Abstract

Reconfigurable photonic circuits have applications ranging from next-generation computer architectures to quantum networks, coherent radar and optical metamaterials. Here, we demonstrate an on-chip high quality microcavity with resonances that can be electrically tuned across a full free spectral range (FSR). FSR tuning allows resonance with any source or emitter, or between any number of networked microcavities. We achieve it by integrating nanoelectronic actuation with strong optomechanical interactions that create a highly geometry-dependent effective refractive index. This allows low voltages and sub-nanowatt power consumption. We demonstrate a basic reconfigurable photonic network, bringing the microcavity into resonance with an arbitrary mode of a microtoroidal optical cavity across a telecommunications fibre link. Our results have applications beyond photonic circuits, including widely tuneable integrated lasers, reconfigurable optical filters for telecommunications and astronomy, and on-chip sensor networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High bandwidth on-chip capacitive tuning of microtoroid resonators

Christopher G. Baker, Christiaan Bekker, David L. McAuslan, Eoin Sheridan, and Warwick P. Bowen
Opt. Express 24(18) 20400-20412 (2016)

Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio
Opt. Lett. 22(16) 1244-1246 (1997)

Broadband opto-electro-mechanical effective refractive index tuning on a chip

Marcel W. Pruessner, Doweon Park, Todd H. Stievater, Dmitry A. Kozak, and William S. Rabinovich
Opt. Express 24(13) 13917-13930 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
    [Crossref] [PubMed]
  2. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
    [Crossref]
  3. R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
    [Crossref] [PubMed]
  4. A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
    [Crossref] [PubMed]
  5. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [Crossref] [PubMed]
  6. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
    [Crossref] [PubMed]
  7. X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
    [Crossref]
  8. L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
    [Crossref]
  9. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
    [Crossref]
  10. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
    [Crossref]
  11. B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. letters 38, 1802–1804 (2013).
    [Crossref]
  12. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
    [Crossref] [PubMed]
  13. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
    [Crossref] [PubMed]
  14. S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
    [Crossref] [PubMed]
  15. K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
    [Crossref]
  16. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
    [Crossref]
  17. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41 (2007).
    [Crossref]
  18. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
    [Crossref]
  19. G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. review letters 107, 043603 (2011).
    [Crossref]
  20. J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
    [Crossref]
  21. E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
    [Crossref] [PubMed]
  22. S. C. Ellis, S. Kuhlmann, K. Kuehn, H. Spinka, D. Underwood, R. R. Gupta, L. E. Ocola, P. Liu, G. Wei, N. P. Stern, J. Bland-Hawthorn, and P. Tuthill, “Photonic ring resonator filters for astronomical OH suppression,” Opt. Express 25, 15868–15889 (2017).
    [Crossref] [PubMed]
  23. D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
    [Crossref]
  24. W. Jin, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectrically tuned silicon nitride ring resonator,” Opt. Express 26, 3174–3187 (2018).
    [Crossref] [PubMed]
  25. M. D. Nguyen, E. P. Houwman, and G. Rijnders, “Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates,” Sci. Reports 7, 12915 (2017).
    [Crossref]
  26. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478 (2009).
    [Crossref]
  27. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633 (2009).
    [Crossref] [PubMed]
  28. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
    [Crossref]
  29. B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25, 12109–12120 (2017).
    [Crossref] [PubMed]
  30. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. letters 35, 1866–1868 (2010).
    [Crossref]
  31. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh- Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
    [Crossref]
  32. D. O’Shea, C. Junge, M. Pöllinger, A. Vogler, and A. Rauschenbeutel, “All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators,” Appl. Phys. B 105, 129–148 (2011).
    [Crossref]
  33. Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, and C.-H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25, 4046 (2017).
    [Crossref] [PubMed]
  34. M. Asano, R. Ohta, T. Yamamoto, H. Okamoto, and H. Yamaguchi, “An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator,” Appl. Phys. Lett. 112, 201103 (2018).
    [Crossref]
  35. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26, 166 (2001).
    [Crossref]
  36. J. Rezac and A. Rosenberger, “Locking a microsphere whispering-gallery mode to a laser,” Opt. Express 8, 605 (2001).
    [Crossref] [PubMed]
  37. K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19, 17966–17972 (2011).
    [Crossref] [PubMed]
  38. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “In-plane microelectromechanical resonator with integrated Fabry-Pèrot cavity,” Appl. Phys. Lett. 92, 081101 (2008).
    [Crossref]
  39. H. M. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonics Technol. Lett. 26, 1411–1413 (2014).
    [Crossref]
  40. T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
    [Crossref]
  41. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421 (2008).
    [Crossref] [PubMed]
  42. K. E. Grutter, M. I. Davanço, K. C. Balram, and K. Srinivasan, “Tuning and stabilization of optomechanical crystal cavities through NEMS integration,” APL Photonics 3, 100801 (2018).
    [Crossref]
  43. L. Midolo, S. N. Yoon, F. Pagliano, T. Xia, F. W. M. van Otten, M. Lermer, S. Höfling, and A. Fiore, “Electromechanical tuning of vertically-coupled photonic crystal nanobeams,” Opt. Express 20, 19255 (2012).
    [Crossref] [PubMed]
  44. M. Winger, T. D. Blasius, T. P. M. Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011).
    [Crossref]
  45. X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett. 35, 2517 (2010).
    [Crossref] [PubMed]
  46. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705 (2010).
    [Crossref] [PubMed]
  47. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
    [Crossref]
  48. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  49. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
    [Crossref] [PubMed]
  50. C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
    [Crossref] [PubMed]
  51. K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
    [Crossref]
  52. C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “Low-power microelectromechanically tunable silicon photonic ring resonator add–drop filter,” Opt. Lett. 40, 3556 (2015).
    [Crossref] [PubMed]
  53. H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14, 075015 (2012).
    [Crossref]
  54. X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
    [Crossref] [PubMed]
  55. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [Crossref] [PubMed]
  56. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19, 2782–2790 (2011).
    [Crossref] [PubMed]
  57. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  58. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211 (2010).
    [Crossref]
  59. L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
    [Crossref]
  60. C. G. Baker, C. Bekker, D. L. McAuslan, E. Sheridan, and W. P. Bowen, “High bandwidth on-chip capacitive tuning of microtoroid resonators,” Opt. Express 24, 20400 (2016).
    [Crossref] [PubMed]
  61. C. Bekker, R. Kalra, C. Baker, and W. P. Bowen, “Injection locking of an electro-optomechanical device,” Optica 4, 1196–1204 (2017).
    [Crossref]
  62. C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
    [Crossref]
  63. M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105, 051904 (2014).
    [Crossref]
  64. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
    [Crossref] [PubMed]
  65. J. Laconte, D. Flandre, and J.-P. Raskin, Micromachined thin-film sensors for SOI-CMOS co-integration (Springer, Dordrecht, 2006).
  66. F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
    [Crossref]
  67. K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda, “Silicon dioxide deposition by atmospheric pressure and low-temperature CVD using TEOS and ozone,” J. The Electrochem. Soc. 137, 2883–2887 (1990).
    [Crossref]
  68. E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
    [Crossref]
  69. J. Wibbeler, G. Pfeifer, and M. Hietschold, “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS),” Sensors Actuators A 71, 74–80 (1998).
    [Crossref]
  70. G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
    [Crossref]
  71. X. Yuan, S. Cherepko, J. Hwang, C. L. Goldsmith, C. Nordqusit, and C. Dyck, “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches,” in 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3 (2004), pp. 1943–1946.
    [Crossref]
  72. W. Zhou, J. He, X. He, H. Yu, and B. Peng, “Dielectric charging induced drift in micro device reliability – a review,” Microelectron. Reliab. 66, 1–9 (2016).
    [Crossref]
  73. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
    [Crossref] [PubMed]

