Abstract

Valley-resolved edge plasmons are relevant to nano-optics at subwavelength scales. However, less attention has been paid to their tunable properties in time domain. In this work we investigate edge pseudomagnetoplasmons in a strained graphene modulated by multiple harmonics with frequency in the THz regime. The edge plasmon is described by a set of nonlinear hydrodynamic equations, which are self-consistently solved by the flux-corrected transport method. Without the applied voltage, there exist two unidirectional-propagating edge-plasmon modes with weak valley polarization P. It is demonstrated that by varying the amplitude of multiple harmonics one can alter both the amplitude and the polarity of the valley polarization in the edge plasmon. One can achieve a full valley polarization P=1 at the instant of half cycle of the multiple harmonics and P=1 at the instant of one cycle. The edge-plasmon density and the transverse velocity vanish for the frozen valley.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy

Piotr Patoka, Georg Ulrich, Ariana E. Nguyen, Ludwig Bartels, Peter A. Dowben, Volodymyr Turkowski, Talat S. Rahman, Peter Hermann, Bernd Kästner, Arne Hoehl, Gerhard Ulm, and Eckart Rühl
Opt. Express 24(2) 1154-1164 (2016)

Review of photo response in semiconductor transition metal dichalcogenides based photosensitive devices

Qinsheng Wang, Jiawei Lai, and Dong Sun
Opt. Mater. Express 6(7) 2313-2327 (2016)

Interferometric measurement of far infrared plasmons via resonant homodyne mixing

Gregory C. Dyer, Gregory R. Aizin, S. James Allen, Albert D. Grine, Don Bethke, John L. Reno, and Eric A. Shaner
Opt. Express 22(13) 16254-16266 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [Crossref] [PubMed]
  2. A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
    [Crossref]
  3. D. B. Mast, A. J. Dahm, and A. L. Fetter, “Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid,” Phys. Rev. Lett. 54, 1706 (1985).
    [Crossref] [PubMed]
  4. A. L. Fetter, “Edge magnetoplasmons in a bounded two-dimensional electron fluid,” Phys. Rev. B 32, 7676 (1985).
    [Crossref]
  5. J. C. Song and M. S. Rudner, “Chiral plasmons without magnetic field,” Proc. Nat. Acad. Sci. 1134658 (2016).
  6. Y. Zhang, F. Zhai, B. Guo, L. Yi, and W. Jiang, “Quantum hydrodynamic modeling of edge modes in chiral berry plasmons,” Phys. Rev. B 96, 045104 (2017).
    [Crossref]
  7. I. L. Aleiner and L. I. Glazman, “Novel edge excitations of two-dimensional electron liquid in a magnetic field,” Phys. Rev. Lett. 72, 2935 (1994).
    [Crossref] [PubMed]
  8. D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
    [Crossref]
  9. D. Xiao, W. Yao, and Q. Niu, “Valley-contrasting physics in graphene: magnetic moment and topological transport,” Phys. Rev. Lett. 99, 236809 (2007).
    [Crossref]
  10. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
  11. D. L. Sounas, C. Caloz, and A. Alu, “Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials,” Nat. Commun. 4, 2407 (2013).
    [Crossref] [PubMed]
  12. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
    [Crossref]
  13. F. Guinea, M. I. Katsnelson, and A. K. Geim, “Energy gaps and a zero-field quantum hall effect in graphene by strain engineering,” Nat. Phys. 6, 30 (2010).
    [Crossref]
  14. M. A. Vozmediano, M. Katsnelson, and F. Guinea, “Gauge fields in graphene,” Phys. Rep. 496, 109–148 (2010).
