Abstract

Second harmonic conversion from 1550 nm to 775 nm with an efficiency of 400% W−1 is demonstrated in a gallium phosphide (GaP) on oxide integrated photonic platform. The platform consists of doubly-resonant, phase-matched ring resonators with quality factors Q ∼ 104, low mode volumes V ∼ 30(λ/n)3, and high nonlinear mode overlaps. Measurements and simulations indicate that conversion efficiencies can be increased by a factor of 20 by improving the waveguide-cavity coupling to achieve critical coupling in current devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency

Xiang Guo, Chang-Ling Zou, and Hong X. Tang
Optica 3(10) 1126-1131 (2016)

Waveguide-integrated single-crystalline GaP resonators on diamond

Nicole Thomas, Russell J. Barbour, Yuncheng Song, Minjoo Larry Lee, and Kai-Mei C. Fu
Opt. Express 22(11) 13555-13564 (2014)

High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators

Zhuan-Fang Bi, Alejandro W. Rodriguez, Hila Hashemi, David Duchesne, Marko Loncar, Ke-Ming Wang, and Steven G. Johnson
Opt. Express 20(7) 7526-7543 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today 47, 25 (1994).
    [Crossref]
  2. R. Boyd, Nonlinear Optics (Academic, 2008).
  3. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” JOSA-B 11, 2206–2215 (1994).
    [Crossref]
  4. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997).
    [Crossref]
  5. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
    [Crossref] [PubMed]
  6. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
    [Crossref]
  7. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
    [Crossref]
  8. T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478 (1982).
    [Crossref]
  9. A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
    [Crossref] [PubMed]
  10. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref] [PubMed]
  11. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
    [Crossref] [PubMed]
  12. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [Crossref] [PubMed]
  13. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [Crossref] [PubMed]
  14. D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics —photon by photon,” Nat. Photon. 8, 685–694 (2014).
    [Crossref]
  15. J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
    [Crossref] [PubMed]
  16. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
    [Crossref] [PubMed]
  17. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
    [Crossref] [PubMed]
  18. A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [Crossref] [PubMed]
  19. J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
    [Crossref] [PubMed]
  20. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  21. G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9, 828–890 (2017).
    [Crossref]
  22. R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25, 29927–29933 (2017).
    [Crossref] [PubMed]
  23. C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
    [Crossref] [PubMed]
  24. J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1, 229–242 (2018).
    [Crossref]
  25. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
    [Crossref]
  26. S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
    [Crossref]
  27. D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
    [Crossref]
  28. I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
    [Crossref] [PubMed]
  29. X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
    [Crossref]
  30. S. M. Hendrickson, A. C. Foster, R. M. Camacho, and B. D. Clader, “Integrated nonlinear photonics: emerging applications and ongoing challenges,” J. Opt. Soc. Am. B 31, 3193–3203 (2014).
    [Crossref]
  31. M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
    [Crossref]
  32. A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215, 1700684 (2017).
    [Crossref]
  33. G. Moille, S. Combrié, L. Morgenroth, G. Lehoucq, S. Sauvage, M. E. Kurdi, P. Boucaud, A. de Rossi, and X. Checoury, “Nonlinearities in gaas cavities with high cw input powers enabled by photo-oxidation quenching through ald encapsulation,” Opt. Express 26, 6400–6406 (2018).
    [Crossref] [PubMed]
  34. Y. Li, C. Wang, and M. Loncar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40, 2902–2905 (2015).
    [Crossref] [PubMed]
  35. J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
    [Crossref] [PubMed]
  36. T. K. Fryett, A. Zhan, and A. Majumdar, “Phase-matched nonlinear optics via patterning layered materials,” Opt. Lett. 42, 3586–3589 (2017).
    [Crossref] [PubMed]
  37. C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion,” Photon. Res. 6, B82–B89 (2018).
    [Crossref]
  38. A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
    [Crossref]
  39. A. Martin, S. Combrié, A. de Rossi, G. Beaudoin, I. Sagnes, and F. Raineri, “Nonlinear gallium phosphide nanoscale photonics,” Photon. Res. 6, B43–B49 (2018).
    [Crossref]
  40. K. Rivoire, S. Buckley, F. Hatami, and J. Vućković, “Second harmonic generation in gap photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
    [Crossref]
  41. A. D. Corso, F. Mauri, and A. Rubio, “Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors,” Phys. Rev. B 53, 15638–15642 (1996).
    [Crossref]
  42. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
    [Crossref]
  43. J. Pastrňák and L. Roskovcová, “Refraction index measurements on AlN single crystals,” Phys. Status Solidi (B) 14, 5–8 (1996).
  44. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
    [Crossref]
  45. P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond nv-centers,” Opt. Express 17, 9588–9601 (2009).
    [Crossref] [PubMed]
  46. K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
    [Crossref]
  47. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
    [Crossref] [PubMed]
  48. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Itoh, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [Crossref]
  49. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
    [Crossref] [PubMed]
  50. M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale gap-on-diamond integrated photonics platform for nv center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
    [Crossref]
  51. Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
    [Crossref]
  52. N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonantors on diamond,” Opt. Express 22, 13555 (2014).
    [Crossref] [PubMed]
  53. M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl. 6, 011001 (2016).
    [Crossref]
  54. E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
    [Crossref] [PubMed]
  55. D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” ArXiv e-prints (2018).
  56. B. E. Little, J.-P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997).
    [Crossref] [PubMed]
  57. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
    [Crossref] [PubMed]
  58. W. Jin, S. Molesky, Z. Lin, K.-M. C. Fu, and A. W. Rodriguez, “Inverse design of compact multimode cavity couplers,” Opt. Express 26, 26713–26721 (2018).
    [Crossref]
  59. Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
    [Crossref]