2018 (6)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

M. Asano, R. Ohta, T. Yamamoto, H. Okamoto, and H. Yamaguchi, “An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator,” Appl. Phys. Lett. 112, 201103 (2018).
[Crossref]

K. E. Grutter, M. I. Davanço, K. C. Balram, and K. Srinivasan, “Tuning and stabilization of optomechanical crystal cavities through NEMS integration,” APL Photonics 3, 100801 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

W. Jin, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectrically tuned silicon nitride ring resonator,” Opt. Express 26, 3174–3187 (2018).
[Crossref] [PubMed]

2017 (8)

Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, and C.-H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25, 4046 (2017).
[Crossref] [PubMed]

B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25, 12109–12120 (2017).
[Crossref] [PubMed]

S. C. Ellis, S. Kuhlmann, K. Kuehn, H. Spinka, D. Underwood, R. R. Gupta, L. E. Ocola, P. Liu, G. Wei, N. P. Stern, J. Bland-Hawthorn, and P. Tuthill, “Photonic ring resonator filters for astronomical OH suppression,” Opt. Express 25, 15868–15889 (2017).
[Crossref] [PubMed]

C. Bekker, R. Kalra, C. Baker, and W. P. Bowen, “Injection locking of an electro-optomechanical device,” Optica 4, 1196–1204 (2017).
[Crossref]

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

M. D. Nguyen, E. P. Houwman, and G. Rijnders, “Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates,” Sci. Reports 7, 12915 (2017).
[Crossref]

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
[Crossref]

2016 (3)

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
[Crossref] [PubMed]

W. Zhou, J. He, X. He, H. Yu, and B. Peng, “Dielectric charging induced drift in micro device reliability – a review,” Microelectron. Reliab. 66, 1–9 (2016).
[Crossref]

C. G. Baker, C. Bekker, D. L. McAuslan, E. Sheridan, and W. P. Bowen, “High bandwidth on-chip capacitive tuning of microtoroid resonators,” Opt. Express 24, 20400 (2016).
[Crossref] [PubMed]

2015 (2)

C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “Low-power microelectromechanically tunable silicon photonic ring resonator add–drop filter,” Opt. Lett. 40, 3556 (2015).
[Crossref] [PubMed]

J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
[Crossref]

2014 (10)

H. M. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonics Technol. Lett. 26, 1411–1413 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105, 051904 (2014).
[Crossref]

2013 (2)

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. letters 38, 1802–1804 (2013).
[Crossref]

T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
[Crossref]

2012 (6)

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[Crossref]

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14, 075015 (2012).
[Crossref]

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

L. Midolo, S. N. Yoon, F. Pagliano, T. Xia, F. W. M. van Otten, M. Lermer, S. Höfling, and A. Fiore, “Electromechanical tuning of vertically-coupled photonic crystal nanobeams,” Opt. Express 20, 19255 (2012).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
[Crossref] [PubMed]

2011 (7)

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19, 2782–2790 (2011).
[Crossref] [PubMed]

K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19, 17966–17972 (2011).
[Crossref] [PubMed]

M. Winger, T. D. Blasius, T. P. M. Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. review letters 107, 043603 (2011).
[Crossref]

