Abstract

The spectral dependence of aerosol light absorption (αabs) and single-scattering albedo—[ω, defined as the ratio of the scattering (αscat) and extinction coefficients (αext = αabs + αscat)]—has proven effective in classifying dominant aerosol types. It is also helpful in understanding aerosol sources, transformation, climate and environmental effects, testing aerosol models, and improving the retrieval accuracy of satellite and remote sensing data. Despite the significant progress that has been made with measurement of light absorption and ω, many of the reported instruments either operate at a fixed wavelength or can only measure a single optical parameter. Quantitative multi-parameter wavelength-dependent measurement remains a challenge. In this work, a three-wavelength cavity-enhanced albedometer was developed. The albedometer can measure multiple optical parameters, αext, αscat, αabs, and ω, at λ = 365, 532, and 660 nm, in real time. The instrument’s performance was evaluated using four different type laboratory generated aerosols, including polystyrene latex spheres (PSL, non-absorbing); ammonium sulfate (AS, non-absorbing); suwannee river fulvic acid (SRFA, slightly absorbing; a proxy for light absorbing organic aerosol); and nigrosin (strongly absorbing).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A fixed frequency aerosol albedometer

Jonathan E. Thompson, Nick Barta, Danielle Policarpio, and Rick DuVall
Opt. Express 16(3) 2191-2205 (2008)

Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity

Weixiong Zhao, Xuezhe Xu, Bo Fang, Qilei Zhang, Xiaodong Qian, Shuo Wang, Pan Liu, Weijun Zhang, Zhenzhu Wang, Dong Liu, Yinbo Huang, Dean S. Venables, and Weidong Chen
Appl. Opt. 56(11) E16-E22 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
    [Crossref]
  2. P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
    [Crossref]
  3. R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
    [Crossref]
  4. J. Li, B. E. Carlson, and A. A. Lacis, “Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures,” J. Geophys. Res. Atmos. 120(5), 2037–2052 (2015).
    [Crossref]
  5. R. Bahadur, P. S. Praveen, Y. Xu, and V. Ramanathan, “Solar absorption by elemental and brown carbon determined from spectral observations,” Proc. Natl. Acad. Sci. U.S.A. 109(43), 17366–17371 (2012).
    [Crossref] [PubMed]
  6. P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
    [Crossref]
  7. H. Moosmüller, R. K. Chakrabarty, and W. P. Arnott, “Aerosol light absorption and its measurement: A review,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 844–878 (2009).
    [Crossref]
  8. D. A. Fischer and G. D. Smith, “A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption,” Aerosol Sci. Technol. 52(4), 393–406 (2018).
    [Crossref]
  9. D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40(9), 697–708 (2006).
    [Crossref]
  10. J. R. Wiegand, L. D. Mathews, and G. D. Smith, “A UV-Vis photoacoustic spectrophotometer,” Anal. Chem. 86(12), 6049–6056 (2014).
    [Crossref] [PubMed]
  11. C. Haisch, P. Menzenbach, H. Bladt, and R. Niessner, “A wide spectral range photoacoustic aerosol absorption spectrometer,” Anal. Chem. 84(21), 8941–8945 (2012).
    [Crossref] [PubMed]
  12. J. G. Radney and C. D. Zangmeister, “Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy,” Anal. Chem. 87(14), 7356–7363 (2015).
    [Crossref] [PubMed]
  13. N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
    [Crossref]
  14. J. M. Langridge, M. S. Richardson, D. Lack, D. Law, and D. M. Murphy, “Aircraft instrument for comprehensive characterization of aerosol optical properties, Part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy,” Aerosol Sci. Technol. 45(11), 1305–1318 (2011).
    [Crossref]
  15. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).
    [Crossref]
  16. J. E. Thompson and H. D. Spangler, “Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient,” Appl. Opt. 45(11), 2465–2473 (2006).
    [Crossref] [PubMed]
  17. M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).
  18. R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
    [Crossref]
  19. A. A. Ruth, S. Dixneuf, and R. Raghunandan, “Broadband cavity enhanced absorption spectroscopy with incoherent light,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H. P. Loock, eds., Vol. 179 of Series Springer Series in Optical Sciences (2014), pp 485–517.
  20. W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
    [Crossref] [PubMed]
  21. R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich, “Broadband measurements of aerosol extinction in the ultraviolet spectral region,” Atmos. Meas. Tech. 6(4), 861–877 (2013).
    [Crossref]
  22. N. Bluvshtein, J. M. Flores, L. Segev, and Y. Rudich, “A new approach for retrieving the UV–vis optical properties of ambient aerosols,” Atmos. Meas. Tech. 9(8), 3477–3490 (2016).
    [Crossref]
  23. J. E. Thompson, N. Barta, D. Policarpio, and R. Duvall, “A fixed frequency aerosol albedometer,” Opt. Express 16(3), 2191–2205 (2008).
    [Crossref] [PubMed]
  24. W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
    [Crossref]
  25. X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
    [Crossref]
  26. T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
    [Crossref]
  27. Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
    [Crossref] [PubMed]
  28. W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
    [Crossref] [PubMed]
  29. J. M. Langridge, M. S. Richardson, D. L. Lack, C. A. Brock, and D. M. Murphy, “Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity,” Aerosol Sci. Technol. 47(11), 1163–1173 (2013).
    [Crossref]
  30. R. Varma, H. Moosmüller, and W. P. Arnott, “Toward an ideal integrating nephelometer,” Opt. Lett. 28(12), 1007–1009 (2003).
    [Crossref] [PubMed]
  31. A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, “The measurement of aerosol optical properties using continuous wave cavity ring-down techniques,” J. Atmos. Ocean. Technol. 20(4), 454–465 (2003).
    [Crossref]
  32. B. Fang, W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, “Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide,” Opt. Express 25(22), 26910–26922 (2017).
    [Crossref] [PubMed]
  33. L. Ma and J. E. Thompson, “Optical properties of dispersed aerosols in the near ultraviolet (355 nm): measurement approach and initial data,” Anal. Chem. 84(13), 5611–5617 (2012).
    [Crossref] [PubMed]
  34. C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
    [Crossref]
  35. A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
    [Crossref]
  36. E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
    [Crossref] [PubMed]
  37. A. Abo Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys. 7(6), 1523–1536 (2007).
    [Crossref]
  38. N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81(5), 1762–1769 (2009).
    [Crossref] [PubMed]
  39. C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
    [Crossref]
  40. L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
    [Crossref]
  41. N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
    [Crossref] [PubMed]
  42. R. T. Chartier and M. E. Greenslade, “Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS),” Atmos. Meas. Tech. 5(4), 709–721 (2012).
    [Crossref]
  43. I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Opt. 39(13), 2067–2070 (2000).
    [Crossref] [PubMed]
  44. C. Jung and B. K. Rhee, “Simultaneous determination of thickness and optical constants of polymer thin film by analyzing transmittance,” Appl. Opt. 41(19), 3861–3865 (2002).
    [Crossref] [PubMed]
  45. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
    [Crossref] [PubMed]
  46. R. H. French, K. I. Winey, M. K. Yang, and W. M. Qiu, “Optical properties and Van Der Waals-London dispersion interactions of polystyrene determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Aust. J. Chem. 60(4), 251–263 (2007).
    [Crossref]
  47. B. Barkey, S. E. Paulson, and A. Chung, “Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index,” Aerosol Sci. Technol. 41(8), 751–760 (2007).
    [Crossref]
  48. R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A 114(26), 7077–7084 (2010).
    [Crossref] [PubMed]
  49. T. Galpin, R. T. Chartier, N. Levergood, and M. E. Greenslade, “Refractive index retrievals for polystyrene latex spheres in the spectral range 220–420 nm,” Aerosol Sci. Technol. 51(10), 1158–1167 (2017).
    [Crossref]
  50. O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. Atmos. 81(33), 5733–5748 (1976).
    [Crossref]
  51. M. Trainic, A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich, “The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols,” Atmos. Chem. Phys. 11(18), 9697–9707 (2011).
    [Crossref]
  52. J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
    [Crossref]
  53. C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
    [Crossref]
  54. P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
    [Crossref]
  55. S. M. Phillips and G. D. Smith, “Light absorption by charge transfer complexes in brown carbon aerosols,” Environ. Sci. Technol. Lett. 1(10), 382–386 (2014).
    [Crossref]
  56. J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
    [Crossref] [PubMed]
  57. N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
    [Crossref]
  58. D. M. Garvey and R. G. Pinnick, “Response characteristics of the particle measuring systems Active Scattering Aerosol Spectrometer Probe (ASASP-X),” Aerosol Sci. Technol. 2(4), 477–488 (1983).
    [Crossref]
  59. T. W. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,” J. Geophys. Res. 109, 21208 (2004).
    [Crossref]
  60. M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6(10), 3131–3148 (2006).
    [Crossref]

