Abstract

In this study, we operated a novel bulk laser: a dual-end-pumped electro-optically (EO) Q-switched Ho, Pr:YLF laser at 2945.9 nm with a repetition rate of kHz level. The shortest pulse duration of 25.2 ns was obtained at the repetition rate of 500 Hz, corresponding to a single pulse energy of 0.4 mJ and a peak power of 15.9 kW. A maximum output power of 268 mW was delivered at the repetition rate of 1.5 kHz. The beam quality factors of the EO Q-switched Ho, Pr:YLF laser at the maximum output power were Mx2 = 1.50 and My2 = 1.54 in x- and y- directions, respectively. The long-term output power instability was measured to be ± 1.5% (RMS) within five hours. The achieved results indicated the promising potential of Ho, Pr: YLF crystals for high repetition rate Q-switched mid-infrared laser pulse generation very well.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched Ho,Pr:LiLuF4 bulk laser at 2.95 μm using WS2 saturable absorbers

Lei Guo, Tao Li, Shuaiyi Zhang, Mingjian Wang, Shengzhi Zhao, Kejian Yang, Dechun Li, and Zhengyu Yan
Opt. Mater. Express 7(6) 2090-2095 (2017)

Diode-wing-pumped electro-optically Q-switched 2 μm laser with pulse energy scaling over ten millijoules

L. Guo, S. Z. Zhao, T. Li, K. J. Yang, W. C. Qiao, D. C. Li, G. Q. Li, S. Y. Zhang, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu
Opt. Express 26(13) 17731-17738 (2018)

High repetition rates optically active langasite electro-optically Q-switched laser at 1.34 μm

Shihui Ma, Dazhi Lu, Haohai Yu, Huaijin Zhang, Xuekun Han, Qingming Lu, Changqin Ma, and Jiyang Wang
Opt. Express 25(20) 24007-24014 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15 (2017).
    [Crossref]
  2. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
    [Crossref]
  3. K. L. Vodopyanov, “Mid-infrared optical parametric generator with extra-wide (3–19-μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells,” J. Opt. Soc. Am. B 16(9), 1579–1586 (1999).
    [Crossref]
  4. S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
    [Crossref]
  5. J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
    [Crossref] [PubMed]
  6. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  7. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
    [Crossref] [PubMed]
  8. X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2 as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
    [Crossref] [PubMed]
  9. H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, and J. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 μm bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
    [Crossref] [PubMed]
  10. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  11. T. Hu, D. D. Hudson, and S. D. Jackson, “Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN laser around 3 μm,” Opt. Lett. 37(11), 2145–2147 (2012).
    [Crossref] [PubMed]
  12. J. Yang, L. Wang, X. Wu, T. Cheng, and H. Jiang, “High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues,” Opt. Express 22(13), 15686–15696 (2014).
    [Crossref] [PubMed]
  13. M. Ozolinsh and H. J. Eichler, “2.79 μm erbium laser with lead–lanthanum zirconate titanate ceramics electro-optic Q-switching output coupler,” Appl. Phys. Lett. 77(5), 615–617 (2000).
    [Crossref]
  14. L. Guo, S. Z. Zhao, T. Li, K. J. Yang, W. C. Qiao, D. C. Li, G. Q. Li, S. Y. Zhang, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Diode-wing-pumped electro-optically Q-switched 2 μm laser with pulse energy scaling over ten millijoules,” Opt. Express 26(13), 17731–17738 (2018).
    [Crossref] [PubMed]
  15. L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, and C. Xu, “2.79 μm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser,” Opt. Lett. 38(12), 2150–2152 (2013).
    [Crossref] [PubMed]
  16. M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, “2.94 μm Er:YAG laser Q-switched with RTP Pockelss cell,” in CLEO, 2003. CLEO/Europe. 2003 Conference on (2003), p. 69.
  17. J. Swiderski, M. Skorczakowski, and A. Zajac, “2.94 μm Electro-Optically Q-Switched Er:YAG Laser with High Output Energy,” in ASSP (Optical Society of America, Vienna, 2005), p. MF16.M.
  18. P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
    [Crossref] [PubMed]
  19. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” PQE 33(2-4), 61–109 (2009).
    [Crossref]
  20. S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
    [Crossref] [PubMed]
  21. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004).
    [Crossref] [PubMed]
  22. S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm,” Opt. Lett. 34(15), 2327–2329 (2009).
    [Crossref] [PubMed]
  23. H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
    [Crossref]

2018 (4)

S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
[Crossref]

H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
[Crossref]

L. Guo, S. Z. Zhao, T. Li, K. J. Yang, W. C. Qiao, D. C. Li, G. Q. Li, S. Y. Zhang, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Diode-wing-pumped electro-optically Q-switched 2 μm laser with pulse energy scaling over ten millijoules,” Opt. Express 26(13), 17731–17738 (2018).
[Crossref] [PubMed]

H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, and J. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 μm bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (1)

2015 (2)

2014 (2)

2013 (2)

L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, and C. Xu, “2.79 μm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser,” Opt. Lett. 38(12), 2150–2152 (2013).
[Crossref] [PubMed]

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]

2012 (2)

2009 (2)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” PQE 33(2-4), 61–109 (2009).
[Crossref]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm,” Opt. Lett. 34(15), 2327–2329 (2009).
[Crossref] [PubMed]

2007 (1)

2004 (1)

2000 (1)

M. Ozolinsh and H. J. Eichler, “2.79 μm erbium laser with lead–lanthanum zirconate titanate ceramics electro-optic Q-switching output coupler,” Appl. Phys. Lett. 77(5), 615–617 (2000).
[Crossref]

1999 (1)

Arslanov, D. D.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]

Bian, J. T.

Bugge, F.

Cheng, T.

