Abstract

We demonstrate the fabrication of multi-core (imaging) microstructured optical fiber via soft-glass preform extrusion through a 3D printed titanium die. The combination of extrusion through 3D printed dies and structured element (capillary) stacking allows for unprecedented control of the optical fiber geometry. We have exploited this to demonstrate a 100 pixel rectangular array imaging microstructured fiber. Due to the high refractive index of the glass used (n = 1.62), such a fiber can theoretically have a pixel pitch as small as 1.8 µm. This opens opportunities for ultra-small, high-resolution imaging fibers fabricated from diverse glass types.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Extrusion of complex preforms for microstructured optical fibers

Heike Ebendorff-Heidepriem and Tanya M. Monro
Opt. Express 15(23) 15086-15092 (2007)

Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores

Heike Ebendorff-Heidepriem, Stephen C. Warren-Smith, and Tanya M. Monro
Opt. Express 17(4) 2646-2657 (2009)

Analysis of glass flow during extrusion of optical fiber preforms

Heike Ebendorff-Heidepriem and Tanya M. Monro
Opt. Mater. Express 2(3) 304-320 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref] [PubMed]
  2. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  3. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21(2), 1656–1668 (2013).
    [Crossref] [PubMed]
  4. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  5. D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
    [Crossref] [PubMed]
  6. S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
    [Crossref] [PubMed]
  7. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
    [Crossref]
  8. M. van Eijkelenborg, “Imaging with microstructured polymer fibre,” Opt. Express 12(2), 342–346 (2004).
    [Crossref] [PubMed]
  9. J. Wang, X. Yang, and L. Wang, “Fabrication and experimental observation of monolithic multi-air-core fiber array for image transmission,” Opt. Express 16(11), 7703–7708 (2008).
    [Crossref] [PubMed]
  10. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
    [Crossref] [PubMed]
  11. G. Tsiminis, K. J. Rowland, E. P. Schartner, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing,” Opt. Express 24(6), 5911–5917 (2016).
    [Crossref] [PubMed]
  12. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  13. E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
    [Crossref]
  14. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
    [Crossref]
  15. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
    [Crossref] [PubMed]
  16. H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. M. Monro, “3D-printed extrusion dies: a versatile approach to optical material processing,” Opt. Mater. Express 4(8), 1494–1504 (2014).
    [Crossref]
  17. X. Jiang, F. Babic, J. Huang, S. Xie, Z. Wang, R. Sopalla, N. Joly, and P. S. J. Russell, “Recent advances in fabrication and applications of nanostructured soft-glass optical fibres,” Advanced Photonics Congress, SoM2H.2 (2018).
    [Crossref]
  18. X. Jiang, N. Y. Joly, R. Sopalla, F. Babic, J. Huang, and P. S. J. Russell, “Soft glass microstructured fibers and their applications,” Advanced Photonics Congress, SoW3G.1 (2016).
    [Crossref]
  19. J. Y. Y. Leong, S. Asimakis, F. Poletti, P. Petropoulos, X. Feng, R. C. Moore, K. E. Frampton, T. M. Monro, H. Ebendorff-Heidepriem, W. H. Loh, and D. J. Richardson, “Nonlinearity and dispersion control in small core lead silicate holey fibers by structured element stacking,” Proc. Optical Fiber Communication Conference, OTuH1 (2006).
    [Crossref]
  20. J. Y. Y. Leong, S. Asimakis, F. Poletti, P. Petropoulos, X. Feng, R. C. Moore, K. E. Frampton, T. M. Monro, H. Ebendorff-Heidepriem, W. H. Loh, and D. J. Richardson, “Towards zero dispersion highly nonlinear lead silicate glass holey fibres at 1550nm by structured-element-stacking,” Proc. European Conference on Optical Communication, Th4.4.5 (postdeadline) (2005).
  21. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express 2(3), 304–320 (2012).
    [Crossref]
  22. H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol. 70(1-3), 145–150 (1997).
    [Crossref]
  23. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
    [Crossref] [PubMed]
  24. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref] [PubMed]

2018 (1)

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref] [PubMed]

2017 (1)

2016 (1)

2015 (2)

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (1)

2010 (2)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

2007 (1)

2006 (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[Crossref]

2004 (1)

1997 (1)

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol. 70(1-3), 145–150 (1997).
[Crossref]

Abell, A. D.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Afshar, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Afshar V, S.