2018 (8)

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
[Crossref]

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

G. Moille, S. Combrié, L. Morgenroth, G. Lehoucq, S. Sauvage, M. E. Kurdi, P. Boucaud, A. de Rossi, and X. Checoury, “Nonlinearities in gaas cavities with high cw input powers enabled by photo-oxidation quenching through ald encapsulation,” Opt. Express 26, 6400–6406 (2018).
[Crossref] [PubMed]

A. Martin, S. Combrié, A. de Rossi, G. Beaudoin, I. Sagnes, and F. Raineri, “Nonlinear gallium phosphide nanoscale photonics,” Photon. Res. 6, B43–B49 (2018).
[Crossref]

C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion,” Photon. Res. 6, B82–B89 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1, 229–242 (2018).
[Crossref]

W. Jin, S. Molesky, Z. Lin, K.-M. C. Fu, and A. W. Rodriguez, “Inverse design of compact multimode cavity couplers,” Opt. Express 26, 26713–26721 (2018).
[Crossref]

2017 (6)

T. K. Fryett, A. Zhan, and A. Majumdar, “Phase-matched nonlinear optics via patterning layered materials,” Opt. Lett. 42, 3586–3589 (2017).
[Crossref] [PubMed]

R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25, 29927–29933 (2017).
[Crossref] [PubMed]

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215, 1700684 (2017).
[Crossref]

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9, 828–890 (2017).
[Crossref]

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref] [PubMed]

2016 (6)

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl. 6, 011001 (2016).
[Crossref]

M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale gap-on-diamond integrated photonics platform for nv center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
[Crossref]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
[Crossref]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

2015 (2)

Y. Li, C. Wang, and M. Loncar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40, 2902–2905 (2015).
[Crossref] [PubMed]

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref] [PubMed]

2014 (6)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics —photon by photon,” Nat. Photon. 8, 685–694 (2014).
[Crossref]

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonantors on diamond,” Opt. Express 22, 13555 (2014).
[Crossref] [PubMed]

