Abstract

A novel multiplexing scheme of anti-resonant reflecting optical waveguides (ARROW) for temperature sensing based on quartz capillary is firstly proposed and experimentally demonstrated. Each ARROW-based sensor is manufactured by fusion splicing a short section of capillary between two standard single-mode fiber (SMF). Experiments were demonstrated on a three cascaded ARROW-based sensing network chopped from a fiber array with multiple sensors. Simulation and experimental results demonstrate that the positions of sharp periodic transmission dips are independent of the capillary length, but dependent on the refractive indexes and thickness of the silica cladding. The temperature sensitivities of 18.77 pm/°C, 18.19 pm/°C, and 17.94 pm/°C are achieved by wavelength demodulation of selected dips of Gaussian fitting algorithm, and the tunability of sensitivity can be realized by selecting different dips. Furthermore, the merits of low strain cross-sensitivity (−0.71 pm/με), easy fabrication capability and high spectral extinction ratio (about 30dB) make the proposed multiplexing scheme an excellent candidate for performing multi-point and multi-parameter measurements in harsh environments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-insensitive optical fiber refractometer based on multimode interference in two cascaded no-core square fibers

Jixuan Wu, Yinping Miao, Binbin Song, Kailiang Zhang, Wei Lin, Hao Zhang, Bo Liu, and Jianquan Yao
Appl. Opt. 53(22) 5037-5041 (2014)

Humidity-insensitive temperature sensor based on a quartz capillary anti-resonant reflection optical waveguide

Shuangqiang Liu, Yingke Ji, Lugui Cui, Weimin Sun, Jun Yang, and Hanyang Li
Opt. Express 25(16) 18929-18939 (2017)

Photonic crystal fiber sensor array based on modes overlapping

Guillermo A. Cárdenas-Sevilla, Vittoria Finazzi, Joel Villatoro, and Valerio Pruneri
Opt. Express 19(8) 7596-7602 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
    [Crossref] [PubMed]
  2. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  3. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [Crossref] [PubMed]
  4. G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
    [Crossref]
  5. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  6. H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
    [Crossref]
  7. B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
    [Crossref] [PubMed]
  8. Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 22(1), 39–41 (2010).
    [Crossref]
  9. L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
    [Crossref]
  10. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [Crossref]
  11. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  12. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
    [Crossref] [PubMed]
  13. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008).
    [Crossref] [PubMed]
  14. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [Crossref] [PubMed]
  15. S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature insensitive liquid level sensor based on antiresonant reflecting guidance in silica tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
    [Crossref]
  16. R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
    [Crossref] [PubMed]
  17. M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
    [Crossref] [PubMed]
  18. R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222(2), 618–624 (2016).
    [Crossref]
  19. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]
  20. T. Fujisawa and M. Koshiba, “Analysis of photonic crystal waveguide gratings with coupled-mode theory and a finite-element method,” Appl. Opt. 45(17), 4114–4121 (2006).
    [Crossref] [PubMed]
  21. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
    [Crossref] [PubMed]
  22. D. J. Liu, Q. Wu, C. Mei, J. H. Yuan, X. J. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000° C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
    [Crossref]
  23. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [Crossref] [PubMed]
  24. S. Xie, R. Pennetta, and P. S. J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3(3), 277–282 (2016).
    [Crossref]
  25. T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Pérot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
    [Crossref]
  26. W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
    [Crossref]
  27. W. Bai, M. Yang, J. Dai, H. Yu, G. Wang, and C. Qi, “Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements,” Opt. Express 24(4), 3230–3237 (2016).
    [Crossref] [PubMed]
  28. F. Ye, C. Zhou, B. Qi, and L. Qian, “Continuous-wave cavity ring-down evanescent-field sensing with a broadband source based on frequency-shifted interferometry,” Sens. Actuat. B 184(4), 150–155 (2013).
    [Crossref]

2018 (1)

2017 (1)

H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
[Crossref]

2016 (5)

2015 (2)

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

2014 (1)

2013 (3)

2012 (2)

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
[Crossref] [PubMed]

2010 (3)

2008 (2)

2007 (1)

2006 (1)

2002 (2)

2000 (1)

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Pérot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
[Crossref]

1996 (2)

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Abeeluck, A. K.

Bai, W.

Belardi, W.

Bhatia, V.

Brambilla, G.

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[Crossref]

Burger, S.

Chang, H.-C.

Chen, N.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Cheng, J.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222(2), 618–624 (2016).
[Crossref]

Choi, E. S.

Choi, H. Y.

Ciddor, P. E.

Dai, J.

Dai, J. Y.

Ding, D.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Dong, B.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Eggleton, B. J.

Farrell, G.

Fernando, G. F.

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Pérot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
[Crossref]

Fujisawa, T.

Gao, R.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222(2), 618–624 (2016).
[Crossref]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

Gao, Y.

H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
[Crossref]

Gong, J.

Guo, J.

Han, M.

Han, W.

He, J.

He, X.

Headley, C.

Ho, H. L.

Hou, M.

Jiang, L.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222(2), 618–624 (2016).
[Crossref]

Jiang, Y.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222(2), 618–624 (2016).
[Crossref]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

Jin, W.

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Koshiba, M.

Kumar, R.

Lai, C.-H.

Lally, E.

Lee, B. H.

Li, Y.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 22(1), 39–41 (2010).
[Crossref]

Li, Z.

Liao, C.

Litchinitser, N. M.

Liu, B.

Liu, D. J.

Liu, H.

H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
[Crossref]

Liu, N.

Liu, S.

Liu, T.

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Pérot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
[Crossref]

Liu, T.-A.

Liu, Y.

Lu, D.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222(2), 618–624 (2016).
[Crossref]

Lu, J.-Y.