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” PQE 33(2-4), 61–109 (2009).
[Crossref]

Cristescu, S. M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]

Dai, S.

S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
[Crossref]

Deng, L.

S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
[Crossref]

Du, J.

Eichler, H. J.

M. Ozolinsh and H. J. Eichler, “2.79 μm erbium laser with lead–lanthanum zirconate titanate ceramics electro-optic Q-switching output coupler,” Appl. Phys. Lett. 77(5), 615–617 (2000).
[Crossref]

Erbert, G.

Feng, G.

S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
[Crossref]

Guo, L.

Guo, Z.

Hang, Y.

H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
[Crossref]

P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
[Crossref] [PubMed]

Harren, F. J. M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]

He, J.

Hu, T.

Hudson, D. D.

Jackson, S. D.

Jiang, H.

Kotov, L. V.

Li, D. C.

Li, G.

Li, G. Q.

Li, H.

Li, J.

Li, T.

Liu, J.

Liu, S.

Liu, Y.

Loh, K. P.

Lu, S. B.

Luo, H.

Ma, W.

Mandon, J.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]

Nie, H.

Ning, S.

S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
[Crossref]

Norwood, R. A.

Ozolinsh, M.

M. Ozolinsh and H. J. Eichler, “2.79 μm erbium laser with lead–lanthanum zirconate titanate ceramics electro-optic Q-switching output coupler,” Appl. Phys. Lett. 77(5), 615–617 (2000).
[Crossref]

Persijn, S. T.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]

Peyghambarian, N.

Qian, L.

Qiao, W. C.

Qin, Z.

Shi, B.

Spunei, M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]

Su, L.

Su, L. B.

Su, X.

Sun, D.

Sun, X.

H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
[Crossref]

H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, and J. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 μm bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
[Crossref] [PubMed]

Tang, D. Y.

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” PQE 33(2-4), 61–109 (2009).
[Crossref]

Tonelli, M.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” PQE 33(2-4), 61–109 (2009).
[Crossref]

Tong, M.

Vodopyanov, K. L.

Wang, J.

Wang, L.

Wang, Y.

Wei, C.

Wen, S.

Wen, S. C.

Wu, X.

Xie, G.

Xu, C.

Xu, J.

Xu, M.

H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
[Crossref]

Yan, B.

Yang, J.

Yang, K.

H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
[Crossref]

X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2 as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref] [PubMed]

Yang, K. J.

Yin, S.

Yuan, P.

Zhai, B.

Zhang, B.

Zhang, H.

Zhang, L.

H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
[Crossref]

P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
[Crossref] [PubMed]

Zhang, P.

H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
[Crossref]

P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
[Crossref] [PubMed]

Zhang, S. Y.

Zhang, W.

S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
[Crossref]

Zhao, C.

Zhao, S. Z.

Zheng, J.

Zheng, L. H.

Zhou, S.

S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
[Crossref]

Zhu, G.

Zhu, X.

AIP Adv. (1)

S. Ning, G. Feng, S. Dai, H. Zhang, W. Zhang, L. Deng, and S. Zhou, “Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser,” AIP Adv. 8(2), 025121 (2018).
[Crossref]

Appl. Phys. Lett. (1)

M. Ozolinsh and H. J. Eichler, “2.79 μm erbium laser with lead–lanthanum zirconate titanate ceramics electro-optic Q-switching output coupler,” Appl. Phys. Lett. 77(5), 615–617 (2000).
[Crossref]

IEEE J. Sel. Top. Quant (1)

H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, and J. He, “Watt-Level Continuous-Wave and Black Phosphorus Passive Q-Switching Operation of Ho3+, Pr3+:LiLuF4 Bulk Laser at 2.95 μm,” IEEE J. Sel. Top. Quant 24(5), 1–5 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous‐wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7(2), 188–206 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (8)

L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, and C. Xu, “2.79 μm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser,” Opt. Lett. 38(12), 2150–2152 (2013).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN laser around 3 μm,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hang, and L. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
[Crossref] [PubMed]

S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
[Crossref] [PubMed]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm,” Opt. Lett. 34(15), 2327–2329 (2009).
[Crossref] [PubMed]

X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2 as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref] [PubMed]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004).
[Crossref] [PubMed]

H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, and J. He, “Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 μm bulk laser,” Opt. Lett. 43(14), 3349–3352 (2018).
[Crossref] [PubMed]

PQE (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” PQE 33(2-4), 61–109 (2009).
[Crossref]

Other (2)

J. Swiderski, M. Skorczakowski, and A. Zajac, “2.94 μm Electro-Optically Q-Switched Er:YAG Laser with High Output Energy,” in ASSP (Optical Society of America, Vienna, 2005), p. MF16.M.

M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, “2.94 μm Er:YAG laser Q-switched with RTP Pockelss cell,” in CLEO, 2003. CLEO/Europe. 2003 Conference on (2003), p. 69.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental design of the dual-end-pumped EO Q-switched Ho, Pr: YLF laser.
Fig. 2
Fig. 2 Average output powers versus pump powers for CW (insert) and Q-switching operations.
Fig. 3
Fig. 3 (a) Pulse durations versus incident pump powers at different repetition rates. (b) Pulse energies versus incident pump powers at different repetition rates.
Fig. 4
Fig. 4 (a) Pulse peak powers versus incident pump powers at the different repetition rates. (b) Emission spectra of the CW and Q-switched lasers.
Fig. 5
Fig. 5 Typical temporal pulse trains under different repetition rates and the shortest pulse shape at the repetition rate of 500 Hz.
Fig. 6
Fig. 6 M2 factors of the EO Q-switched Ho, Pr: YLF laser beam at the maximum output power. The insert show the 2D or 3D laser profile

Metrics