    [Crossref]
  15. A. Principi, M. I. Katsnelson, and G. Vignale, “Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields,” Phys. Rev. Lett. 117, 196803 (2016).
  16. Y. Zhang, B. Guo, F. Zhai, and W. Jiang, “Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model,” Phys. Rev. B 97, 115455 (2018).
    [Crossref]
  17. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
    [Crossref] [PubMed]
  18. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer mos 2 by optical helicity,” Nat. Nanotechnol. 7, 494 (2012).
    [Crossref]
  19. S. Aas and C. Bulutay, “Strain dependence of photoluminescence and circular dichroism in transition metal dichalcogenides: ak· p analysis,” Opt. Express 26, 28672–28681 (2018).
    [Crossref]
  20. Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
    [Crossref]
  21. Z. Ye, D. Sun, and T. F. Heinz, “Optical manipulation of valley pseudospin,” Nat. Phys. 13, 26 (2017).
    [Crossref]
  22. G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
    [Crossref]
  23. G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
    [Crossref] [PubMed]
  24. Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, “Generation of pure bulk valley current in graphene,” Phys. Rev. Lett. 110, 046601 (2013).
    [Crossref] [PubMed]
  25. J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “Lcpfct-a flux-corrected transport algorithm for solving generalized continuity equations,” Tech. Rep., NRL Memorandom Report No. 6410 (Naval Research Laboratory, Washington, D.C), pp. 20375-5320 (1993).
  26. F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29, 516–518 (2004).
    [Crossref] [PubMed]
  27. P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
    [Crossref]
  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Fluid Mechanics(Pergamon Press, Oxford,1987).
  29. M. Müller, J. Schmalian, and L. Fritz, “Graphene: A nearly perfect fluid,” Phys. Rev. Lett. 103, 025301 (2009).
    [Crossref] [PubMed]
  30. U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
    [Crossref]
  31. F. Haas, Quantum Plasmas An Hydrodynamic Approach(Springer, 2011).
    [Crossref]
  32. G. Brodin, A. P. Misra, and M. Marklund, “Spin contribution to the ponderomotive force in a plasma,” Phys. Rev. Lett. 105, 105004 (2010).
    [Crossref] [PubMed]
  33. Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
    [Crossref]
  34. T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, “Hydrodynamic electron flow and hall viscosity,” Phys. Rev. Lett. 118, 226601 (2017).
    [Crossref] [PubMed]
  35. F. Guinea, M. Katsnelson, and M. Vozmediano, “Midgap states and charge inhomogeneities in corrugated graphene,” Phys. Rev. B 77, 075422 (2008).
    [Crossref]
  36. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
    [Crossref]
  37. Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
    [Crossref] [PubMed]
  38. Y. Zhang, F. Zhai, and L. Yi, “Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas,” Phys. Lett. A 380, 3908–3913 (2016).
    [Crossref]
  39. J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
    [Crossref] [PubMed]
  40. J. Sotor and G. Sobon, “24 fs and 3 nj pulse generation from a simple, all polarization maintaining er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
    [Crossref]
  41. H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
    [Crossref] [PubMed]