S. M. Hendrickson, A. C. Foster, R. M. Camacho, and B. D. Clader, “Integrated nonlinear photonics: emerging applications and ongoing challenges,” J. Opt. Soc. Am. B 31, 3193–3203 (2014).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

2012 (4)

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

2011 (1)

K. Rivoire, S. Buckley, F. Hatami, and J. Vućković, “Second harmonic generation in gap photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

2010 (3)

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (3)

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
[Crossref]

2005 (1)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref] [PubMed]

1997 (4)

1996 (2)

J. Pastrňák and L. Roskovcová, “Refraction index measurements on AlN single crystals,” Phys. Status Solidi (B) 14, 5–8 (1996).

A. D. Corso, F. Mauri, and A. Rubio, “Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors,” Phys. Rev. B 53, 15638–15642 (1996).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

1994 (2)

M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today 47, 25 (1994).
[Crossref]

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” JOSA-B 11, 2206–2215 (1994).
[Crossref]

1982 (1)

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478 (1982).
[Crossref]

1965 (1)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Almeida, V. R.

Andersen, U. L.

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Anderson, M.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” ArXiv e-prints (2018).

Apolonski, A.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Arbore, M. A.

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Atikian, H. A.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Barbour, R. J.

Barclay, P. E.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond nv-centers,” Opt. Express 17, 9588–9601 (2009).
[Crossref] [PubMed]

Baumgartner, Y.

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
[Crossref]

Beaudoin, G.

Beausoleil, R. G.

Becher, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Bermel, P.

Bi, Z.-F.

Biermann, K.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Bliss, D.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

Bond, W. L.

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

Boucaud, P.

G. Moille, S. Combrié, L. Morgenroth, G. Lehoucq, S. Sauvage, M. E. Kurdi, P. Boucaud, A. de Rossi, and X. Checoury, “Nonlinearities in gaas cavities with high cw input powers enabled by photo-oxidation quenching through ald encapsulation,” Opt. Express 26, 6400–6406 (2018).
[Crossref] [PubMed]

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Boyd, R.

R. Boyd, Nonlinear Optics (Academic, 2008).

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[Crossref] [PubMed]

Breunig, I.

Brevet, P.-F.

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref] [PubMed]

Brimont, C.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Brongersma, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Bruch, A. W.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Buckley, S.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vućković, “Second harmonic generation in gap photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

Burek, M. J.

Buse, K.

Butet, J.

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref] [PubMed]

Camacho, R. M.

Carlin, J.-F.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Chakravarthi, S.

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale gap-on-diamond integrated photonics platform for nv center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
[Crossref]

Chang, D. E.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics —photon by photon,” Nat. Photon. 8, 685–694 (2014).
[Crossref]

Checoury, X.

G. Moille, S. Combrié, L. Morgenroth, G. Lehoucq, S. Sauvage, M. E. Kurdi, P. Boucaud, A. de Rossi, and X. Checoury, “Nonlinearities in gaas cavities with high cw input powers enabled by photo-oxidation quenching through ald encapsulation,” Opt. Express 26, 6400–6406 (2018).
[Crossref] [PubMed]

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Chembo, Y. K.

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9, 828–890 (2017).
[Crossref]

Chen, C. K.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478 (1982).
[Crossref]

Chen, J.-Y.

Chou, M. H.

Christen, I. R.

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale gap-on-diamond integrated photonics platform for nv center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
[Crossref]

Chu, S. T.

Clader, B. D.

Coillet, A.

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9, 828–890 (2017).
[Crossref]

Combrié, S.

Corso, A. D.

A. D. Corso, F. Mauri, and A. Rubio, “Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors,” Phys. Rev. B 53, 15638–15642 (1996).
[Crossref]

Curic, D.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Czornomaz, L.

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
[Crossref]

Dadgostar, S.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl. 6, 011001 (2016).
[Crossref]

M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale gap-on-diamond integrated photonics platform for nv center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
[Crossref]

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

de Micheli, M.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

de Rossi, A.