D. O’Shea, C. Junge, M. Pöllinger, A. Vogler, and A. Rauschenbeutel, “All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators,” Appl. Phys. B 105, 129–148 (2011).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

2010 (9)

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. letters 35, 1866–1868 (2010).
[Crossref]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705 (2010).
[Crossref] [PubMed]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett. 35, 2517 (2010).
[Crossref] [PubMed]

2009 (5)

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh- Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478 (2009).
[Crossref]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633 (2009).
[Crossref] [PubMed]

2008 (2)

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “In-plane microelectromechanical resonator with integrated Fabry-Pèrot cavity,” Appl. Phys. Lett. 92, 081101 (2008).
[Crossref]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421 (2008).
[Crossref] [PubMed]

2007 (3)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41 (2007).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

2006 (1)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

2005 (1)

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

2004 (2)

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

2001 (2)

1998 (1)

J. Wibbeler, G. Pfeifer, and M. Hietschold, “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS),” Sensors Actuators A 71, 74–80 (1998).
[Crossref]

1990 (1)

K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda, “Silicon dioxide deposition by atmospheric pressure and low-temperature CVD using TEOS and ozone,” J. The Electrochem. Soc. 137, 2883–2887 (1990).
[Crossref]

Aksyuk, V.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14, 075015 (2012).
[Crossref]

Al Qubaisi, K.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Alegre, T. P. M.

M. Winger, T. D. Blasius, T. P. M. Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011).
[Crossref]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
[Crossref]

Alloatti, L.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Andronico, A.

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
[Crossref]

Armani, D.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

Asano, M.

M. Asano, R. Ohta, T. Yamamoto, H. Okamoto, and H. Yamaguchi, “An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator,” Appl. Phys. Lett. 112, 201103 (2018).
[Crossref]

Asano, T.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Atabaki, A. H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Bahl, G.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Baiocco, C. V.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Baker, C.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

C. Bekker, R. Kalra, C. Baker, and W. P. Bowen, “Injection locking of an electro-optomechanical device,” Optica 4, 1196–1204 (2017).
[Crossref]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
[Crossref] [PubMed]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

Baker, C. G.

Baker, N.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Balram, K. C.

K. E. Grutter, M. I. Davanço, K. C. Balram, and K. Srinivasan, “Tuning and stabilization of optomechanical crystal cavities through NEMS integration,” APL Photonics 3, 100801 (2018).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Bao, C.

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

Barbosa, F. A. S.

Barbour, R. J.

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Bekker, C.

Belacel, C.

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Bland-Hawthorn, J.

Blasius, T. D.

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Borreman, A.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Bowen, W. P.

C. Bekker, R. Kalra, C. Baker, and W. P. Bowen, “Injection locking of an electro-optomechanical device,” Optica 4, 1196–1204 (2017).
[Crossref]

C. G. Baker, C. Bekker, D. L. McAuslan, E. Sheridan, and W. P. Bowen, “High bandwidth on-chip capacitive tuning of microtoroid resonators,” Opt. Express 24, 20400 (2016).
[Crossref] [PubMed]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Bowers, J. E.

Brawley, G. A.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Candler, R. N.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Capasso, F.

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Chandorkar, S. A.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Chang, D. E.

J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
[Crossref]

Chau, F. S.

Chen, L.

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633 (2009).
[Crossref] [PubMed]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Chen, Y.

Cherepko, S.

X. Yuan, S. Cherepko, J. Hwang, C. L. Goldsmith, C. Nordqusit, and C. Dyck, “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches,” in 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3 (2004), pp. 1943–1946.
[Crossref]

Chew, X.

Chu, H. M.

H. M. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonics Technol. Lett. 26, 1411–1413 (2014).
[Crossref]

Ciuti, C.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. letters 38, 1802–1804 (2013).
[Crossref]

Cohen, J.

Cohen, J. D.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
[Crossref]

Dalacu, D.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Davanço, M.

Davanço, M. I.

K. E. Grutter, M. I. Davanço, K. C. Balram, and K. Srinivasan, “Tuning and stabilization of optomechanical crystal cavities through NEMS integration,” APL Photonics 3, 100801 (2018).
[Crossref]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
[Crossref]

Deng, J.

Deotare, P. B.

Ding, L.

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

Dinyari, K. N.

Dong, C.-H.

Douglas, J. S.

J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
[Crossref]

Driessen, A.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Ducci, S.

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
[Crossref] [PubMed]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. letters 35, 1866–1868 (2010).
[Crossref]

Dyck, C.

X. Yuan, S. Cherepko, J. Hwang, C. L. Goldsmith, C. Nordqusit, and C. Dyck, “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches,” in 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3 (2004), pp. 1943–1946.
[Crossref]

Elata, D.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Ellis, S. C.

Elshaari, A. W.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Errando-Herranz, C.

Favero, I.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
[Crossref] [PubMed]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

Fiore, A.

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Flandre, D.

J. Laconte, D. Flandre, and J.-P. Raskin, Micromachined thin-film sensors for SOI-CMOS co-integration (Springer, Dordrecht, 2006).

Fognini, A.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Forstner, S.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Frank, I. W.

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Fujino, K.

K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda, “Silicon dioxide deposition by atmospheric pressure and low-temperature CVD using TEOS and ozone,” J. The Electrochem. Soc. 137, 2883–2887 (1990).
[Crossref]

Galopin, E.

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

Geuzebroek, D. H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Gevorgyan, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Gil-Santos, E.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Goetschy, A.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

Goldsmith, C. L.