2018 (4)

Y. Zhang, B. Guo, F. Zhai, and W. Jiang, “Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model,” Phys. Rev. B 97, 115455 (2018).
[Crossref]

S. Aas and C. Bulutay, “Strain dependence of photoluminescence and circular dichroism in transition metal dichalcogenides: ak· p analysis,” Opt. Express 26, 28672–28681 (2018).
[Crossref]

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

2017 (3)

Z. Ye, D. Sun, and T. F. Heinz, “Optical manipulation of valley pseudospin,” Nat. Phys. 13, 26 (2017).
[Crossref]

T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, “Hydrodynamic electron flow and hall viscosity,” Phys. Rev. Lett. 118, 226601 (2017).
[Crossref] [PubMed]

Y. Zhang, F. Zhai, B. Guo, L. Yi, and W. Jiang, “Quantum hydrodynamic modeling of edge modes in chiral berry plasmons,” Phys. Rev. B 96, 045104 (2017).
[Crossref]

2016 (5)

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

J. C. Song and M. S. Rudner, “Chiral plasmons without magnetic field,” Proc. Nat. Acad. Sci. 1134658 (2016).

A. Principi, M. I. Katsnelson, and G. Vignale, “Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields,” Phys. Rev. Lett. 117, 196803 (2016).

Y. Zhang, F. Zhai, and L. Yi, “Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas,” Phys. Lett. A 380, 3908–3913 (2016).
[Crossref]

J. Sotor and G. Sobon, “24 fs and 3 nj pulse generation from a simple, all polarization maintaining er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

2015 (2)

U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
[Crossref]

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

2014 (3)

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

2013 (3)

Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, “Generation of pure bulk valley current in graphene,” Phys. Rev. Lett. 110, 046601 (2013).
[Crossref] [PubMed]

D. L. Sounas, C. Caloz, and A. Alu, “Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials,” Nat. Commun. 4, 2407 (2013).
[Crossref] [PubMed]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

2012 (5)

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer mos 2 by optical helicity,” Nat. Nanotechnol. 7, 494 (2012).
[Crossref]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

F. Guinea, M. I. Katsnelson, and A. K. Geim, “Energy gaps and a zero-field quantum hall effect in graphene by strain engineering,” Nat. Phys. 6, 30 (2010).
[Crossref]

M. A. Vozmediano, M. Katsnelson, and F. Guinea, “Gauge fields in graphene,” Phys. Rep. 496, 109–148 (2010).
[Crossref]

G. Brodin, A. P. Misra, and M. Marklund, “Spin contribution to the ponderomotive force in a plasma,” Phys. Rev. Lett. 105, 105004 (2010).
[Crossref] [PubMed]

2009 (2)

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

M. Müller, J. Schmalian, and L. Fritz, “Graphene: A nearly perfect fluid,” Phys. Rev. Lett. 103, 025301 (2009).
[Crossref] [PubMed]

2008 (2)

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

F. Guinea, M. Katsnelson, and M. Vozmediano, “Midgap states and charge inhomogeneities in corrugated graphene,” Phys. Rev. B 77, 075422 (2008).
[Crossref]

2007 (1)

D. Xiao, W. Yao, and Q. Niu, “Valley-contrasting physics in graphene: magnetic moment and topological transport,” Phys. Rev. Lett. 99, 236809 (2007).
[Crossref]

2004 (1)

1994 (1)

I. L. Aleiner and L. I. Glazman, “Novel edge excitations of two-dimensional electron liquid in a magnetic field,” Phys. Rev. Lett. 72, 2935 (1994).
[Crossref] [PubMed]

1985 (2)

D. B. Mast, A. J. Dahm, and A. L. Fetter, “Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid,” Phys. Rev. Lett. 54, 1706 (1985).
[Crossref] [PubMed]

A. L. Fetter, “Edge magnetoplasmons in a bounded two-dimensional electron fluid,” Phys. Rev. B 32, 7676 (1985).
[Crossref]

Aas, S.

Adler, F.

Aleiner, I. L.

I. L. Aleiner and L. I. Glazman, “Novel edge excitations of two-dimensional electron liquid in a magnetic field,” Phys. Rev. Lett. 72, 2935 (1994).
[Crossref] [PubMed]

Alonso-González, P.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Alu, A.

D. L. Sounas, C. Caloz, and A. Alu, “Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials,” Nat. Commun. 4, 2407 (2013).
[Crossref] [PubMed]

Amand, T.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Andreev, G.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Avouris, P.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Balocchi, A.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Bao, W.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Basov, D. N.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

Berghäuser, G.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Bernal-Villamil, I.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Boris, J. P.

J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “Lcpfct-a flux-corrected transport algorithm for solving generalized continuity equations,” Tech. Rep., NRL Memorandom Report No. 6410 (Naval Research Laboratory, Washington, D.C), pp. 20375-5320 (1993).

Bouet, L.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Bowlan, P.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Bratschitsch, R.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Briskot, U.

U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
[Crossref]

Brodin, G.

G. Brodin, A. P. Misra, and M. Marklund, “Spin contribution to the ponderomotive force in a plasma,” Phys. Rev. Lett. 105, 105004 (2010).
[Crossref] [PubMed]

Bulutay, C.

Caloz, C.

D. L. Sounas, C. Caloz, and A. Alu, “Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials,” Nat. Commun. 4, 2407 (2013).
[Crossref] [PubMed]

Carrega, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Chang, C.-Y. S.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Chang, K.

Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, “Generation of pure bulk valley current in graphene,” Phys. Rev. Lett. 110, 046601 (2013).
[Crossref] [PubMed]

Chiu, M.-H.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Cui, X.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

Dahm, A. J.

D. B. Mast, A. J. Dahm, and A. L. Fetter, “Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid,” Phys. Rev. Lett. 54, 1706 (1985).
[Crossref] [PubMed]

Dai, J.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

de Vasconcellos, S. M.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Dominguez, G.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Elsaesser, T.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Erhart, P.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Fan, S.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Fang, C.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Fang, N. X.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Fang, X.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Fei, Z.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Feng, W.

