, R. Haindl, F. Beer, M. Salas, M. Laslandes, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Multi-directional optical coherence tomography for retinal imaging,” Biomed. Opt. Express 8(12), 5560–5578 (2017).
    [Crossref] [PubMed]
  18. E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, J. Li, and L. Liu, “Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,” Optica 4(7), 701–706 (2017).
    [Crossref]

2018 (1)

A. A. Grebenyuk and V. P. Ryabukho, “Numerically focused optical coherence microscopy with structured illumination aperture,” Comput. Opt. 42(2), 248–253 (2018).
[Crossref]

2017 (2)

2014 (3)

2013 (1)

2011 (1)

2008 (1)

2007 (2)

2006 (3)

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Augustin, M.

Bachmann, A. H.

Baumann, B.

Beer, F.

Bingham, P. R.

Bo, E.

Boccara, C.

Bonin, T.

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Chen, S.

Chowdhury, S.

Drexler, W.

Dubois, A.

Federici, A.

García, J.

García-Martínez, P.

Ge, X.

Grebenyuk, A.

Grebenyuk, A. A.

A. A. Grebenyuk and V. P. Ryabukho, “Numerically focused optical coherence microscopy with structured illumination aperture,” Comput. Opt. 42(2), 248–253 (2018).
[Crossref]

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Haindl, R.

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Hillmann, D.

Hitzenberger, C. K.

Hüttmann, G.

Izatt, J.

Koch, P.

Kumar, A.

Laslandes, M.

Lasser, T.

Lehmann, P.

P. Lehmann, J. Niehues, and S. Tereschenko, “3-D optical interference microscopy at the lateral resolution,” Int. J. Optomechatronics 8(4), 231–241 (2014).
[Crossref]

Leitgeb, R. A.

Li, J.

Liu, L.

Liu, X.

Lührs, C.

Luo, Y.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Mico, V.

Moreau, J.

Niehues, J.

P. Lehmann, J. Niehues, and S. Tereschenko, “3-D optical interference microscopy at the lateral resolution,” Int. J. Optomechatronics 8(4), 231–241 (2014).
[Crossref]

Pircher, M.

Price, J. R.

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Ryabukho, V.

Ryabukho, V. P.

A. A. Grebenyuk and V. P. Ryabukho, “Numerically focused optical coherence microscopy with structured illumination aperture,” Comput. Opt. 42(2), 248–253 (2018).
[Crossref]

Salas, M.

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Steinmann, L.

Tereschenko, S.

P. Lehmann, J. Niehues, and S. Tereschenko, “3-D optical interference microscopy at the lateral resolution,” Int. J. Optomechatronics 8(4), 231–241 (2014).
[Crossref]

Thomas, C. E.

Villiger, M.

Wang, N.

Wang, X.

Wartak, A.

Zalevsky, Z.

Appl. Opt. (2)

Biomed. Opt. Express (2)

Comput. Opt. (1)

A. A. Grebenyuk and V. P. Ryabukho, “Numerically focused optical coherence microscopy with structured illumination aperture,” Comput. Opt. 42(2), 248–253 (2018).
[Crossref]

Int. J. Optomechatronics (1)

P. Lehmann, J. Niehues, and S. Tereschenko, “3-D optical interference microscopy at the lateral resolution,” Int. J. Optomechatronics 8(4), 231–241 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Other (4)

A. A. Grebenyuk and V. P. Ryabukho, “Numerical reconstruction of 3D image in Fourier domain confocal optical coherence microscopy,” in Proceedings of the International Conference on Advanced Laser Technologies (ALT)2012 (Bern Open Publishing, 2013), pp. 1–5.

A. A. Grebenyuk and V. P. Ryabukho, “Illumination structure and three-dimensional imaging properties in optical coherence microscopy,” in Proceedings of the International School-Conference for Young Scientists and Specialists “Modern Problems of Physics” (B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 2014), pp. 243–247 [in Russian].

A. A. Grebenyuk and V. P. Ryabukho, “Theory of imaging and coherence effects in full-field optical coherence microscopy,” in Handbook of full-field optical coherence microscopy, A. Dubois ed. (Pan Stanford Publishing, 2016), pp. 53–89.

W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Optical scheme of the experimental setup of SI FF SS OCM.
Fig. 2
Fig. 2 Imaging a USAF 1951 resolution test target with the SI FF SS OCM ((a)-(e), (h) and (i)) and a FF SS OCM with plane-wave illumination over the sample ((f) and (g)). (a)-(c) and (f) present transverse spatial spectra; (d), (e) and (g)-(i) present en face images. (d), (e) and (g) correspond to imaging an optically focused resolution test target and applying conventional OCT processing ((d) and (g)) or the full numerical processing procedure (e). (h) and (i) correspond to imaging an optically defocused resolution test target and applying conventional OCT processing (h) or the full processing (i). A detailed description is given in the text. The notations in orange in (c) explain the procedure of analysis of the signals, corresponding to different illumination directions. The dashed rectangle in (d) shows the region, corresponding to the insets in (d), (e) and (g)-(i).
Fig. 3
Fig. 3 Imaging a phantom (a)-(f) and an orange sample (g)-(i) in the SI FF SS OCM with different types of numerical processing (in this figure the images contrast is inverted). (a)-(c) present B-scans; (d)-(i) present en face images. The longitudinal position corresponding to the phantom en face images (d)-(f) is shown in the B-scan (b) with a dashed line. The vertical scale bar in (c) corresponds to 200 μm within the sample. The horizontal scale bars in (c), (f) and (i) correspond to 100 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ψ(ω; k x , k y )={ Ξ * (ω; k x , k y ) | Ξ(ω; k x , k y ) | ,if| Ξ(ω; k x , k y ) |>0, 0,if| Ξ(ω; k x , k y ) |=0,
Ξ(ω; k x , k y )=exp[2ikΔL] × d x S d y S exp[iM( k x x S + k y y S )] A(ω; x 3 , y 3 ) ×exp[ ik j=0 N Δ z j n j 2 x 3 2 + y 3 2 f 2 ]exp[ i k f ( x 3 x S + y 3 y S ) ]d x 3 d y 3 × A i (ω; x 0 , y 0 ) exp{ ik [ ( z S 2 z R +| f |) n 0 2 x 0 2 + y 0 2 f 2 + j=1 N Δ z j n j 2 x 0 2 + y 0 2 f 2 ] }exp[ i k f ( x 0 x S + y 0 y S ) ]d x 0 d y 0 ,
A i (ω; x 0 , y 0 )= I 0 (ω; x 0 , y 0 ) A * (ω; x 0 , y 0 ) r R * (ω; k x 0 / f , k y 0 / f ),
P 01 =1, P 02 = ( 1/ p 12 + p 23 p 34 p 41 )/ | 1/ p 12 + p 23 p 34 p 41 | , P 03 = [ 1/ ( p 12 p 23 )+ p 34 p 41 ]/ | 1/ ( p 12 p 23 )+ p 34 p 41 | , P 04 = [ 1/ ( p 12 p 23 p 34 )+ p 41 ]/ | 1/ ( p 12 p 23 p 34 )+ p 41 | .
A 01 =1, A 02 = ( 1/ a 12 + a 23 a 34 a 41 )/2 , A 03 = [ 1/ ( a 12 a 23 )+ a 34 a 41 ]/2 , A 04 = [ 1/ ( a 12 a 23 a 34 )+ a 41 ]/2 .

Metrics