Lu, P.

Luo, B.

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

Luo, Y.

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

Ma, H.

H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
[Crossref]

Ma, J.

Mallik, A. K.

Mei, C.

Paek, U.-C.

Pan, W.

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

Pang, F.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Park, K. S.

Park, S. J.

Pearce, G. J.

Peng, G.-D.

Peng, J.-L.

Pennetta, R.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Poulton, C. G.

Qi, B.

F. Ye, C. Zhou, B. Qi, and L. Qian, “Continuous-wave cavity ring-down evanescent-field sensing with a broadband source based on frequency-shifted interferometry,” Sens. Actuat. B 184(4), 150–155 (2013).
[Crossref]

Qi, C.

Qi, Z.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222(2), 618–624 (2016).
[Crossref]

Qian, L.

F. Ye, C. Zhou, B. Qi, and L. Qian, “Continuous-wave cavity ring-down evanescent-field sensing with a broadband source based on frequency-shifted interferometry,” Sens. Actuat. B 184(4), 150–155 (2013).
[Crossref]

Qu, J.

Ren, Z.

H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
[Crossref]

Russell, P. S. J.

Rutt, H.

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[Crossref]

Semenova, Y.

Shao, L. Y.

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

St J Russell, P.

Sun, B.

Sun, C.-K.

Tan, C.

H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
[Crossref]

Tang, J.

Tian, J.

Vengsarkar, A. M.

Wan, S.

Wang, A.

Wang, D. N.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 22(1), 39–41 (2010).
[Crossref]

Wang, G.

Wang, J.

Wang, T.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Wang, W.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Wang, Y.

Wei, F.

Wiederhecker, G. S.

Wu, Q.

Xia, J.

Xie, S.

Xin, X. J.

Yan, L. S.

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

Yang, M.

W. Bai, M. Yang, J. Dai, H. Yu, G. Wang, and C. Qi, “Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements,” Opt. Express 24(4), 3230–3237 (2016).
[Crossref] [PubMed]

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 22(1), 39–41 (2010).
[Crossref]

Ye, F.

F. Ye, C. Zhou, B. Qi, and L. Qian, “Continuous-wave cavity ring-down evanescent-field sensing with a broadband source based on frequency-shifted interferometry,” Sens. Actuat. B 184(4), 150–155 (2013).
[Crossref]

Yin, G.

You, B.

Yu, C.

Yu, H.

Yuan, J. H.

Zhang, Z. Y.

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

Zhao, Y.

Zheltikov, A. M.

Zhou, C.

F. Ye, C. Zhou, B. Qi, and L. Qian, “Continuous-wave cavity ring-down evanescent-field sensing with a broadband source based on frequency-shifted interferometry,” Sens. Actuat. B 184(4), 150–155 (2013).
[Crossref]

Zhou, J.

Zhu, C.

H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
[Crossref]

Zhu, F.

Zou, X. H.

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[Crossref]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 22(1), 39–41 (2010).
[Crossref]

IEEE Sens. J. (1)

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (1)

L. Y. Shao, Y. Luo, Z. Y. Zhang, X. H. Zou, B. Luo, W. Pan, and L. S. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336(6), 73–76 (2015).
[Crossref]

Opt. Express (7)

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref] [PubMed]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

W. Bai, M. Yang, J. Dai, H. Yu, G. Wang, and C. Qi, “Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements,” Opt. Express 24(4), 3230–3237 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Optik (Stuttg.) (1)

H. Liu, Y. Wang, C. Tan, C. Zhu, Y. Gao, H. Ma, and Z. Ren, “Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance,” Optik (Stuttg.) 134(4), 257–263 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Pérot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
[Crossref]

Sens. Actuat. B (2)

F. Ye, C. Zhou, B. Qi, and L. Qian, “Continuous-wave cavity ring-down evanescent-field sensing with a broadband source based on frequency-shifted interferometry,” Sens. Actuat. B 184(4), 150–155 (2013).
[Crossref]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222(2), 618–624 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of (a) capillary structure (b) optical pathways in capillary. Mode field distribution at (c) the resonant wavelength and (d) the anti-resonant wavelength.
Fig. 2
Fig. 2 (a), (c) Simulated and measured transmission spectra of the capillary with different length (L1 = 7mm, L2 = 14mm) and same thickness (d = 47.5μm). (b), (d) Simulated and measured transmission spectra of the capillary with same length (L = 7mm) and different thickness (d1 = 37.5μm, d2 = 47.5μm).
Fig. 3
Fig. 3 (a) Simulated transmission responses of sensor (d = 47.5μm) at different temperatures. (b) The corresponding spectral shift of a selected dip versus temperature.
Fig. 4
Fig. 4 Schematic diagram of the experimental setup for temperature measurements.
Fig. 5
Fig. 5 Transmission spectra of the capillary with different thickness and multiplexing structure.
Fig. 6
Fig. 6 (a), (c), (e) Transmission responses of three sensors to the temperature increasing. Inset shows the enlarged view of dips by local Gaussian fitting. (b), (d), (f) Wavelength shifts corresponding to temperature of three dips.
Fig. 7
Fig. 7 (a) Transmission spectra response of the cascaded structure with strain increase of sensor 3. (b) Wavelength shifts corresponding to strain.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2d n 1 2 n 0 2 m
FSR= λ m λ m+1 2d n 1 2 n 0 2
T resonant = ( 1 r 1 r 2 ) 2 ( r 1 + r 2 ) 2 1+ r 2 4 2 r 2 2 Ι
d λ m dT = 2d n 1 m n 1 2 n 0 2 α+ 2 n 1 2 n 0 2 m β
n= n +α n ΔT
d= d +β d ΔT