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

Fetter, A. L.

D. B. Mast, A. J. Dahm, and A. L. Fetter, “Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid,” Phys. Rev. Lett. 54, 1706 (1985).
[Crossref] [PubMed]

A. L. Fetter, “Edge magnetoplasmons in a bounded two-dimensional electron fluid,” Phys. Rev. B 32, 7676 (1985).
[Crossref]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Fritz, L.

M. Müller, J. Schmalian, and L. Fritz, “Graphene: A nearly perfect fluid,” Phys. Rev. Lett. 103, 025301 (2009).
[Crossref] [PubMed]

Fu, L.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Gao, Y.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Gardner, J. H.

J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “Lcpfct-a flux-corrected transport algorithm for solving generalized continuity equations,” Tech. Rep., NRL Memorandom Report No. 6410 (Naval Research Laboratory, Washington, D.C), pp. 20375-5320 (1993).

Geim, A. K.

F. Guinea, M. I. Katsnelson, and A. K. Geim, “Energy gaps and a zero-field quantum hall effect in graphene by strain engineering,” Nat. Phys. 6, 30 (2010).
[Crossref]

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Glazman, L. I.

I. L. Aleiner and L. I. Glazman, “Novel edge excitations of two-dimensional electron liquid in a magnetic field,” Phys. Rev. Lett. 72, 2935 (1994).
[Crossref] [PubMed]

Gornyi, I.

U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
[Crossref]

Guinea, F.

Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, “Generation of pure bulk valley current in graphene,” Phys. Rev. Lett. 110, 046601 (2013).
[Crossref] [PubMed]

M. A. Vozmediano, M. Katsnelson, and F. Guinea, “Gauge fields in graphene,” Phys. Rep. 496, 109–148 (2010).
[Crossref]

F. Guinea, M. I. Katsnelson, and A. K. Geim, “Energy gaps and a zero-field quantum hall effect in graphene by strain engineering,” Nat. Phys. 6, 30 (2010).
[Crossref]

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

F. Guinea, M. Katsnelson, and M. Vozmediano, “Midgap states and charge inhomogeneities in corrugated graphene,” Phys. Rev. B 77, 075422 (2008).
[Crossref]

Guo, B.

Y. Zhang, B. Guo, F. Zhai, and W. Jiang, “Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model,” Phys. Rev. B 97, 115455 (2018).
[Crossref]

Y. Zhang, F. Zhai, B. Guo, L. Yi, and W. Jiang, “Quantum hydrodynamic modeling of edge modes in chiral berry plasmons,” Phys. Rev. B 96, 045104 (2017).
[Crossref]

Haas, F.

F. Haas, Quantum Plasmas An Hydrodynamic Approach(Springer, 2011).
[Crossref]

Hao, Z.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

He, K.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer mos 2 by optical helicity,” Nat. Nanotechnol. 7, 494 (2012).
[Crossref]

Heinz, T. F.

Z. Ye, D. Sun, and T. F. Heinz, “Optical manipulation of valley pseudospin,” Nat. Phys. 13, 26 (2017).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer mos 2 by optical helicity,” Nat. Nanotechnol. 7, 494 (2012).
[Crossref]

Henriksen, E. A.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

Hong, X.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Jiang, W.

Y. Zhang, B. Guo, F. Zhai, and W. Jiang, “Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model,” Phys. Rev. B 97, 115455 (2018).
[Crossref]

Y. Zhang, F. Zhai, B. Guo, L. Yi, and W. Jiang, “Quantum hydrodynamic modeling of edge modes in chiral berry plasmons,” Phys. Rev. B 96, 045104 (2017).
[Crossref]

Jiang, Y.

Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, “Generation of pure bulk valley current in graphene,” Phys. Rev. Lett. 110, 046601 (2013).
[Crossref] [PubMed]

Jiang, Z.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

Jin, C.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Jin, D.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Joannopoulos, J. D.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Katsnelson, M.