DeLong, K. W.

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” JOSA-B 11, 2206–2215 (1994).
[Crossref]

dos Santos, L. F.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Duboz, J. Y.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Duchesne, D.

Dumeige, Y.

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
[Crossref]

El Kurdi, M.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Elser, D.

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Englund, D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Esfandyarpour, V.

Fan, H.

Fathpour, S.

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215, 1700684 (2017).
[Crossref]

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997).
[Crossref]

M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today 47, 25 (1994).
[Crossref]

Fernandez, A.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Féron, P.

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
[Crossref]

Forchel, A.

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Foster, A. C.

Fryett, T. K.

Fu, K.-M.

Fu, K.-M. C.

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

W. Jin, S. Molesky, Z. Lin, K.-M. C. Fu, and A. W. Rodriguez, “Inverse design of compact multimode cavity couplers,” Opt. Express 26, 26713–26721 (2018).
[Crossref]

M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale gap-on-diamond integrated photonics platform for nv center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
[Crossref]

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl. 6, 011001 (2016).
[Crossref]

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonantors on diamond,” Opt. Express 22, 13555 (2014).
[Crossref] [PubMed]

Furst, J. U.

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Galli, M.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Galvanauskas, A.

Gayral, B.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Gerace, D.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Gisin, N.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Gohle, C.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Gong, Z.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Gould, M.

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl. 6, 011001 (2016).
[Crossref]

M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale gap-on-diamond integrated photonics platform for nv center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
[Crossref]

Graf, R.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Grandjean, N.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Greve, K. D.

Gromovyi, M.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Guillet, T.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Guo, G.-C.

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref] [PubMed]

Guo, X.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

Hadfield, R. H.

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Hahn, H.

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
[Crossref]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Hänsch, T. W.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Harris, J. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

Harter, D.

Hashemi, H.

Hatami, F.

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl. 6, 011001 (2016).
[Crossref]

M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale gap-on-diamond integrated photonics platform for nv center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vućković, “Second harmonic generation in gap photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Heinz, T. F.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478 (1982).
[Crossref]

Hendrickson, S. M.

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Herrmann, M.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Hestroffer, K.

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

Hoenl, S.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” ArXiv e-prints (2018).

Höfling, S.

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Holzwarth, R.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Houdré, R.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Huang, I.-C.

Huang, Y.-P.

Hunter, J.

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” JOSA-B 11, 2206–2215 (1994).
[Crossref]

Hurlbut, W. C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Itoh, R.

Jayakumar, H.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Jin, W.

Joannopoulos, J. D.

Johnson, S. G.

Jundt, D.

Kamp, M.

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Kang, J.-H.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kiesel, N.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Kim, M.-H.

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref] [PubMed]

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Kippenberg, T. J.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” ArXiv e-prints (2018).

Kitamoto, A.

Kondo, T.

Kozlov, V. G.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Krausz, F.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Krischek, R.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

Kurdi, M. E.

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Lagoudakis, K. G.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Laine, J.-P.

Lake, D. P.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Lassen, M.

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Lee, M. L.

Lee, Y.-S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Lehoucq, G.

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Leuchs, G.

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Li, Y.

Li, Z.

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref] [PubMed]

Liang, X.

Lin, G.

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9, 828–890 (2017).
[Crossref]

Lin, Z.

Lipson, M.

Little, B. E.

Liu, X.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Loncar, M.

Lukin, M. D.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics —photon by photon,” Nat. Photon. 8, 685–694 (2014).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Lynch, C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

Majumdar, A.

Marquadt, C.

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Martin, A.

Martin, O. J.

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Mauri, F.

A. D. Corso, F. Mauri, and A. Rubio, “Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors,” Phys. Rev. B 53, 15638–15642 (1996).
[Crossref]

McMahon, P. L.