X. Yuan, S. Cherepko, J. Hwang, C. L. Goldsmith, C. Nordqusit, and C. Dyck, “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches,” in 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3 (2004), pp. 1943–1946.
[Crossref]

Goldsmith, R. H.

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
[Crossref]

Golter, D. A.

Gomez, C.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633 (2009).
[Crossref] [PubMed]

Gong, Q.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. letters 38, 1802–1804 (2013).
[Crossref]

Gorshkov, A. V.

J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
[Crossref]

Grutter, K. E.

K. E. Grutter, M. I. Davanço, K. C. Balram, and K. Srinivasan, “Tuning and stabilization of optomechanical crystal cavities through NEMS integration,” APL Photonics 3, 100801 (2018).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Guo, G.-C.

Gupta, R. R.

Gylfason, K. B.

Habibian, H.

J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
[Crossref]

Hane, K.

H. M. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonics Technol. Lett. 26, 1411–1413 (2014).
[Crossref]

T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
[Crossref]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421 (2008).
[Crossref] [PubMed]

Hare, J.

Harris, G. I.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

He, J.

W. Zhou, J. He, X. He, H. Yu, and B. Peng, “Dielectric charging induced drift in micro device reliability – a review,” Microelectron. Reliab. 66, 1–9 (2016).
[Crossref]

He, X.

W. Zhou, J. He, X. He, H. Yu, and B. Peng, “Dielectric charging induced drift in micro device reliability – a review,” Microelectron. Reliab. 66, 1–9 (2016).
[Crossref]

Hease, W.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

Heideman, R. G.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Heinrich, G.

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. review letters 107, 043603 (2011).
[Crossref]

Hennessy, R. G.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Heylman, K. D.

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
[Crossref]

Hietschold, M.

J. Wibbeler, G. Pfeifer, and M. Hietschold, “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS),” Sensors Actuators A 71, 74–80 (1998).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Höfling, S.

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
[Crossref]

Hopcroft, M. A.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Horak, E. H.

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
[Crossref]

Houwman, E. P.

M. D. Nguyen, E. P. Houwman, and G. Rijnders, “Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates,” Sci. Reports 7, 12915 (2017).
[Crossref]

Howe, R. T.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Hui, P.-C.

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

Humphreys, C. L.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Hung, C.-L.

J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
[Crossref]

Hwang, J.

X. Yuan, S. Cherepko, J. Hwang, C. L. Goldsmith, C. Nordqusit, and C. Dyck, “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches,” in 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3 (2004), pp. 1943–1946.
[Crossref]

Ikeda, T.

T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
[Crossref]

Ilchenko, V. S.

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Iwase, E.

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

Jagadish, C.

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[Crossref]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

Jin, W.

Johnson, S. G.

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

Jöns, K. D.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Junge, C.

D. O’Shea, C. Junge, M. Pöllinger, A. Vogler, and A. Rauschenbeutel, “All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators,” Appl. Phys. B 105, 129–148 (2011).
[Crossref]

Kalkman, J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

Kalra, R.

Kanamori, Y.

Karouta, F.

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[Crossref]

Kelderman, H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Kenny, T. W.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Khilo, A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Kim, B.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Kimble, H. J.

J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

Klein, E. J.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Knapper, K. A.

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
[Crossref]

Knittel, J.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Kokubun, Y.

Konoike, R.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
[Crossref] [PubMed]

Kruger, S. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Kubala, B.

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. review letters 107, 043603 (2011).
[Crossref]

Kuehn, K.

Kuhlmann, S.

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

Labousse, M.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

Laconte, J.

J. Laconte, D. Flandre, and J.-P. Raskin, Micromachined thin-film sensors for SOI-CMOS co-integration (Springer, Dordrecht, 2006).

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Lee, B. S.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Lee, K. H.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Lee, S.

Lefèvre-Seguin, V.

Lemaître, A.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

Leo, G.

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
[Crossref] [PubMed]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

Lermer, M.

Li, B.-B.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. letters 38, 1802–1804 (2013).
[Crossref]

Li, S.

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

Lim, J. Y.

Lin, Q.

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478 (2009).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Lipson, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25, 12109–12120 (2017).
[Crossref] [PubMed]

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105, 051904 (2014).
[Crossref]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19, 2782–2790 (2011).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633 (2009).
[Crossref] [PubMed]

Liu, P.

Loke, Y. C.

Loncar, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705 (2010).
[Crossref] [PubMed]

Long, R.

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Ludwig, M.

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. review letters 107, 043603 (2011).
[Crossref]

Luiz, G.

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105, 051904 (2014).
[Crossref]

Maeda, K.

K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda, “Silicon dioxide deposition by atmospheric pressure and low-temperature CVD using TEOS and ozone,” J. The Electrochem. Soc. 137, 2883–2887 (1990).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19, 2782–2790 (2011).
[Crossref] [PubMed]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. review letters 107, 043603 (2011).
[Crossref]

Martin, A.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

Matsuo, S.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

McAuslan, D. L.

McCutcheon, M. W.

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

McRae, T. G.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Meenehan, S.

M. Winger, T. D. Blasius, T. P. M. Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011).
[Crossref]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
[Crossref]

Meijerink, A.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Melamud, R.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Meng, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Miao, H.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14, 075015 (2012).
[Crossref]

Midolo, L.

Miller, S. A.

Min, B.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

Moazeni, S.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Mohanty, A.

Morton, P. A.

Nakadai, M.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
[Crossref] [PubMed]

Nakagawa, H.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
[Crossref] [PubMed]

Nguyen, D.-T.

Nguyen, M. D.