M. A. Vozmediano, M. Katsnelson, and F. Guinea, “Gauge fields in graphene,” Phys. Rep. 496, 109–148 (2010).
[Crossref]

F. Guinea, M. Katsnelson, and M. Vozmediano, “Midgap states and charge inhomogeneities in corrugated graphene,” Phys. Rev. B 77, 075422 (2008).
[Crossref]

Katsnelson, M. I.

A. Principi, M. I. Katsnelson, and G. Vignale, “Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields,” Phys. Rev. Lett. 117, 196803 (2016).

Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, “Generation of pure bulk valley current in graphene,” Phys. Rev. Lett. 110, 046601 (2013).
[Crossref] [PubMed]

F. Guinea, M. I. Katsnelson, and A. K. Geim, “Energy gaps and a zero-field quantum hall effect in graphene by strain engineering,” Nat. Phys. 6, 30 (2010).
[Crossref]

Kim, J.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Kim, P.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

Knorr, A.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Lagarde, D.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Fluid Mechanics(Pergamon Press, Oxford,1987).

Landsberg, A. M.

J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “Lcpfct-a flux-corrected transport algorithm for solving generalized continuity equations,” Tech. Rep., NRL Memorandom Report No. 6410 (Naval Research Laboratory, Washington, D.C), pp. 20375-5320 (1993).

Leitenstorfer, A.

Li, J.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Li, L.-J.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Li, P.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Li, X.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Li, Z.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Fluid Mechanics(Pergamon Press, Oxford,1987).

Liu, G.-B.

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

Low, T.

Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, “Generation of pure bulk valley current in graphene,” Phys. Rev. Lett. 110, 046601 (2013).
[Crossref] [PubMed]

Lu, L.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Lundeberg, M. B.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Mackenzie, A. P.

T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, “Hydrodynamic electron flow and hall viscosity,” Phys. Rev. Lett. 118, 226601 (2017).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer mos 2 by optical helicity,” Nat. Nanotechnol. 7, 494 (2012).
[Crossref]

Malic, E.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Marie, X.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Marklund, M.

G. Brodin, A. P. Misra, and M. Marklund, “Spin contribution to the ponderomotive force in a plasma,” Phys. Rev. Lett. 105, 105004 (2010).
[Crossref] [PubMed]

Martin, M. C.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

Martinez-Moreno, E.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Mast, D. B.

D. B. Mast, A. J. Dahm, and A. L. Fetter, “Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid,” Phys. Rev. Lett. 54, 1706 (1985).
[Crossref] [PubMed]

McLeod, A.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Mirlin, A.

U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
[Crossref]

Misra, A. P.

G. Brodin, A. P. Misra, and M. Marklund, “Spin contribution to the ponderomotive force in a plasma,” Phys. Rev. Lett. 105, 105004 (2010).
[Crossref] [PubMed]

Moore, J. E.

T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, “Hydrodynamic electron flow and hall viscosity,” Phys. Rev. Lett. 118, 226601 (2017).
[Crossref] [PubMed]

Müller, M.

M. Müller, J. Schmalian, and L. Fritz, “Graphene: A nearly perfect fluid,” Phys. Rev. Lett. 103, 025301 (2009).
[Crossref] [PubMed]

Nandi, N.

T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, “Hydrodynamic electron flow and hall viscosity,” Phys. Rev. Lett. 118, 226601 (2017).
[Crossref] [PubMed]

Narozhny, B.

U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
[Crossref]

Neto, A. C.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Niehues, I.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Niu, Q.

D. Xiao, W. Yao, and Q. Niu, “Valley-contrasting physics in graphene: magnetic moment and topological transport,” Phys. Rev. Lett. 99, 236809 (2007).
[Crossref]

Novoselov, K. S.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Oran, E. S.

J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “Lcpfct-a flux-corrected transport algorithm for solving generalized continuity equations,” Tech. Rep., NRL Memorandom Report No. 6410 (Naval Research Laboratory, Washington, D.C), pp. 20375-5320 (1993).

Peres, N. M.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Polini, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Principi, A.

A. Principi, M. I. Katsnelson, and G. Vignale, “Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields,” Phys. Rev. Lett. 117, 196803 (2016).

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Reimann, K.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Rodin, A.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Rudner, M. S.