Boonzajer Flaes, D. E.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref] [PubMed]

Chen, X.

Cižmár, T.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref] [PubMed]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Davis, C.

de Boer, J. F.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref] [PubMed]

Dowler, A.

Ebendorff-Heidepriem, H.

G. Tsiminis, K. J. Rowland, E. P. Schartner, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing,” Opt. Express 24(6), 5911–5917 (2016).
[Crossref] [PubMed]

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. M. Monro, “3D-printed extrusion dies: a versatile approach to optical material processing,” Opt. Mater. Express 4(8), 1494–1504 (2014).
[Crossref]

H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express 2(3), 304–320 (2012).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[Crossref]

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Farahi, S.

Foo, T. C.

François, A.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Gu, R. Y.

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Heng, S.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Kahn, J. M.

Klantsataya, E.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Kostecki, R.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Li, Y.

Lima-Marques, L.

Luther-Davies, B.

Mahalati, R. N.

Mayer, H.-J.

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol. 70(1-3), 145–150 (1997).
[Crossref]

Monro, T. M.

G. Tsiminis, K. J. Rowland, E. P. Schartner, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing,” Opt. Express 24(6), 5911–5917 (2016).
[Crossref] [PubMed]

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. M. Monro, “3D-printed extrusion dies: a versatile approach to optical material processing,” Opt. Mater. Express 4(8), 1494–1504 (2014).
[Crossref]

H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express 2(3), 304–320 (2012).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[Crossref]

Moore, R.

Moser, C.

Nguyen, L. V.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Papadopoulos, I. N.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Psaltis, D.

Qi, S.

Reichenbach, K. L.

Reynolds, T.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Roeder, E.

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol. 70(1-3), 145–150 (1997).
[Crossref]

Rowland, K. J.

G. Tsiminis, K. J. Rowland, E. P. Schartner, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing,” Opt. Express 24(6), 5911–5917 (2016).
[Crossref] [PubMed]

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Schartner, E. P.

G. Tsiminis, K. J. Rowland, E. P. Schartner, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing,” Opt. Express 24(6), 5911–5917 (2016).
[Crossref] [PubMed]

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Schuppich, J.

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Spooner, N. A.

Stiehl, C.

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol. 70(1-3), 145–150 (1997).
[Crossref]

Stopka, J.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref] [PubMed]

Tang, D.

Tsiminis, G.

G. Tsiminis, K. J. Rowland, E. P. Schartner, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing,” Opt. Express 24(6), 5911–5917 (2016).
[Crossref] [PubMed]

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Turtaev, S.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref] [PubMed]

Tyc, T.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref] [PubMed]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

van Eijkelenborg, M.

Wang, J.

Wang, L.

Warren-Smith, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Warren-Smith, S. C.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

Xu, C.

Yang, A.

Yang, X.

Yang, Z.

Yu, Y.

Zhai, C.

Zhang, B.

Zhang, W. Q.

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[Crossref]

Biomed. Opt. Express (1)

Int. J. Appl. Glass Sci. (1)

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

J. Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

J. Mater. Process. Technol. (1)

H.-J. Mayer, C. Stiehl, and E. Roeder, “Applying the finite-element method to determine the die swell phenomenon during the extrusion of glass rods with non-circular cross-sections,” J. Mater. Process. Technol. 70(1-3), 145–150 (1997).
[Crossref]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Opt. Express (9)

R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21(2), 1656–1668 (2013).
[Crossref] [PubMed]

M. van Eijkelenborg, “Imaging with microstructured polymer fibre,” Opt. Express 12(2), 342–346 (2004).
[Crossref] [PubMed]

J. Wang, X. Yang, and L. Wang, “Fabrication and experimental observation of monolithic multi-air-core fiber array for image transmission,” Opt. Express 16(11), 7703–7708 (2008).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

G. Tsiminis, K. J. Rowland, E. P. Schartner, N. A. Spooner, T. M. Monro, and H. Ebendorff-Heidepriem, “Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing,” Opt. Express 24(6), 5911–5917 (2016).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
[Crossref] [PubMed]