M. D. Nguyen, E. P. Houwman, and G. Rijnders, “Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates,” Sci. Reports 7, 12915 (2017).
[Crossref]

Niklaus, F.

Nishimoto, Y.

K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda, “Silicon dioxide deposition by atmospheric pressure and low-temperature CVD using TEOS and ozone,” J. The Electrochem. Soc. 137, 2883–2887 (1990).
[Crossref]

Noda, S.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
[Crossref] [PubMed]

Nordqusit, C.

X. Yuan, S. Cherepko, J. Hwang, C. L. Goldsmith, C. Nordqusit, and C. Dyck, “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches,” in 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3 (2004), pp. 1943–1946.
[Crossref]

Notaros, J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

Nozaki, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

O’Shea, D.

D. O’Shea, C. Junge, M. Pöllinger, A. Vogler, and A. Rauschenbeutel, “All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators,” Appl. Phys. B 105, 129–148 (2011).
[Crossref]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh- Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

Ocola, L. E.

Ohta, R.

M. Asano, R. Ohta, T. Yamamoto, H. Okamoto, and H. Yamaguchi, “An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator,” Appl. Phys. Lett. 112, 201103 (2018).
[Crossref]

Okamoto, H.

M. Asano, R. Ohta, T. Yamamoto, H. Okamoto, and H. Yamaguchi, “An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator,” Appl. Phys. Lett. 112, 201103 (2018).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Pagliano, F.

Painter, O.

M. Winger, T. D. Blasius, T. P. M. Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011).
[Crossref]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478 (2009).
[Crossref]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Parrain, D.

Pavanello, F.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Peng, B.

W. Zhou, J. He, X. He, H. Yu, and B. Peng, “Dielectric charging induced drift in micro device reliability – a review,” Microelectron. Reliab. 66, 1–9 (2016).
[Crossref]

Perahia, R.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
[Crossref]

Pfeifer, G.

J. Wibbeler, G. Pfeifer, and M. Hietschold, “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS),” Sensors Actuators A 71, 74–80 (1998).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Polcawich, R. G.

Pöllinger, M.

D. O’Shea, C. Junge, M. Pöllinger, A. Vogler, and A. Rauschenbeutel, “All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators,” Appl. Phys. B 105, 129–148 (2011).
[Crossref]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh- Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

Polman, A.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

Poole, P. J.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Popovic, M. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Pruessner, M. W.

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “In-plane microelectromechanical resonator with integrated Fabry-Pèrot cavity,” Appl. Phys. Lett. 92, 081101 (2008).
[Crossref]

Qi, M.

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

Qian, J.

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. review letters 107, 043603 (2011).
[Crossref]

Rabinovich, W. S.

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “In-plane microelectromechanical resonator with integrated Fabry-Pèrot cavity,” Appl. Phys. Lett. 92, 081101 (2008).
[Crossref]

Ram, R. J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Raskin, J.-P.

J. Laconte, D. Flandre, and J.-P. Raskin, Micromachined thin-film sensors for SOI-CMOS co-integration (Springer, Dordrecht, 2006).

Rauschenbeutel, A.

D. O’Shea, C. Junge, M. Pöllinger, A. Vogler, and A. Rauschenbeutel, “All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators,” Appl. Phys. B 105, 129–148 (2011).
[Crossref]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh- Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

Rea, M. T.

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
[Crossref]

Reano, R. M.

Reimer, M. E.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Rezac, J.

Rijnders, G.

M. D. Nguyen, E. P. Houwman, and G. Rijnders, “Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates,” Sci. Reports 7, 12915 (2017).
[Crossref]

Rodriguez, A. W.

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

Roeloffzen, C. G. H.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Roels, J.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211 (2010).
[Crossref]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478 (2009).
[Crossref]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

Rosenberger, A.

Rubinsztein-Dunlop, H.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

Salvia, J. C.

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Senellart, P.

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

Sengo, G.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Shah, S.

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105, 051904 (2014).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41 (2007).
[Crossref]

Shen, Z.

Sheridan, E.

C. G. Baker, C. Bekker, D. L. McAuslan, E. Sheridan, and W. P. Bowen, “High bandwidth on-chip capacitive tuning of microtoroid resonators,” Opt. Express 24, 20400 (2016).
[Crossref] [PubMed]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

Song, J. D.

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Spinka, H.

Srinivasan, K.

K. E. Grutter, M. I. Davanço, K. C. Balram, and K. Srinivasan, “Tuning and stabilization of optomechanical crystal cavities through NEMS integration,” APL Photonics 3, 100801 (2018).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14, 075015 (2012).
[Crossref]

Stapfner, S.

Stemme, G.

Stern, B.

Stern, N. P.

St-Gelais, R.

Stievater, T. H.

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “In-plane microelectromechanical resonator with integrated Fabry-Pèrot cavity,” Appl. Phys. Lett. 92, 081101 (2008).
[Crossref]

Stobbe, S.

Stojanovic, V. M.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Sumetsky, M.

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. letters 35, 1866–1868 (2010).
[Crossref]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

Sun, C.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Takahashi, K.

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

Tanaka, Y.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
[Crossref] [PubMed]

Tang, X.

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

Tian, J.

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[Crossref]

Tokumasu, N.

K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda, “Silicon dioxide deposition by atmospheric pressure and low-temperature CVD using TEOS and ozone,” J. The Electrochem. Soc. 137, 2883–2887 (1990).
[Crossref]

Tuthill, P.

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Underwood, D.

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

Vahala, K. J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

van Etten, W.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

van Otten, F. W. M.