J. C. Song and M. S. Rudner, “Chiral plasmons without magnetic field,” Proc. Nat. Acad. Sci. 1134658 (2016).

Scaffidi, T.

T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, “Hydrodynamic electron flow and hall viscosity,” Phys. Rev. Lett. 118, 226601 (2017).
[Crossref] [PubMed]

Schmalian, J.

M. Müller, J. Schmalian, and L. Fritz, “Graphene: A nearly perfect fluid,” Phys. Rev. Lett. 103, 025301 (2009).
[Crossref] [PubMed]

Schmidt, B.

T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, “Hydrodynamic electron flow and hall viscosity,” Phys. Rev. Lett. 118, 226601 (2017).
[Crossref] [PubMed]

Schmidt, R.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Schneider, R.

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

Schütt, M.

U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
[Crossref]

Shan, J.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer mos 2 by optical helicity,” Nat. Nanotechnol. 7, 494 (2012).
[Crossref]

Shi, S.-F.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Sobon, G.

J. Sotor and G. Sobon, “24 fs and 3 nj pulse generation from a simple, all polarization maintaining er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

Soljacic, M.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Song, J. C.

J. C. Song and M. S. Rudner, “Chiral plasmons without magnetic field,” Proc. Nat. Acad. Sci. 1134658 (2016).

Song, Z.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Sotor, J.

J. Sotor and G. Sobon, “24 fs and 3 nj pulse generation from a simple, all polarization maintaining er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

Sounas, D. L.

D. L. Sounas, C. Caloz, and A. Alu, “Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials,” Nat. Commun. 4, 2407 (2013).
[Crossref] [PubMed]

Stockman, M. I.

Stormer, H.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

Sun, D.

Z. Ye, D. Sun, and T. F. Heinz, “Optical manipulation of valley pseudospin,” Nat. Phys. 13, 26 (2017).
[Crossref]

Taniguchi, T.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Tauser, F.

Thiemens, M.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Titov, M.

U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
[Crossref]

Urbaszek, B.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Vidal, M.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Vignale, G.

A. Principi, M. I. Katsnelson, and G. Vignale, “Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields,” Phys. Rev. Lett. 117, 196803 (2016).

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Vozmediano, M.

F. Guinea, M. Katsnelson, and M. Vozmediano, “Midgap states and charge inhomogeneities in corrugated graphene,” Phys. Rev. B 77, 075422 (2008).
[Crossref]

Vozmediano, M. A.

M. A. Vozmediano, M. Katsnelson, and F. Guinea, “Gauge fields in graphene,” Phys. Rep. 496, 109–148 (2010).
[Crossref]

Wagner, M.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Wan, Y.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Wang, F.

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Wang, G.

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Wang, Y.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Wang, Z.

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

Watanabe, K.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Woerner, M.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Woessner, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Xia, F.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Xiao, D.

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

D. Xiao, W. Yao, and Q. Niu, “Valley-contrasting physics in graphene: magnetic moment and topological transport,” Phys. Rev. Lett. 99, 236809 (2007).
[Crossref]

Xiao, J.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Xu, X.

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

Yan, H.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Yao, W.

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

D. Xiao, W. Yao, and Q. Niu, “Valley-contrasting physics in graphene: magnetic moment and topological transport,” Phys. Rev. Lett. 99, 236809 (2007).
[Crossref]

Ye, Z.

Z. Ye, D. Sun, and T. F. Heinz, “Optical manipulation of valley pseudospin,” Nat. Phys. 13, 26 (2017).
[Crossref]

Yi, L.

Y. Zhang, F. Zhai, B. Guo, L. Yi, and W. Jiang, “Quantum hydrodynamic modeling of edge modes in chiral berry plasmons,” Phys. Rev. B 96, 045104 (2017).
[Crossref]

Y. Zhang, F. Zhai, and L. Yi, “Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas,” Phys. Lett. A 380, 3908–3913 (2016).
[Crossref]

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Zeng, H.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

Zhai, F.

Y. Zhang, B. Guo, F. Zhai, and W. Jiang, “Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model,” Phys. Rev. B 97, 115455 (2018).
[Crossref]

Y. Zhang, F. Zhai, B. Guo, L. Yi, and W. Jiang, “Quantum hydrodynamic modeling of edge modes in chiral berry plasmons,” Phys. Rev. B 96, 045104 (2017).
[Crossref]

Y. Zhang, F. Zhai, and L. Yi, “Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas,” Phys. Lett. A 380, 3908–3913 (2016).
[Crossref]

Zhang, H.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Zhang, K.