2018 (1)

D. A. Fischer and G. D. Smith, “A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption,” Aerosol Sci. Technol. 52(4), 393–406 (2018).
[Crossref]

2017 (4)

T. Galpin, R. T. Chartier, N. Levergood, and M. E. Greenslade, “Refractive index retrievals for polystyrene latex spheres in the spectral range 220–420 nm,” Aerosol Sci. Technol. 51(10), 1158–1167 (2017).
[Crossref]

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[Crossref] [PubMed]

B. Fang, W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, “Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide,” Opt. Express 25(22), 26910–26922 (2017).
[Crossref] [PubMed]

2016 (3)

N. Bluvshtein, J. M. Flores, L. Segev, and Y. Rudich, “A new approach for retrieving the UV–vis optical properties of ambient aerosols,” Atmos. Meas. Tech. 9(8), 3477–3490 (2016).
[Crossref]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

2015 (4)

T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
[Crossref]

J. Li, B. E. Carlson, and A. A. Lacis, “Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures,” J. Geophys. Res. Atmos. 120(5), 2037–2052 (2015).
[Crossref]

J. G. Radney and C. D. Zangmeister, “Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy,” Anal. Chem. 87(14), 7356–7363 (2015).
[Crossref] [PubMed]

P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
[Crossref]

2014 (6)

S. M. Phillips and G. D. Smith, “Light absorption by charge transfer complexes in brown carbon aerosols,” Environ. Sci. Technol. Lett. 1(10), 382–386 (2014).
[Crossref]

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

J. R. Wiegand, L. D. Mathews, and G. D. Smith, “A UV-Vis photoacoustic spectrophotometer,” Anal. Chem. 86(12), 6049–6056 (2014).
[Crossref] [PubMed]

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

2013 (6)

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich, “Broadband measurements of aerosol extinction in the ultraviolet spectral region,” Atmos. Meas. Tech. 6(4), 861–877 (2013).
[Crossref]

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

J. M. Langridge, M. S. Richardson, D. L. Lack, C. A. Brock, and D. M. Murphy, “Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity,” Aerosol Sci. Technol. 47(11), 1163–1173 (2013).
[Crossref]

2012 (6)

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

R. T. Chartier and M. E. Greenslade, “Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS),” Atmos. Meas. Tech. 5(4), 709–721 (2012).
[Crossref]

C. Haisch, P. Menzenbach, H. Bladt, and R. Niessner, “A wide spectral range photoacoustic aerosol absorption spectrometer,” Anal. Chem. 84(21), 8941–8945 (2012).
[Crossref] [PubMed]

M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).

R. Bahadur, P. S. Praveen, Y. Xu, and V. Ramanathan, “Solar absorption by elemental and brown carbon determined from spectral observations,” Proc. Natl. Acad. Sci. U.S.A. 109(43), 17366–17371 (2012).
[Crossref] [PubMed]

L. Ma and J. E. Thompson, “Optical properties of dispersed aerosols in the near ultraviolet (355 nm): measurement approach and initial data,” Anal. Chem. 84(13), 5611–5617 (2012).
[Crossref] [PubMed]

2011 (2)

J. M. Langridge, M. S. Richardson, D. Lack, D. Law, and D. M. Murphy, “Aircraft instrument for comprehensive characterization of aerosol optical properties, Part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy,” Aerosol Sci. Technol. 45(11), 1305–1318 (2011).
[Crossref]

M. Trainic, A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich, “The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols,” Atmos. Chem. Phys. 11(18), 9697–9707 (2011).
[Crossref]

2010 (4)

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A 114(26), 7077–7084 (2010).
[Crossref] [PubMed]

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
[Crossref] [PubMed]

2009 (2)

N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81(5), 1762–1769 (2009).
[Crossref] [PubMed]

H. Moosmüller, R. K. Chakrabarty, and W. P. Arnott, “Aerosol light absorption and its measurement: A review,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 844–878 (2009).
[Crossref]

2008 (2)

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
[Crossref] [PubMed]

J. E. Thompson, N. Barta, D. Policarpio, and R. Duvall, “A fixed frequency aerosol albedometer,” Opt. Express 16(3), 2191–2205 (2008).
[Crossref] [PubMed]