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Michelberger, P.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Minkov, M.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Mitchell, M.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Mohamed, M. S.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Moille, G.

Molesky, S.

Morgenroth, L.

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

Ozawa, A.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Park, H.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Pastrnák, J.

J. Pastrňák and L. Roskovcová, “Refraction index measurements on AlN single crystals,” Phys. Status Solidi (B) 14, 5–8 (1996).

Pelc, J. S.

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Pervak, V.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Petykiewicz, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Radulaski, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Raineri, F.

Rao, A.

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215, 1700684 (2017).
[Crossref]

Rauschenberger, J.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Ren, X.-F.

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref] [PubMed]

Ricard, D.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478 (1982).
[Crossref]

Rivoire, K.

K. Rivoire, S. Buckley, F. Hatami, and J. Vućković, “Second harmonic generation in gap photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Rodriguez, A.

Rodriguez, A. W.

Roland, I.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Roskovcová, L.

J. Pastrňák and L. Roskovcová, “Refraction index measurements on AlN single crystals,” Phys. Status Solidi (B) 14, 5–8 (1996).

Rubio, A.

A. D. Corso, F. Mauri, and A. Rubio, “Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors,” Phys. Rev. B 53, 15638–15642 (1996).
[Crossref]

Sagnes, I.

Santori, C.

Sauvage, S.

G. Moille, S. Combrié, L. Morgenroth, G. Lehoucq, S. Sauvage, M. E. Kurdi, P. Boucaud, A. de Rossi, and X. Checoury, “Nonlinearities in gaas cavities with high cw input powers enabled by photo-oxidation quenching through ald encapsulation,” Opt. Express 26, 6400–6406 (2018).
[Crossref] [PubMed]

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Savona, V.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Schmidgall, E. R.

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl. 6, 011001 (2016).
[Crossref]

Schneider, C.

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Schneider, K.

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
[Crossref]

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” ArXiv e-prints (2018).

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Seidler, P.

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
[Crossref]

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” ArXiv e-prints (2018).

Semond, F.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Shen, Y. R.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478 (1982).
[Crossref]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Shirane, M.

Shoji, I.

Simanovskii, D. M.

Simbula, A.

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Sitawarin, C.

Small, D. L.

Soljacic, M.

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Song, Y.

Stark, P.

Strekalov, D. V.

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Sua, Y. M.

Surya, J. B.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Tang, H. X.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Thomas, N.

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Trebino, R.

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” JOSA-B 11, 2206–2215 (1994).
[Crossref]

Udem, T.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref] [PubMed]

Venkataraman, V.

Vodopyanov, K. L.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Vuckovic, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vućković, “Second harmonic generation in gap photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Vuletic, V.

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics —photon by photon,” Nat. Photon. 8, 685–694 (2014).
[Crossref]

Walker, D. R.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

Wang, C.

Wang, J.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Wang, K.-M.

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref] [PubMed]

Weinfurter, H.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Welter, P.

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
[Crossref]

Weyburne, D.

White, W. E.

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” JOSA-B 11, 2206–2215 (1994).
[Crossref]

Wieczorek, W.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Wilson, D. J.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” ArXiv e-prints (2018).

Wolf, R.

Xiong, X.

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref] [PubMed]

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

Yan, J.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Yu, L.

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Yu, N.

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref] [PubMed]

Yu, X.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Zappe, H.

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Zelmon, D. E.

Zeng, Y.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Zhan, A.

Zhang, L.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Zou, C.-L.