Van Thourhout, D.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211 (2010).
[Crossref]

Vanga, S. K.

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

Vogler, A.

D. O’Shea, C. Junge, M. Pöllinger, A. Vogler, and A. Rauschenbeutel, “All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators,” Appl. Phys. B 105, 129–148 (2011).
[Crossref]

von Klitzing, W.

Vora, K.

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[Crossref]

Wade, M. T.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Wang, C.

Wang, H.

Wang, I.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh- Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

Wei, G.

Weig, E. M.

Weiner, A. M.

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

Wibbeler, J.

J. Wibbeler, G. Pfeifer, and M. Hietschold, “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS),” Sensors Actuators A 71, 74–80 (1998).
[Crossref]

Wiederhecker, G.

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105, 051904 (2014).
[Crossref]

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19, 2782–2790 (2011).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633 (2009).
[Crossref] [PubMed]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
[Crossref]

Windeler, R. S.

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. letters 35, 1866–1868 (2010).
[Crossref]

Winger, M.

Wood, M. G.

Woolf, D.

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

Xia, T.

Xiao, Y.-F.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. letters 38, 1802–1804 (2013).
[Crossref]

Xu, Q.

Xuan, Y.

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

Xue, X.

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

Yamaguchi, H.

M. Asano, R. Ohta, T. Yamamoto, H. Okamoto, and H. Yamaguchi, “An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator,” Appl. Phys. Lett. 112, 201103 (2018).
[Crossref]

Yamamoto, T.

M. Asano, R. Ohta, T. Yamamoto, H. Okamoto, and H. Yamaguchi, “An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator,” Appl. Phys. Lett. 112, 201103 (2018).
[Crossref]

Yan, M.-Y.

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. letters 38, 1802–1804 (2013).
[Crossref]

Yoon, S. N.

Yu, H.

W. Zhou, J. He, X. He, H. Yu, and B. Peng, “Dielectric charging induced drift in micro device reliability – a review,” Microelectron. Reliab. 66, 1–9 (2016).
[Crossref]

Yu, X.-C.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Yuan, X.

X. Yuan, S. Cherepko, J. Hwang, C. L. Goldsmith, C. Nordqusit, and C. Dyck, “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches,” in 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3 (2004), pp. 1943–1946.
[Crossref]

Zadeh, I. E.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Zhang, B.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

Zhang, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25, 12109–12120 (2017).
[Crossref] [PubMed]

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105, 051904 (2014).
[Crossref]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Zheng, X.

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

Zhou, B.

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

Zhou, G.

Zhou, W.

W. Zhou, J. He, X. He, H. Yu, and B. Peng, “Dielectric charging induced drift in micro device reliability – a review,” Microelectron. Reliab. 66, 1–9 (2016).
[Crossref]

Zhou, Z.-H.

Zhuang, L.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Zou, C.-L.

Zwiller, V.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Adv. Mater. (2)

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

K. D. Heylman, K. A. Knapper, E. H. Horak, M. T. Rea, S. K. Vanga, and R. H. Goldsmith, “Optical microresonators for sensing and transduction: A materials perspective,” Adv. Mater. 29, 1700037 (2017).
[Crossref]

APL Photonics (1)

K. E. Grutter, M. I. Davanço, K. C. Balram, and K. Srinivasan, “Tuning and stabilization of optomechanical crystal cavities through NEMS integration,” APL Photonics 3, 100801 (2018).
[Crossref]

Appl. Phys. B (1)

D. O’Shea, C. Junge, M. Pöllinger, A. Vogler, and A. Rauschenbeutel, “All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators,” Appl. Phys. B 105, 129–148 (2011).
[Crossref]

Appl. Phys. Lett. (8)

M. Asano, R. Ohta, T. Yamamoto, H. Okamoto, and H. Yamaguchi, “An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator,” Appl. Phys. Lett. 112, 201103 (2018).
[Crossref]

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “In-plane microelectromechanical resonator with integrated Fabry-Pèrot cavity,” Appl. Phys. Lett. 92, 081101 (2008).
[Crossref]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
[Crossref]

T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaître, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99, 151117 (2011).
[Crossref]

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105, 051904 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1-by-8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photonics Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

H. M. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonics Technol. Lett. 26, 1411–1413 (2014).
[Crossref]

J. Light. Technol. (1)

X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Light. Technol. 36, 2312–2321 (2018).
[Crossref]

J. Microelectromechanical Syst. (1)

G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and observations of dielectric charge in thermally oxidized silicon resonators,” J. Microelectromechanical Syst. 19, 162–174 (2010).
[Crossref]

J. Micromechanics Microengineering (1)

E. Iwase, P.-C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Lončar, “Control of buckling in large micromembranes using engineered support structures,” J. Micromechanics Microengineering 22, 065028 (2012).
[Crossref]

J. Phys. D (1)

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[Crossref]

J. The Electrochem. Soc. (1)

K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda, “Silicon dioxide deposition by atmospheric pressure and low-temperature CVD using TEOS and ozone,” J. The Electrochem. Soc. 137, 2883–2887 (1990).
[Crossref]

Microelectron. Reliab. (1)

W. Zhou, J. He, X. He, H. Yu, and B. Peng, “Dielectric charging induced drift in micro device reliability – a review,” Microelectron. Reliab. 66, 1–9 (2016).
[Crossref]

Nat. Commun. (1)

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Nat. Photonics (4)

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474 (2014).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326 (2015).
[Crossref]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478 (2009).
[Crossref]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211 (2010).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41 (2007).
[Crossref]