2007 (5)

R. H. French, K. I. Winey, M. K. Yang, and W. M. Qiu, “Optical properties and Van Der Waals-London dispersion interactions of polystyrene determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Aust. J. Chem. 60(4), 251–263 (2007).
[Crossref]

B. Barkey, S. E. Paulson, and A. Chung, “Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index,” Aerosol Sci. Technol. 41(8), 751–760 (2007).
[Crossref]

A. Abo Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys. 7(6), 1523–1536 (2007).
[Crossref]

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

2006 (4)

D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40(9), 697–708 (2006).
[Crossref]

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6(10), 3131–3148 (2006).
[Crossref]

J. E. Thompson and H. D. Spangler, “Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient,” Appl. Opt. 45(11), 2465–2473 (2006).
[Crossref] [PubMed]

2004 (2)

T. W. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,” J. Geophys. Res. 109, 21208 (2004).
[Crossref]

A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

2003 (4)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).
[Crossref]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, “The measurement of aerosol optical properties using continuous wave cavity ring-down techniques,” J. Atmos. Ocean. Technol. 20(4), 454–465 (2003).
[Crossref]

R. Varma, H. Moosmüller, and W. P. Arnott, “Toward an ideal integrating nephelometer,” Opt. Lett. 28(12), 1007–1009 (2003).
[Crossref] [PubMed]

2002 (1)

2000 (1)

1983 (1)

D. M. Garvey and R. G. Pinnick, “Response characteristics of the particle measuring systems Active Scattering Aerosol Spectrometer Probe (ASASP-X),” Aerosol Sci. Technol. 2(4), 477–488 (1983).
[Crossref]

1976 (1)

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. Atmos. 81(33), 5733–5748 (1976).
[Crossref]

Abdelmalki, N.

P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
[Crossref]

Abo Riziq, A.

M. Trainic, A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich, “The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols,” Atmos. Chem. Phys. 11(18), 9697–9707 (2011).
[Crossref]

A. Abo Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys. 7(6), 1523–1536 (2007).
[Crossref]

Abo-Riziq, A.

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
[Crossref] [PubMed]

N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81(5), 1762–1769 (2009).
[Crossref] [PubMed]

Adler, G.

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

Anderson, T. L.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Andreae, M. O.

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6(10), 3131–3148 (2006).
[Crossref]

Arnold, I. J.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

Arnott, W. P.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

H. Moosmüller, R. K. Chakrabarty, and W. P. Arnott, “Aerosol light absorption and its measurement: A review,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 844–878 (2009).
[Crossref]

R. Varma, H. Moosmüller, and W. P. Arnott, “Toward an ideal integrating nephelometer,” Opt. Lett. 28(12), 1007–1009 (2003).
[Crossref] [PubMed]

Bacon, F. W.

T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
[Crossref]

Baer, D. S.

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, “The measurement of aerosol optical properties using continuous wave cavity ring-down techniques,” J. Atmos. Ocean. Technol. 20(4), 454–465 (2003).
[Crossref]

Bahadur, R.

R. Bahadur, P. S. Praveen, Y. Xu, and V. Ramanathan, “Solar absorption by elemental and brown carbon determined from spectral observations,” Proc. Natl. Acad. Sci. U.S.A. 109(43), 17366–17371 (2012).
[Crossref] [PubMed]

Balkanski, Y.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Ball, S. M.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Barkey, B.

B. Barkey, S. E. Paulson, and A. Chung, “Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index,” Aerosol Sci. Technol. 41(8), 751–760 (2007).
[Crossref]

Bar-Or, R. Z.

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

Barta, N.

Baynard, T.

D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40(9), 697–708 (2006).
[Crossref]

Bellouin, N.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Bergstrom, R. W.

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

Bladt, H.

C. Haisch, P. Menzenbach, H. Bladt, and R. Niessner, “A wide spectral range photoacoustic aerosol absorption spectrometer,” Anal. Chem. 84(21), 8941–8945 (2012).
[Crossref] [PubMed]

Bluvshtein, N.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

N. Bluvshtein, J. M. Flores, L. Segev, and Y. Rudich, “A new approach for retrieving the UV–vis optical properties of ambient aerosols,” Atmos. Meas. Tech. 9(8), 3477–3490 (2016).
[Crossref]

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

Bond, T. C.

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

Borrmann, S.

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

Boucher, O.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Brauers, T.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Brock, C. A.

R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich, “Broadband measurements of aerosol extinction in the ultraviolet spectral region,” Atmos. Meas. Tech. 6(4), 861–877 (2013).
[Crossref]

J. M. Langridge, M. S. Richardson, D. L. Lack, C. A. Brock, and D. M. Murphy, “Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity,” Aerosol Sci. Technol. 47(11), 1163–1173 (2013).
[Crossref]

A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Brown, S. S.

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich, “Broadband measurements of aerosol extinction in the ultraviolet spectral region,” Atmos. Meas. Tech. 6(4), 861–877 (2013).
[Crossref]

A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

Brune, W. H.

P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
[Crossref]

Burton, S. P.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

Buseck, P. R.

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

Cao, T.

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

Carlson, B. E.

J. Li, B. E. Carlson, and A. A. Lacis, “Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures,” J. Geophys. Res. Atmos. 120(5), 2037–2052 (2015).
[Crossref]

Castaneda, R.

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, “The measurement of aerosol optical properties using continuous wave cavity ring-down techniques,” J. Atmos. Ocean. Technol. 20(4), 454–465 (2003).
[Crossref]

Chakrabarty, R. K.

H. Moosmüller, R. K. Chakrabarty, and W. P. Arnott, “Aerosol light absorption and its measurement: A review,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 844–878 (2009).
[Crossref]

Chartier, R. T.

T. Galpin, R. T. Chartier, N. Levergood, and M. E. Greenslade, “Refractive index retrievals for polystyrene latex spheres in the spectral range 220–420 nm,” Aerosol Sci. Technol. 51(10), 1158–1167 (2017).
[Crossref]

R. T. Chartier and M. E. Greenslade, “Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS),” Atmos. Meas. Tech. 5(4), 709–721 (2012).
[Crossref]

Chen, W.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[Crossref] [PubMed]

B. Fang, W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, “Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide,” Opt. Express 25(22), 26910–26922 (2017).
[Crossref] [PubMed]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

Cheng, Y.

M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).

Chin, M.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Christopher, S.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Chung, A.