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Zhang, L.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, B. Guo, F. Zhai, and W. Jiang, “Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model,” Phys. Rev. B 97, 115455 (2018).
[Crossref]

Y. Zhang, F. Zhai, B. Guo, L. Yi, and W. Jiang, “Quantum hydrodynamic modeling of edge modes in chiral berry plasmons,” Phys. Rev. B 96, 045104 (2017).
[Crossref]

Y. Zhang, F. Zhai, and L. Yi, “Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas,” Phys. Lett. A 380, 3908–3913 (2016).
[Crossref]

Zhao, Z.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Zhu, W.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, and et al., “Epitaxial single-layer mos2 on gan with enhanced valley helicity,” Adv. Mater. 30, 1703888 (2018).
[Crossref]

Laser Phys. Lett. (1)

J. Sotor and G. Sobon, “24 fs and 3 nj pulse generation from a simple, all polarization maintaining er-doped fiber laser,” Laser Phys. Lett. 13, 125102 (2016).
[Crossref]

Nano Lett. (1)

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Nat. Commun. (3)

G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S. M. de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, “Inverted valley polarization in optically excited transition metal dichalcogenides,” Nat. Commun. 9, 971 (2018).
[Crossref] [PubMed]

D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopoulos, M. Soljačić, L. Fu, and N. X. Fang, “Topological magnetoplasmon,” Nat. Commun. 7, 13486 (2016).
[Crossref]

D. L. Sounas, C. Caloz, and A. Alu, “Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials,” Nat. Commun. 4, 2407 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, and et al., “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Nat. Nanotechnol. (2)

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer mos 2 by optical helicity,” Nat. Nanotechnol. 7, 494 (2012).
[Crossref]

Nat. Photonics (1)

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, and J. D. Joannopoulos, “What is–and what is not–an optical isolator,” Nat. Photonics 7, 579 (2013).
[Crossref]

Nat. Phys. (3)

F. Guinea, M. I. Katsnelson, and A. K. Geim, “Energy gaps and a zero-field quantum hall effect in graphene by strain engineering,” Nat. Phys. 6, 30 (2010).
[Crossref]

Z. Ye, D. Sun, and T. F. Heinz, “Optical manipulation of valley pseudospin,” Nat. Phys. 13, 26 (2017).
[Crossref]

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532 (2008).
[Crossref]

Nature (1)

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, and et al., “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Lett. A (1)

Y. Zhang, F. Zhai, and L. Yi, “Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas,” Phys. Lett. A 380, 3908–3913 (2016).
[Crossref]

Phys. Rep. (1)

M. A. Vozmediano, M. Katsnelson, and F. Guinea, “Gauge fields in graphene,” Phys. Rep. 496, 109–148 (2010).
[Crossref]

Phys. Rev. B (7)

Y. Zhang, B. Guo, F. Zhai, and W. Jiang, “Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model,” Phys. Rev. B 97, 115455 (2018).
[Crossref]

A. L. Fetter, “Edge magnetoplasmons in a bounded two-dimensional electron fluid,” Phys. Rev. B 32, 7676 (1985).
[Crossref]

Y. Zhang, F. Zhai, B. Guo, L. Yi, and W. Jiang, “Quantum hydrodynamic modeling of edge modes in chiral berry plasmons,” Phys. Rev. B 96, 045104 (2017).
[Crossref]

F. Guinea, M. Katsnelson, and M. Vozmediano, “Midgap states and charge inhomogeneities in corrugated graphene,” Phys. Rev. B 77, 075422 (2008).
[Crossref]

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

U. Briskot, M. Schütt, I. Gornyi, M. Titov, B. Narozhny, and A. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
[Crossref]

G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer wse 2,” Phys. Rev. B 90, 075413 (2014).
[Crossref]

Phys. Rev. Lett. (9)

Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, “Generation of pure bulk valley current in graphene,” Phys. Rev. Lett. 110, 046601 (2013).
[Crossref] [PubMed]

