Abstract

We propose and experimentally demonstrate an all-silicon passive optical diode with low-power consumption and high nonreciprocal transmission ratios (NTRs) based on cascaded opto-mechanical microring resonators (MRRs). As the oxide substrates of the opto-mechanical MRRs are removed, the nonlinear effects in the free-hanging waveguides could be efficiently activated by low optical powers. The operation principle of the optical diode is based on the asymmetric resonance red-shifts of the two MRRs in the forward and backward transmissions, which could be effectively induced by the nonlinear effects. In the experiment, with injecting an optical power low as 0.96 dBm, a high NTR of 33.6 dB and a relatively broad 20-dB bandwidth of 0.11 nm are achieved. The proposed passive optical diode is competent to process optical signals with dominant advantages of CMOS-compatibility, a compact footprint, low-power consumptions and high NTRs, which has significant applications for on-chip signal processing systems, such as logic gates and optical computing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-power all-optical microwave filter with tunable central frequency and bandwidth based on cascaded opto-mechanical microring resonators

Li Liu, Zhi Chen, Xing Jin, Yue Yang, Zhihua Yu, Jingjing Zhang, Lijun Zhang, and Hong Wang
Opt. Express 25(15) 17329-17342 (2017)

Energy-efficient on-chip optical diode based on the optomechanical effect

Huaqing Qiu, Jianji Dong, Li Liu, and Xinliang Zhang
Opt. Express 25(8) 8975-8985 (2017)

Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator

Li Liu, Yue Yang, Zhihua Li, Xing Jin, Wenqin Mo, and Xing Liu
Opt. Express 25(2) 960-971 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
    [Crossref]
  2. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
    [Crossref]
  3. L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
    [Crossref] [PubMed]
  4. L. Snyman, M. du Plessis, and E. Bellotti, “Photonic transistion (1.4 eV–2.8 eV) in silicon p + np + injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
    [Crossref]
  5. K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
    [Crossref]
  6. H. Ye, Z. Yu, Y. Liu, and Z. Chen, “Realization of compact broadband optical diode in linear air-hole photonic crystal waveguide,” Opt. Express 24(21), 24592–24599 (2016).
    [Crossref] [PubMed]
  7. B. Shen, R. Polson, and R. Menon, “Integrated digital metamaterials enables ultra-compact optical diodes,” Opt. Express 23(8), 10847–10855 (2015).
    [Crossref] [PubMed]
  8. C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
    [Crossref] [PubMed]
  9. V. F. Nezhad, A. Haddadpour, and G. Veronis, “Tunable spatial mode converters and optical diodes for graphene parallel plate waveguides,” Opt. Express 24(21), 23883–23897 (2016).
    [Crossref] [PubMed]
  10. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
    [Crossref] [PubMed]
  11. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  12. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20(2), 1839–1848 (2012).
    [Crossref] [PubMed]
  13. Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
    [Crossref]
  14. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
    [Crossref] [PubMed]
  15. M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
    [Crossref]
  16. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
    [Crossref] [PubMed]
  17. R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  18. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  19. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  20. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
    [Crossref] [PubMed]
  21. L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
    [Crossref] [PubMed]
  22. M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
    [Crossref]
  23. K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
    [Crossref]
  24. Y. Zhang, D. Li, C. Zeng, Z. Huang, Y. Wang, Q. Huang, Y. Wu, J. Yu, and J. Xia, “Silicon optical diode based on cascaded photonic crystal cavities,” Opt. Lett. 39(6), 1370–1373 (2014).
    [Crossref] [PubMed]
  25. L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
    [Crossref] [PubMed]
  26. H. Qiu, J. Dong, L. Liu, and X. Zhang, “Energy-efficient on-chip optical diode based on the optomechanical effect,” Opt. Express 25(8), 8975–8985 (2017).
    [Crossref] [PubMed]
  27. E. A. Fitzgerald and L. C. Kimerling, “Silicon-based microphotonics and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
    [Crossref]
  28. L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
    [Crossref] [PubMed]
  29. H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
    [Crossref]
  30. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
    [Crossref]
  31. L. Liu, H. Qiu, Z. Chen, and Z. Yu, “Photonic measurement of microwave frequency with low-error based on an optomechanical microring resonator,” IEEE Photonics J. 9(6), 1 (2017).
    [Crossref]
  32. J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
    [Crossref]
  33. L. Liu, Z. Chen, X. Jin, Y. Yang, Z. Yu, J. Zhang, L. Zhang, and H. Wang, “Low-power all-optical microwave filter with tunable central frequency and bandwidth based on cascaded opto-mechanical microring resonators,” Opt. Express 25(15), 17329–17342 (2017).
    [Crossref] [PubMed]
  34. W. C. Jiang, J. Zhang, and Q. Lin, “Compact suspended silicon microring resonators with ultrahigh quality,” Opt. Express 22(1), 1187–1192 (2014).
    [Crossref] [PubMed]
  35. Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
    [Crossref]
  36. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [Crossref] [PubMed]
  37. A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1(11), 1301–1307 (2016).
    [Crossref]
  38. L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006).
    [Crossref] [PubMed]
  39. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37(20), 4236–4238 (2012).
    [Crossref] [PubMed]
  40. C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(Suppl 6), A1126–A1139 (2013).
    [Crossref] [PubMed]
  41. S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
    [Crossref] [PubMed]
  42. A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20(19), 21341–21345 (2012).
    [Crossref] [PubMed]
  43. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
    [Crossref] [PubMed]
  44. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
    [Crossref] [PubMed]
  45. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
    [Crossref] [PubMed]
  46. V. M. Menon, W. Tong, and S. R. Forrest, “Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 16(5), 1343–1345 (2004).
    [Crossref]