B. Barkey, S. E. Paulson, and A. Chung, “Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index,” Aerosol Sci. Technol. 41(8), 751–760 (2007).
[Crossref]

Clarke, A. D.

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

Collett, J. L.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

DeCarlo, P. F.

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

DeCola, P.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Denjean, C.

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

Dinar, E.

N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81(5), 1762–1769 (2009).
[Crossref] [PubMed]

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
[Crossref] [PubMed]

A. Abo Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys. 7(6), 1523–1536 (2007).
[Crossref]

Dong, M.

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).

Donohue, A.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

Dorn, H.-P.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Doussin, J. F.

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

Dubovik, O.

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

Duvall, R.

Erlick, C.

N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
[Crossref] [PubMed]

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
[Crossref] [PubMed]

A. Abo Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys. 7(6), 1523–1536 (2007).
[Crossref]

Fang, B.

Feingold, G.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).
[Crossref]

Fischer, D. A.

D. A. Fischer and G. D. Smith, “A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption,” Aerosol Sci. Technol. 52(4), 393–406 (2018).
[Crossref]

Flores, J. M.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

N. Bluvshtein, J. M. Flores, L. Segev, and Y. Rudich, “A new approach for retrieving the UV–vis optical properties of ambient aerosols,” Atmos. Meas. Tech. 9(8), 3477–3490 (2016).
[Crossref]

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich, “Broadband measurements of aerosol extinction in the ultraviolet spectral region,” Atmos. Meas. Tech. 6(4), 861–877 (2013).
[Crossref]

M. Trainic, A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich, “The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols,” Atmos. Chem. Phys. 11(18), 9697–9707 (2011).
[Crossref]

Formenti, P.

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

Freedman, A.

T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
[Crossref]

French, R. H.

R. H. French, K. I. Winey, M. K. Yang, and W. M. Qiu, “Optical properties and Van Der Waals-London dispersion interactions of polystyrene determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Aust. J. Chem. 60(4), 251–263 (2007).
[Crossref]

Galpin, T.

T. Galpin, R. T. Chartier, N. Levergood, and M. E. Greenslade, “Refractive index retrievals for polystyrene latex spheres in the spectral range 220–420 nm,” Aerosol Sci. Technol. 51(10), 1158–1167 (2017).
[Crossref]

Gao, X.

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

Garvey, D. M.

D. M. Garvey and R. G. Pinnick, “Response characteristics of the particle measuring systems Active Scattering Aerosol Spectrometer Probe (ASASP-X),” Aerosol Sci. Technol. 2(4), 477–488 (1983).
[Crossref]

Gelencser, A.

M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6(10), 3131–3148 (2006).
[Crossref]

Greenslade, M. E.

T. Galpin, R. T. Chartier, N. Levergood, and M. E. Greenslade, “Refractive index retrievals for polystyrene latex spheres in the spectral range 220–420 nm,” Aerosol Sci. Technol. 51(10), 1158–1167 (2017).
[Crossref]

R. T. Chartier and M. E. Greenslade, “Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS),” Atmos. Meas. Tech. 5(4), 709–721 (2012).
[Crossref]

Gu, X.

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).

Haisch, C.

C. Haisch, P. Menzenbach, H. Bladt, and R. Niessner, “A wide spectral range photoacoustic aerosol absorption spectrometer,” Anal. Chem. 84(21), 8941–8945 (2012).
[Crossref] [PubMed]

Hao, W.-M.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Hasekamp, O. P.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

He, Q.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

Heitmann, U.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).
[Crossref]

Hilfiker, J. N.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

Hills, F. B.

T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
[Crossref]

Hitzenberger, R.

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

Hobbs, P. V.

T. W. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,” J. Geophys. Res. 109, 21208 (2004).
[Crossref]

Holben, B.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

Hong, N.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

Hu, C.

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).

Hu, X. H.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Huang, W.

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

Huang, Y.

Hung, H.-M.

P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
[Crossref]

Ibrahim, I.

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

Ivanov, C. D.

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Jimenez, J. L.

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

Johnson, M. S.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

Jones, R. L.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Jung, C.

Kacenelenbogen, M.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

Kahn, R.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Katrib, Y.

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

Kaufman, Y. J.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Kebabian, P. L.

T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
[Crossref]

Khare, B. N.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. Atmos. 81(33), 5733–5748 (1976).
[Crossref]

Kirchstetter, T. W.

T. W. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,” J. Geophys. Res. 109, 21208 (2004).
[Crossref]

Kiss, G.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
[Crossref] [PubMed]

Knobelspiesse, K. D.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

Koch, D.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Koren, I.

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

Kostinski, A.

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

Kreidenweis, S. M.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Lacis, A. A.

J. Li, B. E. Carlson, and A. A. Lacis, “Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures,” J. Geophys. Res. Atmos. 120(5), 2037–2052 (2015).
[Crossref]

Lack, D.

J. M. Langridge, M. S. Richardson, D. Lack, D. Law, and D. M. Murphy, “Aircraft instrument for comprehensive characterization of aerosol optical properties, Part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy,” Aerosol Sci. Technol. 45(11), 1305–1318 (2011).
[Crossref]

Lack, D. A.

D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40(9), 697–708 (2006).
[Crossref]

Lack, D. L.

J. M. Langridge, M. S. Richardson, D. L. Lack, C. A. Brock, and D. M. Murphy, “Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity,” Aerosol Sci. Technol. 47(11), 1163–1173 (2013).
[Crossref]

Langridge, J. M.

J. M. Langridge, M. S. Richardson, D. L. Lack, C. A. Brock, and D. M. Murphy, “Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity,” Aerosol Sci. Technol. 47(11), 1163–1173 (2013).
[Crossref]

J. M. Langridge, M. S. Richardson, D. Lack, D. Law, and D. M. Murphy, “Aircraft instrument for comprehensive characterization of aerosol optical properties, Part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy,” Aerosol Sci. Technol. 45(11), 1305–1318 (2011).
[Crossref]

Lang-Yona, N.

N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
[Crossref] [PubMed]

N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81(5), 1762–1769 (2009).
[Crossref] [PubMed]

Laskin, A.

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

Laskin, J.

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

Lavi, A.

M. Trainic, A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich, “The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols,” Atmos. Chem. Phys. 11(18), 9697–9707 (2011).
[Crossref]

Law, D.

J. M. Langridge, M. S. Richardson, D. Lack, D. Law, and D. M. Murphy, “Aircraft instrument for comprehensive characterization of aerosol optical properties, Part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy,” Aerosol Sci. Technol. 45(11), 1305–1318 (2011).
[Crossref]

Lee, H. J.