T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, “Hydrodynamic electron flow and hall viscosity,” Phys. Rev. Lett. 118, 226601 (2017).
[Crossref] [PubMed]

M. Müller, J. Schmalian, and L. Fritz, “Graphene: A nearly perfect fluid,” Phys. Rev. Lett. 103, 025301 (2009).
[Crossref] [PubMed]

G. Brodin, A. P. Misra, and M. Marklund, “Spin contribution to the ponderomotive force in a plasma,” Phys. Rev. Lett. 105, 105004 (2010).
[Crossref] [PubMed]

I. L. Aleiner and L. I. Glazman, “Novel edge excitations of two-dimensional electron liquid in a magnetic field,” Phys. Rev. Lett. 72, 2935 (1994).
[Crossref] [PubMed]

D. Xiao, W. Yao, and Q. Niu, “Valley-contrasting physics in graphene: magnetic moment and topological transport,” Phys. Rev. Lett. 99, 236809 (2007).
[Crossref]

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

D. B. Mast, A. J. Dahm, and A. L. Fetter, “Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid,” Phys. Rev. Lett. 54, 1706 (1985).
[Crossref] [PubMed]

A. Principi, M. I. Katsnelson, and G. Vignale, “Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields,” Phys. Rev. Lett. 117, 196803 (2016).

Proc. Nat. Acad. Sci. (1)

J. C. Song and M. S. Rudner, “Chiral plasmons without magnetic field,” Proc. Nat. Acad. Sci. 1134658 (2016).

Rev. Mod. Phys. (1)

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Science (1)

J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, “Ultrafast generation of pseudo-magnetic field for valley excitons in wse2 monolayers,” Science 346, 1205–1208 (2014).
[Crossref] [PubMed]

Other (3)

J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “Lcpfct-a flux-corrected transport algorithm for solving generalized continuity equations,” Tech. Rep., NRL Memorandom Report No. 6410 (Naval Research Laboratory, Washington, D.C), pp. 20375-5320 (1993).

F. Haas, Quantum Plasmas An Hydrodynamic Approach(Springer, 2011).
[Crossref]

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Fluid Mechanics(Pergamon Press, Oxford,1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic illustration of the considered two-dimensional electron system in a strained graphene sheet with an edge z = 0. The edge is powered by a time-dependent voltage V ( t ) consisting of multiple harmonics. The electrons in K and K valleys are subject to the strain-generated pseudomagnetic fields B K = B and B K = B for the right-propagating edge plasmon. The uniform pseudomagnetic fields generate two counterpropagating edge plasmons. (b) Waveform of normalized voltage V ( t ) / V 0 [defined in Eq. (1)] with the number of harmonics N = 1 , 2 , 3 , 4 , 5.
Fig. 2
Fig. 2 Physical quantities of the right-propagating edge plasmon at the end of one cycle of the voltage modulation plotted as a function of the voltage amplitude V 0. (a) Electron density n K / n 0 and n K / n 0; (b) Degree of valley polarization P V E; (c) Longitudinal velocity u z K / v F and u z K / v F; (d) Transverse velocity u x K / v F and u x K / v F. The parameters are N = 5, θ = 0, and B = 1 Tesla.
Fig. 3
Fig. 3 Same as Fig. 2 but for the physical quantities at the end of half cycle of the voltage modulation.
Fig. 4
Fig. 4 (a) Voltage waveform V ( t ) with parameters V 0 = 0.1, N = 5 and θ = 0. (b) Time dependence of electron density n K / n 0 and n K / n 0 for the right-propagating edge plasmon under the modulation of V ( t ). The pseudomagnetic field strength is set at B = 1 Tesla.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V ( t ) = I = 1 I = N V I N + 1 I N c o s ( 2 π I f t + θ I ) .
n s t + ( n s u s ) = 0
u s t + ( u s ) u s = e m * ( ϕ + V ( t ) δ ( z ) ) s e B m * c e y × u s v F 2 2 n s n s .
2 ϕ = 4 π e ( n K + n K 2 n 0 ) δ ( y ) ,
P V E ( t ) = n K ( z = 0 , t ) n K ( z = 0 , t ) n K ( z = 0 , t ) + n K ( z = 0 , t ) .