2018 (2)

K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
[Crossref]

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

2017 (4)

2016 (3)

2015 (4)

2014 (2)

2013 (4)

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(Suppl 6), A1126–A1139 (2013).
[Crossref] [PubMed]

2012 (7)

2011 (3)

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

2010 (5)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

L. Snyman, M. du Plessis, and E. Bellotti, “Photonic transistion (1.4 eV–2.8 eV) in silicon p + np + injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
[Crossref]

2009 (2)

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
[Crossref]

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[Crossref]

2007 (3)

2006 (3)

2005 (2)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
[Crossref] [PubMed]

2004 (1)

V. M. Menon, W. Tong, and S. R. Forrest, “Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 16(5), 1343–1345 (2004).
[Crossref]

1998 (1)

E. A. Fitzgerald and L. C. Kimerling, “Silicon-based microphotonics and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
[Crossref]

Baets, R.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20(2), 1839–1848 (2012).
[Crossref] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Bärwinkel, M.

Bellotti, E.

L. Snyman, M. du Plessis, and E. Bellotti, “Photonic transistion (1.4 eV–2.8 eV) in silicon p + np + injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Biberman, A.

Brüggemann, D.

Butsch, A.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

Cai, H.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Cardenas, J.

Chen, Z.

Cunningham, J. E.

Dai, D.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[Crossref]

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Ding, L.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Dong, B.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Dong, J.

du Plessis, M.

L. Snyman, M. du Plessis, and E. Bellotti, “Photonic transistion (1.4 eV–2.8 eV) in silicon p + np + injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

Fan, L.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Fan, S.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
[Crossref]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
[Crossref] [PubMed]

Fathpour, S.

Fitzgerald, E. A.

E. A. Fitzgerald and L. C. Kimerling, “Silicon-based microphotonics and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
[Crossref]

Forrest, S. R.

V. M. Menon, W. Tong, and S. R. Forrest, “Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 16(5), 1343–1345 (2004).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Gao, D.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Ghosh, S.

Gong, Q.

Griffith, A.

Haddadpour, A.

He, S.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[Crossref]

Heinz, P.

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Hu, X.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
[Crossref] [PubMed]

Huang, L.

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

Huang, Q.

Huang, Z.

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Hwang, J.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Ishikawa, K.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Jalali, B.

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Jiang, W. C.

Jiang, X.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Jin, X.

Kang, M. S.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

Keyvavinia, S.

Khan, M. H.

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

E. A. Fitzgerald and L. C. Kimerling, “Silicon-based microphotonics and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Krishnamoorthy, A. V.

Kroupa, G.

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Kuyken, B.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

Kwong, D. L.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Lee, J. H.

Lehmann, S.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Li, D.

Li, G.

Li, Z.

Lin, J.

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Lin, Q.

Lipson, M.

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Liu, A.

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Liu, A. Q.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Liu, L.