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

Leisner, T.

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

Levergood, N.

T. Galpin, R. T. Chartier, N. Levergood, and M. E. Greenslade, “Refractive index retrievals for polystyrene latex spheres in the spectral range 220–420 nm,” Aerosol Sci. Technol. 51(10), 1158–1167 (2017).
[Crossref]

Levin, E. J. T.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Lewis, K. A.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Li, J.

J. Li, B. E. Carlson, and A. A. Lacis, “Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures,” J. Geophys. Res. Atmos. 120(5), 2037–2052 (2015).
[Crossref]

Linke, C.

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

Liu, D.

Liu, P.

Liu, P. F.

P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
[Crossref]

Livingston, J. M.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

Loeb, N.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Lovejoy, E. R.

D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40(9), 697–708 (2006).
[Crossref]

A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Ma, L.

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

L. Ma and J. E. Thompson, “Optical properties of dispersed aerosols in the near ultraviolet (355 nm): measurement approach and initial data,” Anal. Chem. 84(13), 5611–5617 (2012).
[Crossref] [PubMed]

Ma, X.

Mack, L. A.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Malm, W. C.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Martin, S. T.

P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
[Crossref]

Massoli, P.

T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
[Crossref]

Mathews, L. D.

J. R. Wiegand, L. D. Mathews, and G. D. Smith, “A UV-Vis photoacoustic spectrophotometer,” Anal. Chem. 86(12), 6049–6056 (2014).
[Crossref] [PubMed]

Mazzoleni, C.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

McMeeking, G. R.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Menzenbach, P.

C. Haisch, P. Menzenbach, H. Bladt, and R. Niessner, “A wide spectral range photoacoustic aerosol absorption spectrometer,” Anal. Chem. 84(21), 8941–8945 (2012).
[Crossref] [PubMed]

Michel Flores, J.

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

Miles, R. E. H.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A 114(26), 7077–7084 (2010).
[Crossref] [PubMed]

Moosmüller, H.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

H. Moosmüller, R. K. Chakrabarty, and W. P. Arnott, “Aerosol light absorption and its measurement: A review,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 844–878 (2009).
[Crossref]

R. Varma, H. Moosmüller, and W. P. Arnott, “Toward an ideal integrating nephelometer,” Opt. Lett. 28(12), 1007–1009 (2003).
[Crossref] [PubMed]

Murphy, D. M.

J. M. Langridge, M. S. Richardson, D. L. Lack, C. A. Brock, and D. M. Murphy, “Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity,” Aerosol Sci. Technol. 47(11), 1163–1173 (2013).
[Crossref]

J. M. Langridge, M. S. Richardson, D. Lack, D. Law, and D. M. Murphy, “Aircraft instrument for comprehensive characterization of aerosol optical properties, Part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy,” Aerosol Sci. Technol. 45(11), 1305–1318 (2011).
[Crossref]

Niessner, R.

C. Haisch, P. Menzenbach, H. Bladt, and R. Niessner, “A wide spectral range photoacoustic aerosol absorption spectrometer,” Anal. Chem. 84(21), 8941–8945 (2012).
[Crossref] [PubMed]

Nikolov, I. D.

Nizkorodov, S. A.

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

Novakov, T.

T. W. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,” J. Geophys. Res. 109, 21208 (2004).
[Crossref]

Obrist, D.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Onasch, T. B.

T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
[Crossref]

Orr-Ewing, A. J.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A 114(26), 7077–7084 (2010).
[Crossref] [PubMed]

Owano, T.

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, “The measurement of aerosol optical properties using continuous wave cavity ring-down techniques,” J. Atmos. Ocean. Technol. 20(4), 454–465 (2003).
[Crossref]

Paldus, B. A.

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, “The measurement of aerosol optical properties using continuous wave cavity ring-down techniques,” J. Atmos. Ocean. Technol. 20(4), 454–465 (2003).
[Crossref]

Pangui, E.

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

Paulson, S. E.

B. Barkey, S. E. Paulson, and A. Chung, “Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index,” Aerosol Sci. Technol. 41(8), 751–760 (2007).
[Crossref]

Pettersson, A.

D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40(9), 697–708 (2006).
[Crossref]

A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

Phillips, S. M.

S. M. Phillips and G. D. Smith, “Light absorption by charge transfer complexes in brown carbon aerosols,” Environ. Sci. Technol. Lett. 1(10), 382–386 (2014).
[Crossref]

Picquet-Varrault, B.

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

Pilewskie, P.

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

Pinnick, R. G.

D. M. Garvey and R. G. Pinnick, “Response characteristics of the particle measuring systems Active Scattering Aerosol Spectrometer Probe (ASASP-X),” Aerosol Sci. Technol. 2(4), 477–488 (1983).
[Crossref]

Platt, U.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Pöhler, D.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Policarpio, D.

Pollack, J. B.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. Atmos. 81(33), 5733–5748 (1976).
[Crossref]

Praveen, P. S.

R. Bahadur, P. S. Praveen, Y. Xu, and V. Ramanathan, “Solar absorption by elemental and brown carbon determined from spectral observations,” Proc. Natl. Acad. Sci. U.S.A. 109(43), 17366–17371 (2012).
[Crossref] [PubMed]

Pu, W.

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

Qian, X.

Qiu, W. M.

R. H. French, K. I. Winey, M. K. Yang, and W. M. Qiu, “Optical properties and Van Der Waals-London dispersion interactions of polystyrene determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Aust. J. Chem. 60(4), 251–263 (2007).
[Crossref]

Quinn, P. K.

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

Radney, J. G.

J. G. Radney and C. D. Zangmeister, “Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy,” Anal. Chem. 87(14), 7356–7363 (2015).
[Crossref] [PubMed]

Ramachandran, S.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

Ramanathan, V.

R. Bahadur, P. S. Praveen, Y. Xu, and V. Ramanathan, “Solar absorption by elemental and brown carbon determined from spectral observations,” Proc. Natl. Acad. Sci. U.S.A. 109(43), 17366–17371 (2012).
[Crossref] [PubMed]

Ravishankara, A. R.

D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40(9), 697–708 (2006).
[Crossref]

A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

Reddy, M. S.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Redemann, J.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

Reid, J. P.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A 114(26), 7077–7084 (2010).
[Crossref] [PubMed]

Remer, L. A.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Rhee, B. K.

Richardson, M. S.