ACS Nano (1)

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vućković, “Second-harmonic generation in gaas photonic crystal cavities in (111)b and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Adv. Opt. Photonics (1)

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photonics 9, 828–890 (2017).
[Crossref]

APL Photonics (1)

M. S. Mohamed, A. Simbula, J.-F. Carlin, M. Minkov, D. Gerace, V. Savona, N. Grandjean, M. Galli, and R. Houdré, “Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon,” APL Photonics 2, 031301 (2017).
[Crossref]

Appl. Phys. Lett. (4)

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17,000%/w second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vućković, “Second harmonic generation in gap photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

J. Appl. Phys. (1)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

J. Light. Technol. (1)

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Light. Technol. 36, 2994–3002 (2018).
[Crossref]

J. Opt. Soc. Am. B (4)

JOSA-B (1)

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” JOSA-B 11, 2206–2215 (1994).
[Crossref]

Nano Lett. (2)

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vućković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

E. R. Schmidgall, S. Chakravarthi, M. Gould, I. R. Christen, K. Hestroffer, F. Hatami, and K.-M. C. Fu, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett. 18, 1175–1179 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref] [PubMed]

Nat. Photon. (1)

D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics —photon by photon,” Nat. Photon. 8, 685–694 (2014).
[Crossref]

Nat. Photonics (1)

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4, 170–173 (2010).
[Crossref]

Nature (2)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Opt. Express (10)

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[Crossref] [PubMed]

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[Crossref] [PubMed]

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510–27519 (2012).
[Crossref] [PubMed]

R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25, 29927–29933 (2017).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

G. Moille, S. Combrié, L. Morgenroth, G. Lehoucq, S. Sauvage, M. E. Kurdi, P. Boucaud, A. de Rossi, and X. Checoury, “Nonlinearities in gaas cavities with high cw input powers enabled by photo-oxidation quenching through ald encapsulation,” Opt. Express 26, 6400–6406 (2018).
[Crossref] [PubMed]

W. Jin, S. Molesky, Z. Lin, K.-M. C. Fu, and A. W. Rodriguez, “Inverse design of compact multimode cavity couplers,” Opt. Express 26, 26713–26721 (2018).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonantors on diamond,” Opt. Express 22, 13555 (2014).
[Crossref] [PubMed]

P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond nv-centers,” Opt. Express 17, 9588–9601 (2009).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (2)

OSA Continuum (1)

Photon. Res. (2)

Phys. Rev. A (1)

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
[Crossref]

Phys. Rev. Appl. (1)

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl. 6, 011001 (2016).
[Crossref]

Phys. Rev. B (1)

A. D. Corso, F. Mauri, and A. Rubio, “Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors,” Phys. Rev. B 53, 15638–15642 (1996).
[Crossref]

Phys. Rev. Lett. (6)

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478 (1982).
[Crossref]

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

J. U. Furst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquadt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Phys. Status Solidi (B) (1)

J. Pastrňák and L. Roskovcová, “Refraction index measurements on AlN single crystals,” Phys. Status Solidi (B) 14, 5–8 (1996).

Phys. Status Solidi A (1)

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215, 1700684 (2017).
[Crossref]

Phys. Today (1)

M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today 47, 25 (1994).
[Crossref]

Sci. Rep. (1)

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref] [PubMed]

Other (2)