L. Liu, H. Qiu, Z. Chen, and Z. Yu, “Photonic measurement of microwave frequency with low-error based on an optomechanical microring resonator,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
[Crossref] [PubMed]

H. Qiu, J. Dong, L. Liu, and X. Zhang, “Energy-efficient on-chip optical diode based on the optomechanical effect,” Opt. Express 25(8), 8975–8985 (2017).
[Crossref] [PubMed]

L. Liu, Z. Chen, X. Jin, Y. Yang, Z. Yu, J. Zhang, L. Zhang, and H. Wang, “Low-power all-optical microwave filter with tunable central frequency and bandwidth based on cascaded opto-mechanical microring resonators,” Opt. Express 25(15), 17329–17342 (2017).
[Crossref] [PubMed]

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Liu, X.

Liu, Y.

Lo, G. Q.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Lorenz, S.

Lu, C.

Luo, Y.

Malik, A.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

Manfletti, C.

Martinez, L.

Mekis, A.

Menon, R.

Menon, V. M.

V. M. Menon, W. Tong, and S. R. Forrest, “Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 16(5), 1343–1345 (2004).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
[Crossref]

Mizumoto, T.

Mo, W.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Mühlbauer, W.

Muneeb, M.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

Nezhad, V. F.

Nishimura, S.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Park, B.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Poitras, C. B.

Polson, R.

Qi, M.

Qiu, H.

L. Liu, H. Qiu, Z. Chen, and Z. Yu, “Photonic measurement of microwave frequency with low-error based on an optomechanical microring resonator,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

H. Qiu, J. Dong, L. Liu, and X. Zhang, “Energy-efficient on-chip optical diode based on the optomechanical effect,” Opt. Express 25(8), 8975–8985 (2017).
[Crossref] [PubMed]

Raj, K.

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Roelkens, G.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20(2), 1839–1848 (2012).
[Crossref] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Roels, J.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Russell, P. St. J.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

Shaw, M. J.

Shen, B.

Shen, H.

Sheng, Z.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[Crossref]

Shubin, I.

Snyman, L.

L. Snyman, M. du Plessis, and E. Bellotti, “Photonic transistion (1.4 eV–2.8 eV) in silicon p + np + injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

Snyman, L. W.

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

Song, M. H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Soref, R. A.

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Su, Y.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Swart, J. W.

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

Takanishi, Y.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Takezoe, H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Tao, J.

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Tao, J. F.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Thacker, H.

Timurdogan, E.

Tong, W.

V. M. Menon, W. Tong, and S. R. Forrest, “Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 16(5), 1343–1345 (2004).
[Crossref]

Toyooka, T.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Tsai, J. M.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Van Roy, W.

Van Thourhout, D.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Varghese, L. T.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Vasiliev, A.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

Veronis, G.

Wang, H.

Wang, J.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Wang, T.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Wang, Y.

Wang, Z.

Watts, M. R.

Weiner, A. M.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Wright, J. B.

Wu, J.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Wu, J. W.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Wu, Y.

Xia, J.

Xiao, S.

Xu, K.

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
[Crossref]

Xu, M.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Xuan, Y.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Yang, H.

Yang, Y.

Yao, J.

Ye, H.

Yu, J.

Yu, Z.

L. Liu, Z. Chen, X. Jin, Y. Yang, Z. Yu, J. Zhang, L. Zhang, and H. Wang, “Low-power all-optical microwave filter with tunable central frequency and bandwidth based on cascaded opto-mechanical microring resonators,” Opt. Express 25(15), 17329–17342 (2017).
[Crossref] [PubMed]

L. Liu, H. Qiu, Z. Chen, and Z. Yu, “Photonic measurement of microwave frequency with low-error based on an optomechanical microring resonator,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

H. Ye, Z. Yu, Y. Liu, and Z. Chen, “Realization of compact broadband optical diode in linear air-hole photonic crystal waveguide,” Opt. Express 24(21), 24592–24599 (2016).
[Crossref] [PubMed]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
[Crossref]

Zeng, C.

Zhang, J.

Zhang, L.

Zhang, Q.

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Zhang, X.

Zhang, Y.

Zhang, Z.

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

Zhao, J.

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

Zheng, A.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Zheng, X.