J. M. Langridge, M. S. Richardson, D. L. Lack, C. A. Brock, and D. M. Murphy, “Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity,” Aerosol Sci. Technol. 47(11), 1163–1173 (2013).
[Crossref]

J. M. Langridge, M. S. Richardson, D. Lack, D. Law, and D. M. Murphy, “Aircraft instrument for comprehensive characterization of aerosol optical properties, Part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy,” Aerosol Sci. Technol. 45(11), 1305–1318 (2011).
[Crossref]

Riziq, A. A.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
[Crossref] [PubMed]

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

Rudic, S.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A 114(26), 7077–7084 (2010).
[Crossref] [PubMed]

Rudich, Y.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

N. Bluvshtein, J. M. Flores, L. Segev, and Y. Rudich, “A new approach for retrieving the UV–vis optical properties of ambient aerosols,” Atmos. Meas. Tech. 9(8), 3477–3490 (2016).
[Crossref]

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich, “Broadband measurements of aerosol extinction in the ultraviolet spectral region,” Atmos. Meas. Tech. 6(4), 861–877 (2013).
[Crossref]

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

M. Trainic, A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich, “The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols,” Atmos. Chem. Phys. 11(18), 9697–9707 (2011).
[Crossref]

N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
[Crossref] [PubMed]

N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81(5), 1762–1769 (2009).
[Crossref] [PubMed]

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
[Crossref] [PubMed]

A. Abo Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys. 7(6), 1523–1536 (2007).
[Crossref]

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

Russell, P. B.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

Ruth, A. A.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).
[Crossref]

Schleicher, N.

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

Schnaiter, M.

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

Schulz, M.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Schuster, G. L.

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

Segev, L.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

N. Bluvshtein, J. M. Flores, L. Segev, and Y. Rudich, “A new approach for retrieving the UV–vis optical properties of ambient aerosols,” Atmos. Meas. Tech. 9(8), 3477–3490 (2016).
[Crossref]

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

Segre, E.

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
[Crossref] [PubMed]

N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81(5), 1762–1769 (2009).
[Crossref] [PubMed]

Sharma, N.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

Shillings, A. J. L.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Shinozuka, Y.

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

Sierau, B.

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

Smith, G. D.

D. A. Fischer and G. D. Smith, “A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption,” Aerosol Sci. Technol. 52(4), 393–406 (2018).
[Crossref]

J. R. Wiegand, L. D. Mathews, and G. D. Smith, “A UV-Vis photoacoustic spectrophotometer,” Anal. Chem. 86(12), 6049–6056 (2014).
[Crossref] [PubMed]

S. M. Phillips and G. D. Smith, “Light absorption by charge transfer complexes in brown carbon aerosols,” Environ. Sci. Technol. Lett. 1(10), 382–386 (2014).
[Crossref]

Spangler, H. D.

Spindler, C.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
[Crossref] [PubMed]

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

Strawa, A.

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

Strawa, A. W.

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, “The measurement of aerosol optical properties using continuous wave cavity ring-down techniques,” J. Atmos. Ocean. Technol. 20(4), 454–465 (2003).
[Crossref]

Sullivan, A. P.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Takemura, T.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Thieser, J.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Thompson, J. E.

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

L. Ma and J. E. Thompson, “Optical properties of dispersed aerosols in the near ultraviolet (355 nm): measurement approach and initial data,” Anal. Chem. 84(13), 5611–5617 (2012).
[Crossref] [PubMed]

J. E. Thompson, N. Barta, D. Policarpio, and R. Duvall, “A fixed frequency aerosol albedometer,” Opt. Express 16(3), 2191–2205 (2008).
[Crossref] [PubMed]

J. E. Thompson and H. D. Spangler, “Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient,” Appl. Opt. 45(11), 2465–2473 (2006).
[Crossref] [PubMed]

Toon, O. B.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. Atmos. 81(33), 5733–5748 (1976).
[Crossref]

Trainic, M.

M. Trainic, A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich, “The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols,” Atmos. Chem. Phys. 11(18), 9697–9707 (2011).
[Crossref]

N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
[Crossref] [PubMed]

Varma, R.

Varma, R. M.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Venables, D. S.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[Crossref] [PubMed]

B. Fang, W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, “Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide,” Opt. Express 25(22), 26910–26922 (2017).
[Crossref] [PubMed]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Wahner, A.

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

Wang, S.

Wang, X.

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

Wang, Y.

P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
[Crossref]

Wang, Z.

Washenfelder, R. A.

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich, “Broadband measurements of aerosol extinction in the ultraviolet spectral region,” Atmos. Meas. Tech. 6(4), 861–877 (2013).
[Crossref]

Wei, Y.

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

Wiegand, J. R.

J. R. Wiegand, L. D. Mathews, and G. D. Smith, “A UV-Vis photoacoustic spectrophotometer,” Anal. Chem. 86(12), 6049–6056 (2014).
[Crossref] [PubMed]

Winey, K. I.

R. H. French, K. I. Winey, M. K. Yang, and W. M. Qiu, “Optical properties and Van Der Waals-London dispersion interactions of polystyrene determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Aust. J. Chem. 60(4), 251–263 (2007).
[Crossref]

Wold, C. E.

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

Wu, J.

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

Xu, X.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[Crossref] [PubMed]

B. Fang, W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, “Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide,” Opt. Express 25(22), 26910–26922 (2017).
[Crossref] [PubMed]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

Xu, Y.

R. Bahadur, P. S. Praveen, Y. Xu, and V. Ramanathan, “Solar absorption by elemental and brown carbon determined from spectral observations,” Proc. Natl. Acad. Sci. U.S.A. 109(43), 17366–17371 (2012).
[Crossref] [PubMed]

Yang, M. K.

R. H. French, K. I. Winey, M. K. Yang, and W. M. Qiu, “Optical properties and Van Der Waals-London dispersion interactions of polystyrene determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Aust. J. Chem. 60(4), 251–263 (2007).
[Crossref]

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Yu, H.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Zangmeister, C. D.

J. G. Radney and C. D. Zangmeister, “Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy,” Anal. Chem. 87(14), 7356–7363 (2015).
[Crossref] [PubMed]

Zapf, P.

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

Zhang, Q.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[Crossref] [PubMed]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

Zhang, W.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[Crossref] [PubMed]

B. Fang, W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, “Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide,” Opt. Express 25(22), 26910–26922 (2017).
[Crossref] [PubMed]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).

Zhao, W.