R. Boyd, Nonlinear Optics (Academic, 2008).

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” ArXiv e-prints (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) On-chip layout of the nonlinear ring resonator (yellow) coupled to two independent input/output waveguides for 775 nm (blue) and 1550 nm (pink) light. The proximity of the grating couplers allow any combination of inputs and outputs to be focused or collected simultaneously by a single microscope objective. Inset: SEM image of a fabricated GaP SHG device. (b) Free-space measurement setup for the device. Cross-polarization and the pinhole (PH) are used to eliminate reflected input light. PD: photodiode, Obj: objective, BS: beamsplitter, DC: dichroic mirror, HWP: half-wave plate.
Fig. 2
Fig. 2 The transmission dip from telecom TE00 (a,c) and near-infrared TM03 (b,d) resonances in devices SHG01 (a,b) and SHG02 (c,d), along with fitted Lorentzian curves. Background is approximated with linear or quadratic functions. A cross-section of the mode profile is inset. The telecom resonance was measured on an infrared power meter with a tunable laser input, and the near-infrared resonance was measured using a supercontinuum laser and spectrometer.
Fig. 3
Fig. 3 (a) SHG conversion efficiency of device SHG01 as a function of both temperature and input wavelength. Conversion efficiency profiles at 27 (green), 29.5 (black), and 32 °C (red) are inset. (b) Conversion efficiency of SHG02, with profiles at 26 (green), 29 (black), 32 (orange), and 36 °C (red). Asymmetry from thermal bistability is visible in the conversion efficiency profiles of both devices and becomes more pronounced with stage temperature and input laser power. Due to resonance splittings, SHG02 exhibits additional asymmetry as well as efficiency peaks at multiple temperatures.
Fig. 4
Fig. 4 (a) Maximum SHG efficiency as a function of temperature for both devices. The red squares are the corresponding fundamental wavelength as a function of temperature. (b) Square root of the SHG output power as a function of fundamental input power, showing the expected linear dependence. Both input and output powers are calculated in-waveguide powers.
Fig. 5
Fig. 5 (Left) Device dimensions in the coupling region, shown for the telecom coupling region of device SHG01. White (green) brackets indicate the bottom (top) of the feature.(Right) The measured average dimensions (nm) for each feature for each coupling region for the two devices.
Fig. 6
Fig. 6 (a) Separate mode profile cross-sections (λ = 775 nm) for the ring resonator (waveguide (|w〉) that compose the coupling region. When the two structures are combined, these modes split into two supermodes |+〉 and |−〉. (b) Coupling quality factors (logarithmic scale) for IR and NIR modes of a 860 nm wide ring, with gap width (top axis) decreasing as waveguide width (bottom axis) increases. Within measurement uncertainty, wider ring resonators reach slightly lower minimum coupling Q with narrower gaps.

Tables (1)

Tables Icon

Table 1 SHG device characteristics. w is the resonantor waveguide width. T is the transmission on-resonance. Uncertainty in w denotes the range of measured values. Q and T are determined by a Lorentzian fit with uncertainty representing the 95% confidence interval.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P 2 , out P 1 , in 2 = | χ ( 2 ) | 2 0 λ 1 3 | β ¯ | 2 2 ω 1 Q 1 4 Q 2 2 Q c 1 2 Q c 2 = | χ ( 2 ) | 2 0 λ 1 3 | β ¯ | 2 2 ω 1 Q i 1 2 Q i 2 Q i 1 2 Q c 1 2 ( Q c 1 + Q i 1 ) 4 Q i 2 Q c 2 ( Q c 2 + Q i 2 ) 2 .
β ¯ = NL i j k ( E 1 i E 2 j * E 1 k + E 1 i E 1 j E 2 k * ) d r ( 1 | E 1 | 2 d r ) ( 2 | E 2 | 2 d r ) λ 1 3 ,
β ¯ = λ 1 3 0 2 π β + e i ( 2 m 1 m 2 + 2 ) θ + β e i ( 2 m 1 m 2 2 ) θ d θ β ± = 1 ( 1 | E 1 | 2 r d r d z ) 2 | E 2 | 2 r d r d z N L ( 2 [ E 1 r E 1 z ( E 2 r * + E 2 θ * ) + E 1 θ ( E 1 r E 2 z * + E 1 z E 2 r * ) ] ± i [ ( E 1 r 2 E 1 θ 2 ) E 2 z * + E 1 z ( E 1 r E 2 r * E 1 θ E 2 θ * ) ] ) r d r d z
η theory = P 2 , out P 1 , in 2 = | χ ( 2 ) | 2 0 λ 1 3 | β ¯ | 2 2 ω 1 Q 1 2 Q 2 ( 1 ± T 1 2 ) 2 1 ± T 2 2 ,
κ = r | + e i m + θ + | w + r | e i m θ | w ,
Q c = 4 π 2 R n g λ 0 κ 2 ,

Metrics