ACS Sens. (1)

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

Appl. Phys. Lett. (3)

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009).
[Crossref]

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Snyman, M. du Plessis, and E. Bellotti, “Photonic transistion (1.4 eV–2.8 eV) in silicon p + np + injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[Crossref]

IEEE Photonics J. (2)

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push–pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

L. Liu, H. Qiu, Z. Chen, and Z. Yu, “Photonic measurement of microwave frequency with low-error based on an optomechanical microring resonator,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

V. M. Menon, W. Tong, and S. R. Forrest, “Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 16(5), 1343–1345 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
[Crossref]

Mater. Sci. Eng. B (1)

K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L. W. Snyman, and J. W. Swart, “Light emission from a poly-silicon device with carrier injection engineering,” Mater. Sci. Eng. B 231, 28–31 (2018).
[Crossref]

MRS Bull. (1)

E. A. Fitzgerald and L. C. Kimerling, “Silicon-based microphotonics and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
[Crossref]

Nat. Mater. (1)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Nat. Photonics (6)

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Opt. Express (17)

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20(2), 1839–1848 (2012).
[Crossref] [PubMed]

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

V. F. Nezhad, A. Haddadpour, and G. Veronis, “Tunable spatial mode converters and optical diodes for graphene parallel plate waveguides,” Opt. Express 24(21), 23883–23897 (2016).
[Crossref] [PubMed]

H. Ye, Z. Yu, Y. Liu, and Z. Chen, “Realization of compact broadband optical diode in linear air-hole photonic crystal waveguide,” Opt. Express 24(21), 24592–24599 (2016).
[Crossref] [PubMed]

B. Shen, R. Polson, and R. Menon, “Integrated digital metamaterials enables ultra-compact optical diodes,” Opt. Express 23(8), 10847–10855 (2015).
[Crossref] [PubMed]

L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[Crossref] [PubMed]

L. Liu, Z. Chen, X. Jin, Y. Yang, Z. Yu, J. Zhang, L. Zhang, and H. Wang, “Low-power all-optical microwave filter with tunable central frequency and bandwidth based on cascaded opto-mechanical microring resonators,” Opt. Express 25(15), 17329–17342 (2017).
[Crossref] [PubMed]

W. C. Jiang, J. Zhang, and Q. Lin, “Compact suspended silicon microring resonators with ultrahigh quality,” Opt. Express 22(1), 1187–1192 (2014).
[Crossref] [PubMed]

H. Qiu, J. Dong, L. Liu, and X. Zhang, “Energy-efficient on-chip optical diode based on the optomechanical effect,” Opt. Express 25(8), 8975–8985 (2017).
[Crossref] [PubMed]

L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006).
[Crossref] [PubMed]

C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(Suppl 6), A1126–A1139 (2013).
[Crossref] [PubMed]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20(19), 21341–21345 (2012).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
[Crossref] [PubMed]

G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Science (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the free-hanging MRR. (b) Cross-sectional illustration of the deflected MRR influenced by the optical force.
Fig. 2
Fig. 2 (a) The structure of the optical diode. (b) The initial transmission spectrum of the cascaded MRRs. (c) The forward transmission (red line) and backward transmission (blue line) of the optical diode.
Fig. 3
Fig. 3 (a) Calculated MRR bending loss. (b) The effective indexes of different waveguides. Energy profiles of the fundamental modes in (c) straight waveguide, (d) ridge MRR and (e) free-hanging MRR, respectively.
Fig. 4
Fig. 4 (a) SEM image of the cascaded opto-mechanical MRRs. (b) The zoom-in image of the free-hanging region. (c) The side view of R1.
Fig. 5
Fig. 5 (a) One bimodal distribution of the device transmission spectrum. (b) The red-shifts of λ1 and λ1 + 0.04 under different input powers.
Fig. 6
Fig. 6 Measured transmission of no CW light input (green line), forward input (red line) and backward input (blue line), respectively. The input optical powers are set as (a) 0.96 dBm and (b) −0.52 dBm, respectively.
Fig. 7
Fig. 7 (a) Measured NTRs under different input wavelengths. (b) The relationship between the NTRs and input powers at 1551.698 nm.

Tables (1)

Tables Icon

Table 1 Performance comparisons of recent silicon MRR-based optical diodes

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ λ 1 λ r n g Γ th k th R th P t
δ λ 2 g om 2 P m /k
δλ=δ λ 1 +δ λ 2 P in