W. Zhao, X. Xu, B. Fang, Q. Zhang, X. Qian, S. Wang, P. Liu, W. Zhang, Z. Wang, D. Liu, Y. Huang, D. S. Venables, and W. Chen, “Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity,” Appl. Opt. 56(11), E16–E22 (2017).
[Crossref] [PubMed]

B. Fang, W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, “Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide,” Opt. Express 25(22), 26910–26922 (2017).
[Crossref] [PubMed]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).

Zhou, J.

Zhou, M.

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

Aerosol Sci. Technol. (9)

D. A. Fischer and G. D. Smith, “A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption,” Aerosol Sci. Technol. 52(4), 393–406 (2018).
[Crossref]

D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40(9), 697–708 (2006).
[Crossref]

J. M. Langridge, M. S. Richardson, D. Lack, D. Law, and D. M. Murphy, “Aircraft instrument for comprehensive characterization of aerosol optical properties, Part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy,” Aerosol Sci. Technol. 45(11), 1305–1318 (2011).
[Crossref]

T. B. Onasch, P. Massoli, P. L. Kebabian, F. B. Hills, F. W. Bacon, and A. Freedman, “Single scattering albedo monitor for airborne particulates,” Aerosol Sci. Technol. 49(4), 267–279 (2015).
[Crossref]

J. M. Langridge, M. S. Richardson, D. L. Lack, C. A. Brock, and D. M. Murphy, “Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity,” Aerosol Sci. Technol. 47(11), 1163–1173 (2013).
[Crossref]

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

B. Barkey, S. E. Paulson, and A. Chung, “Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index,” Aerosol Sci. Technol. 41(8), 751–760 (2007).
[Crossref]

T. Galpin, R. T. Chartier, N. Levergood, and M. E. Greenslade, “Refractive index retrievals for polystyrene latex spheres in the spectral range 220–420 nm,” Aerosol Sci. Technol. 51(10), 1158–1167 (2017).
[Crossref]

D. M. Garvey and R. G. Pinnick, “Response characteristics of the particle measuring systems Active Scattering Aerosol Spectrometer Probe (ASASP-X),” Aerosol Sci. Technol. 2(4), 477–488 (1983).
[Crossref]

Anal. Chem. (7)

N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81(5), 1762–1769 (2009).
[Crossref] [PubMed]

L. Ma and J. E. Thompson, “Optical properties of dispersed aerosols in the near ultraviolet (355 nm): measurement approach and initial data,” Anal. Chem. 84(13), 5611–5617 (2012).
[Crossref] [PubMed]

Y. Wei, L. Ma, T. Cao, Q. Zhang, J. Wu, P. R. Buseck, and J. E. Thompson, “Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section,” Anal. Chem. 85(19), 9181–9188 (2013).
[Crossref] [PubMed]

W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang, “Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm,” Anal. Chem. 85(4), 2260–2268 (2013).
[Crossref] [PubMed]

J. R. Wiegand, L. D. Mathews, and G. D. Smith, “A UV-Vis photoacoustic spectrophotometer,” Anal. Chem. 86(12), 6049–6056 (2014).
[Crossref] [PubMed]

C. Haisch, P. Menzenbach, H. Bladt, and R. Niessner, “A wide spectral range photoacoustic aerosol absorption spectrometer,” Anal. Chem. 84(21), 8941–8945 (2012).
[Crossref] [PubMed]

J. G. Radney and C. D. Zangmeister, “Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy,” Anal. Chem. 87(14), 7356–7363 (2015).
[Crossref] [PubMed]

Appl. Opt. (4)

Atmos. Chem. Phys. (10)

L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W.-M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys. 10(18), 9017–9026 (2010).
[Crossref]

M. Trainic, A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich, “The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols,” Atmos. Chem. Phys. 11(18), 9697–9707 (2011).
[Crossref]

J. Michel Flores, R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich, “Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties,” Atmos. Chem. Phys. 12(12), 5511–5521 (2012).
[Crossref]

P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin, “Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene,” Atmos. Chem. Phys. 15(3), 1435–1446 (2015).
[Crossref]

M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6(10), 3131–3148 (2006).
[Crossref]

X. Xu, W. Zhao, Q. Zhang, S. Wang, B. Fang, W. Chen, D. S. Venables, X. Wang, W. Pu, X. Wang, X. Gao, and W. Zhang, “Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign,” Atmos. Chem. Phys. 16(10), 6421–6439 (2016).
[Crossref]

A. Abo Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys. 7(6), 1523–1536 (2007).
[Crossref]

H. Yu, Y. J. Kaufman, M. Chin, G. Feingold, L. A. Remer, T. L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A review of measurement-based assessments of the aerosol direct radiative effect and forcing,” Atmos. Chem. Phys. 6(3), 613–666 (2006).
[Crossref]

P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, “Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. 10(3), 1155–1169 (2010).
[Crossref]

R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, “Spectral absorption properties of atmospheric aerosols,” Atmos. Chem. Phys. 7(23), 5937–5943 (2007).
[Crossref]

Atmos. Meas. Tech. (9)

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

R. M. Varma, S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, J. Thieser, A. Wahner, and D. S. Venables, “Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers,” Atmos. Meas. Tech. 6(11), 3115–3130 (2013).
[Crossref]

C. Linke, I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter, “A novel single cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research,” Atmos. Meas. Tech. 9(11), 5331–5346 (2016).
[Crossref]

W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang, “Development of a cavity-enhanced aerosol albedometer,” Atmos. Meas. Tech. 7(8), 2551–2566 (2014).
[Crossref]

R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich, “Broadband measurements of aerosol extinction in the ultraviolet spectral region,” Atmos. Meas. Tech. 6(4), 861–877 (2013).
[Crossref]

N. Bluvshtein, J. M. Flores, L. Segev, and Y. Rudich, “A new approach for retrieving the UV–vis optical properties of ambient aerosols,” Atmos. Meas. Tech. 9(8), 3477–3490 (2016).
[Crossref]

N. Bluvshtein, J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich, “Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols,” Atmos. Meas. Tech. 10(3), 1203–1213 (2017).
[Crossref]

C. Denjean, P. Formenti, B. Picquet-Varrault, Y. Katrib, E. Pangui, P. Zapf, and J. F. Doussin, “A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles,” Atmos. Meas. Tech. 7(1), 183–197 (2014).
[Crossref]

R. T. Chartier and M. E. Greenslade, “Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS),” Atmos. Meas. Tech. 5(4), 709–721 (2012).
[Crossref]

Aust. J. Chem. (1)