Nature (5)

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633 (2009).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341 (2014).
[Crossref] [PubMed]

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349 (2018).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214 (2007).
[Crossref]

New J. Phys. (1)

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14, 075015 (2012).
[Crossref]

Opt. Express (16)

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

W. Jin, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectrically tuned silicon nitride ring resonator,” Opt. Express 26, 3174–3187 (2018).
[Crossref] [PubMed]

C. G. Baker, C. Bekker, D. L. McAuslan, E. Sheridan, and W. P. Bowen, “High bandwidth on-chip capacitive tuning of microtoroid resonators,” Opt. Express 24, 20400 (2016).
[Crossref] [PubMed]

Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, and C.-H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25, 4046 (2017).
[Crossref] [PubMed]

B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25, 12109–12120 (2017).
[Crossref] [PubMed]

S. C. Ellis, S. Kuhlmann, K. Kuehn, H. Spinka, D. Underwood, R. R. Gupta, L. E. Ocola, P. Liu, G. Wei, N. P. Stern, J. Bland-Hawthorn, and P. Tuthill, “Photonic ring resonator filters for astronomical OH suppression,” Opt. Express 25, 15868–15889 (2017).
[Crossref] [PubMed]

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19, 2782–2790 (2011).
[Crossref] [PubMed]

K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19, 17966–17972 (2011).
[Crossref] [PubMed]

M. Winger, T. D. Blasius, T. P. M. Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011).
[Crossref]

L. Midolo, S. N. Yoon, F. Pagliano, T. Xia, F. W. M. van Otten, M. Lermer, S. Höfling, and A. Fiore, “Electromechanical tuning of vertically-coupled photonic crystal nanobeams,” Opt. Express 20, 19255 (2012).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
[Crossref] [PubMed]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

J. Rezac and A. Rosenberger, “Locking a microsphere whispering-gallery mode to a laser,” Opt. Express 8, 605 (2001).
[Crossref] [PubMed]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421 (2008).
[Crossref] [PubMed]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. letters (2)

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. letters 35, 1866–1868 (2010).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. letters 38, 1802–1804 (2013).
[Crossref]

Optica (3)

Phys. Rev. Lett. (6)

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).
[Crossref]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh- Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, and I. Favero, “Light-mediated cascaded locking of multiple nano-optomechanical oscillators,” Phys. Rev. Lett. 118, 063605 (2017).
[Crossref] [PubMed]

Phys. review letters (1)

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. review letters 107, 043603 (2011).
[Crossref]

Proc. Natl. Acad. Sci. (2)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. 108, 5976–5979 (2011).
[Crossref] [PubMed]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sci. Adv. (1)

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2, e1501690 (2016).
[Crossref] [PubMed]

Sci. Reports (1)

M. D. Nguyen, E. P. Houwman, and G. Rijnders, “Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates,” Sci. Reports 7, 12915 (2017).
[Crossref]

Sensors Actuators A (1)

J. Wibbeler, G. Pfeifer, and M. Hietschold, “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS),” Sensors Actuators A 71, 74–80 (1998).
[Crossref]

Other (2)

X. Yuan, S. Cherepko, J. Hwang, C. L. Goldsmith, C. Nordqusit, and C. Dyck, “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches,” in 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3 (2004), pp. 1943–1946.
[Crossref]