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
[Crossref] [PubMed]

S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. Lett. (1)

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref] [PubMed]

Other (4)

X. Jiang, F. Babic, J. Huang, S. Xie, Z. Wang, R. Sopalla, N. Joly, and P. S. J. Russell, “Recent advances in fabrication and applications of nanostructured soft-glass optical fibres,” Advanced Photonics Congress, SoM2H.2 (2018).
[Crossref]

X. Jiang, N. Y. Joly, R. Sopalla, F. Babic, J. Huang, and P. S. J. Russell, “Soft glass microstructured fibers and their applications,” Advanced Photonics Congress, SoW3G.1 (2016).
[Crossref]

J. Y. Y. Leong, S. Asimakis, F. Poletti, P. Petropoulos, X. Feng, R. C. Moore, K. E. Frampton, T. M. Monro, H. Ebendorff-Heidepriem, W. H. Loh, and D. J. Richardson, “Nonlinearity and dispersion control in small core lead silicate holey fibers by structured element stacking,” Proc. Optical Fiber Communication Conference, OTuH1 (2006).
[Crossref]

J. Y. Y. Leong, S. Asimakis, F. Poletti, P. Petropoulos, X. Feng, R. C. Moore, K. E. Frampton, T. M. Monro, H. Ebendorff-Heidepriem, W. H. Loh, and D. J. Richardson, “Towards zero dispersion highly nonlinear lead silicate glass holey fibres at 1550nm by structured-element-stacking,” Proc. European Conference on Optical Communication, Th4.4.5 (postdeadline) (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Target preform design (black is glass, white is air). (b-d) Cross sectional images of the extruded four-core preforms. (b) Initial attempt resulting in significant die swell of the cores, extruded through a die with exit design shown in Fig. 1(a). (c) Preform result after balancing the glass flow between the outer wall and the cores, but which failed to form struts. (d) Preform result after increasing the strut thickness in the die design relative to Fig. 1(c).
Fig. 2
Fig. 2 (a) Stacked array of canes that were drawn from the preform shown in Fig. 1(d). (b) Extruded tube with square inner, which was designed to allow the stacked assembly in Fig. 2(a) to be inserted. (c) Drawn fiber with reflection mode microscope image. (d) Drawn fiber with transmission mode microscope image.
Fig. 3
Fig. 3 Optical experimental configurations for testing the imaging MOF. (a) Transmission through a single core of the imaging MOF. (b) Transmitting the image of simple geometric shapes through the imaging MOF. (c) Loss measurement through the imaging MOF, averaged over all cores of the fiber. MO is microscope objective, OSA is optical spectrum analyzer.
Fig. 4
Fig. 4 (a) Reflected microscope image of the imaging MOF, same image as shown in Fig. 2(c). (b-d) Upper images show a zoomed microscope image of the fiber and the circles show the locations where the 532 nm laser beam was focused onto the fiber. The lower images show the corresponding transmitted images recorded on the camera, showing propagation through a single core without coupling to adjacent cores. (e) The laser beam was focused on a core with relatively thicker strut to an adjacent core (approx. 1.2 µm). In this case coupling to the adjacent core was observed in the transmitted image.
Fig. 5
Fig. 5 Patterns transmitted through the imaging MOF. (a) Uniform illumination. (b) Square. (c) Annulus. Yellow dashed lines show the approximate position and orientation of the imaged shapes. (d) Histogram showing the pixel (core) intensity distribution for the uniform illumination image in Fig. 5(a).
Fig. 6
Fig. 6 Transmission loss of the imaging MOF when coupled uniformly across all cores (black curve). Blue data points represent the material loss provided by the manufacturer for F2 lead-silicate glass (Schott). https://www.schott.com/advanced_optics/us/abbe_datasheets/schott-datasheet-f2.pdf
Fig. 7
Fig. 7 (a) Geometry of the numerical model showing both the even and odd modes and the two polarizations for the example case of core diameter, D, being 1.2 µm and the separation, S, being 0.6 µm. (b) Values of core diameter and core separation that give coherence lengths of 0.1 m, 1.0 m and 10 m. Labelled dashed lines show the pixel fill factor as a fraction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L c = λ 2( n eff e n eff o ) ,

Metrics