R. H. French, K. I. Winey, M. K. Yang, and W. M. Qiu, “Optical properties and Van Der Waals-London dispersion interactions of polystyrene determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Aust. J. Chem. 60(4), 251–263 (2007).
[Crossref]

Chem. Phys. Lett. (1)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3–4), 284–294 (2003).
[Crossref]

Environ. Sci. Technol. Lett. (1)

S. M. Phillips and G. D. Smith, “Light absorption by charge transfer complexes in brown carbon aerosols,” Environ. Sci. Technol. Lett. 1(10), 382–386 (2014).
[Crossref]

Faraday Discuss. (1)

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–318 (2008).
[Crossref] [PubMed]

J. Aerosol Sci. (1)

A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

J. Atmos. Ocean. Technol. (1)

A. W. Strawa, R. Castaneda, T. Owano, D. S. Baer, and B. A. Paldus, “The measurement of aerosol optical properties using continuous wave cavity ring-down techniques,” J. Atmos. Ocean. Technol. 20(4), 454–465 (2003).
[Crossref]

J. Geophys. Res. (1)

T. W. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,” J. Geophys. Res. 109, 21208 (2004).
[Crossref]

J. Geophys. Res. Atmos. (3)

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. Atmos. 81(33), 5733–5748 (1976).
[Crossref]

P. B. Russell, M. Kacenelenbogen, J. M. Livingston, O. P. Hasekamp, S. P. Burton, G. L. Schuster, M. S. Johnson, K. D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben, “A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry,” J. Geophys. Res. Atmos. 119(16), 9838–9863 (2014).
[Crossref]

J. Li, B. E. Carlson, and A. A. Lacis, “Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures,” J. Geophys. Res. Atmos. 120(5), 2037–2052 (2015).
[Crossref]

J. Phys. Chem. A (1)

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A 114(26), 7077–7084 (2010).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Moosmüller, R. K. Chakrabarty, and W. P. Arnott, “Aerosol light absorption and its measurement: A review,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 844–878 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

N. Lang-Yona, A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12(1), 21–31 (2010).
[Crossref] [PubMed]

J. M. Flores, R. A. Washenfelder, G. Adler, H. J. Lee, L. Segev, J. Laskin, A. Laskin, S. A. Nizkorodov, S. S. Brown, and Y. Rudich, “Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia,” Phys. Chem. Chem. Phys. 16(22), 10629–10642 (2014).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Bahadur, P. S. Praveen, Y. Xu, and V. Ramanathan, “Solar absorption by elemental and brown carbon determined from spectral observations,” Proc. Natl. Acad. Sci. U.S.A. 109(43), 17366–17371 (2012).
[Crossref] [PubMed]

Wuli Xuebao (1)

M. Dong, W. Zhao, Y. Cheng, C. Hu, X. Gu, and W. Zhang, “Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement,” Wuli Xuebao 61(6), 06072 (2012).

Other (1)

A. A. Ruth, S. Dixneuf, and R. Raghunandan, “Broadband cavity enhanced absorption spectroscopy with incoherent light,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H. P. Loock, eds., Vol. 179 of Series Springer Series in Optical Sciences (2014), pp 485–517.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the three-wavelength CES-albedometer. The optical configurations of each channel were identical.
Fig. 2
Fig. 2 (a) Calibration of the scattering scaling factor (K’) with He, N2, CO2 and SF6 at λ = 365, 532, and 660 nm; (b) Scatter plot of the measured scattering coefficients with integrating sphere and extinction coefficients with BBCES for each channel at three different wavelengths.
Fig. 3
Fig. 3 Performance evaluation of the CES-albedometer. From upper to lower panel: (a)-(c) Channel 1 (λ = 365 nm); (d)-(f) Channel 2 (λ = 532 nm); (g)-(i) Channel 3 (λ = 660 nm) measured with particle free zero air. Measurements time series are shown in the upper panel. The corresponding Allan deviation and frequency distribution of each channel are shown in the middle and lower panels.
Fig. 4
Fig. 4 Upper panel: extinction (solid points) and scattering (hollow points) coefficients as a function of particle number concentration at (a) λ = 365 nm, (b) 532 nm, and (c) 660 nm for monodisperse PSL spheres of 200, 240, 300, 350, 400, 450 and 500 nm diameter. Lower panel: extinction (Qext, solid points) and scattering (Qscat, hollow points) efficiencies as a function of particle diameter at (d) λ = 365 nm, (e) 532 nm, and (f) 660 nm, respectively. The corresponding Mie theory fit results are shown as solid and dotted lines.
Fig. 5
Fig. 5 A comparison of CRI values of PSL particles (upper panel: real part n; lower panel: imaginary part k) reported in the literature, and those retrieved independently from the scattering and extinction efficiencies in this work.
Fig. 6
Fig. 6 (a) The measured wavelength-dependent extinction, scattering coefficients and ω of ammonium sulfate, (b) size distribution of the polydispersed sample, and (c) the comparison between the retrieved CRIs and the literature reported values. Error bars are shown where they can be distinguished from the symbol.
Fig. 7
Fig. 7 (a) The measured wavelength-dependent extinction, scattering, absorption coefficients, and ω, (b) the corresponding size distribution of the sample, and (c) the retrieved CRI values of SRFA aerosol from this work and previous studies. Error bars are shown where they can be distinguished from the symbol.
Fig. 8
Fig. 8 (a) The measured wavelength-dependent extinction, scattering, absorption coefficients, and ω, (b) size distribution of the sample, and (c) the retrieved m of nigrosin aerosol and its comparison with previously reported results. Error bars are shown where they can be distinguished from the symbol.

Tables (2)

Tables Icon

Table 1 Spectral characteristics of three-wavelength CES albedometer.

Tables Icon

Table 2 Comparison of precision between three-wavelength CES albedometer and selected literature-reported instruments.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α ext (λ)= R L ( 1R(λ) d )( I 0 (λ) I(λ) 1 )
α scat = I scat I trans (1R) (1+R)d ×K= I scat I trans ×K'
α ext,scat,abs (λ)= N( D p ) π 4 D p 2 Q ext,scat,abs (m,x,λ)d D p
χ 2 = i=1 Num ( Q ext,scat Q ext,scat_calc ) i 2 ε Qi 2
χ 2 = ( α ext (λ) α ext_calc (λ)) 2 ε α ext (λ) 2 + ( α scat (λ) α scat_calc (λ)) 2 ε α scat (λ) 2
α ext,scat,abs (λ)= N( D p ) π 4 D p 2 Q ext,scat,abs (m,x,λ)