J. Laconte, D. Flandre, and J.-P. Raskin, Micromachined thin-film sensors for SOI-CMOS co-integration (Springer, Dordrecht, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Schematic illustration of a double-disk resonator, consisting of two disks of thickness tdisk (blue) separated by a thin sacrificial layer (purple), which, once etched, reveals an air gap where the optical mode is localized. (b) Finite Element Method (FEM) simulation showing a cross-section of a fundamental transverse electric (TE) Whispering Gallery Mode (WGM) of the structure (orange arrows highlight the position of the air gap). (c) FEM calculation of the optomechanical coupling strength G OM ω x for a silica double-disk with tdisk = 350 nm, and the WGM shown in (b), as a function of air gap. Note that unlike single-disk resonators [59], GOM is essentially independent of device radius and only depends on the vertical separation between the disks [55]. The shaded area denotes the range of air gaps typically observed in fabricated devices. (d) False-color Scanning Electron Microscope (SEM) top-view of a fabricated silica (blue) double-disk device (radius 90 μm), supported by four spokes. Half-circular gold (yellow) pads in the center of the device are contact pads for the probe tips [60,61]. Scale bar is 20 μm. (e) False-color SEM micrograph showing a zoomed-in view of the gold interdigitated electrodes patterned on the support spokes of the top disk. (f) Top: top-view of a simulated support spoke. The center electrode (blue) is kept at ground, while a nonzero potential bias is applied to the outer electrode (red). Bottom: 3D FEM electromechanical simulation showing the deflection of the cantilever spoke through the capacitive drive. Color code shows the electric potential (blue=0V; red=1V). Note that for a single-disk resonator only the in-plane change in the length of the spoke would be useful, as only it changes the cavity radius [24,60], while the double-disk geometry allows the much larger out-of-plane motion to be leveraged for tuning.
Fig. 2
Fig. 2 (a) Experimental setup. Probe tips contacting the device are shown in red. FPC – Fibre Polarization Controller; PD – Photodetector. (b) Typical transmission spectrum of a WGM resonance, measured by fast single-pass sweep of the laser. Quality factor of the fitted Lorentzian curve (red) is 3.8 × 105. For averaged measurements, thermal motion of the disks induces wavelength jitter on the order of 10 pm [26]. (c) Waterfall plot showing full FSR capacitive tuning of a double-disk resonator. Consecutive traces are offset by 0.5 V, with an initial applied voltage of 7 V. Four WGMs of the same family and increasing azimuthal order m are highlighted in purple, yellow, green and blue. (d) WGM resonance frequencies as a function of V2, for the four WGMs highlighted in (c). Slope of the curves corresponds to αopt.
Fig. 3
Fig. 3 (a) Schematic of the setup used for coupling between a tunable double-disk resonator and a passive microtoroid cavity. (b) The lower quality toroid WGM (yellow) remains stationary while the optical resonance of the double-disk (blue) is tuned into resonance with –and then through– the toroid WGM.
Fig. 4
Fig. 4 Comparison of current work with other implementations of microcavity tuning in the literature. Each plot compares device size with (a) the number of free spectral ranges across which tuning was demonstrated and (b) the absolute tuning range of the cavity normalised to the operational wavelength. In the case where two markers are present connected with a line, the left-hand point denotes the size of the optical cavity, and the right-hand marker the size of the overhead that would be required on-chip for the full tuning mechanism. References used in this figure: split rings [39–41]; microspheres [35–37]; microbottles/bubbles [30–34]; fabry-perot optical cavity [38]; photonic crystals [42–47], heat-based tuning [23, 29]; dielectric actuation with MEMS cantilever [53]; on-chip PZT actuation [24]; and our previous microtoroid-based work [60].
Fig. 5
Fig. 5 Scaling of radial-strain (a) and heat-based (b) FSR tuning requirements with device dimensions.
Fig. 6
Fig. 6 Fabrication process for double disk electro-optomechanical devices used in this work. Steps are outlined in the text. SiO2 layers are shown in gray; α-Si and Si in blue.
Fig. 7
Fig. 7 (a) Cantilevers fabricated in the silica layers display deformation due to an internal stress gradient in the material. This is the main limitation in the development and design of the double disk cavities in this paper. Sections (b)–(e) show design files and SEM images of the main design steps from the first full-disk design to stress-released stacked annuli. The scale bars correspond to 10 um in each SEM image.
Fig. 8
Fig. 8 Optical image top-view of a double-disk with thin spokes (a) and double-disk with wide spokes and stress-release features [68] (b). Visible fringes on the outer annuli are due to optical interference coming from changes in gap spacing. Scale bars are 20 μm. Insets: 3D optical profiles captured using an optical profiling tool (Zeta 300), showing out-of-plane warping in the devices after release. Vertical scale bars are 5 μm. Note the significantly reduced out-of-plane displacement in (b) vs (a).
Fig. 9
Fig. 9 (a) Optical tuning of over 3 FSRs, in a different device to the one in shown in Fig. 2 of the main text. (b) Clear transitions between regions of different tunability can be seen, with tunabilities of −1.2 (yellow), −3.0 (purple) and −1.8 (green) GHz/V2 respectively.
Fig. 10
Fig. 10 3D electromechanical simulation of a support-spoke deflection. The box around the cantilever is an air domain inside which the electrical field lines are calculated, with free mesh deformation (i.e. through which the cantilever can deflect without resistance). Calculated αmech = 1.1 nm/V2.
Fig. 11
Fig. 11 2D axisymmetric electromechanics simulation of devices with improved tunability. Top: Calculated electric potential, with one electrode connected to ground and the other to a 1 V source (color code: electric potential (V)). Middle: calculated deflection for the 1 V bias shown above (color code: physical displacement (nm)), yielding αmech = 17 nm/V2. Device radius: 50 um; Electrode width: 300 nm; Electrode gap: 300 nm; N=30 pairs of concentric electrodes. Top and bottom disk thickness respectively 200 nm and 300 nm. Bottom: Deflection for a 1 V bias in a smaller device of radius 15 um (color code: physical displacement), yielding αmech = 0.8 nm/V2. Device radius/surface area are reduced respectively by a factor of 6/36 compared to the devices shown in the main text. Electrode width: 200 nm; Electrode gap: 200 nm; N=15 pairs of concentric electrodes. Top and bottom disk thickness respectively 100 nm and 300 nm.
Fig. 12
Fig. 12 2D axisymmetric FEM simulations comparing piezoelectric (a) and capacitive (b) actuation schemes. Both simulations are for devices with radius 15 um and top/bottom disk thicknesses of 100/300 nm respectively. (color code: physical displacement (nm)) (a) Piezoelectric scheme similar to Jin, et al. [24], where a piezoelectric element is deposited on top of the device. The out-of-plane displacement of 63 nm results from application of the maximal material strain (2 ×10−3). (b) Simulation with the optimised scheme presented in Fig. 11(c). As described in the section on improved device design, FSR tuning is possible with this method for an applied voltage of 13 V, as shown in this panel. The resulting out-of-plane displacement of 146 nm is more than twice the maximum achievable with the piezoelectric actuation scheme.
Fig. 13
Fig. 13 Photographs of the experimental setup used to characterise our devices. (a) Side-view photograph of the experimental setup, showing the 2-axis imaging system. (b) Photograph showing a silicon chip containing 14 devices, as well as two ultra-sharp tungsten probe-tips used for the application of a voltage bias (foreground) and the fibre taper used for evanescent optical readout of the resonators. (c) Optical microscope top-view of a double-disk resonator, with fibre taper (top) and probe tips contacting the device (foreground).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n eff L = m λ 0
FSR = λ n eff L Δ n eff , FSR = λ L .
α opt = G OM 2 π α mech .

Metrics