Abstract

Optical technology in the mid-infrared wavelength range is currently a rapidly developing field initiated by the availability of novel high-power and spatially coherent sources. Non-destructive testing techniques based on these sources are very promising for industrial and medical applications. However, there are still many engineering problems due to the technical challenges and high prices of the optical elements suitable for the mid-infrared region. In this paper, we report the development and performances of the first mid-infrared Fourier-domain optical coherence tomography based on a supercontinuum source and low-cost pyroelectric detector. The system is designed to operate in the spectral region around 4 μm. Experimental results are demonstrated for detections of embedded microstructures in ceramic materials and subsurface oil paint layers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang
Opt. Lett. 39(22) 6509-6512 (2014)

High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang
Opt. Express 23(3) 1992-2001 (2015)

Optical coherence tomography and non-linear microscopy for paintings – a study of the complementary capabilities and laser degradation effects

Haida Liang, Meropi Mari, Chi Shing Cheung, Sotiria Kogou, Phillip Johnson, and George Filippidis
Opt. Express 25(16) 19640-19653 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Applied Spectroscopy 72, 634–642 (2018).
    [Crossref]
  2. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Applied Physics B 88, 337–357 (2007).
    [Crossref]
  3. J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE(SpringerInternational Publishing, 2018), pp. 1–44.
  4. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
    [Crossref]
  5. S. Liu, M. R. E. Lamont, J. A. Mulligan, and S. G. Adie, “Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle,” Biomed. Opt. Express 9, 4919–4935 (2018).
    [Crossref] [PubMed]
  6. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Communications 1, 81 (2010).
    [Crossref] [PubMed]
  7. R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22, 15804–15819 (2014).
    [Crossref] [PubMed]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  9. C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
    [Crossref]
  10. D. Varnell, M. C. Zheng, M. Chow, and C. Gmachl, “Spectroscopy and imaging using a mid-ir quantum cascade optical coherence tomography (oct) system,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. ATu1J.7.
    [Crossref]
  11. A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Science and Technology 3, 025008 (2018).
    [Crossref]
  12. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref] [PubMed]
  13. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
    [Crossref] [PubMed]
  14. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [Crossref] [PubMed]
  15. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
    [Crossref] [PubMed]
  16. A. Rogalski, Infrared Detectors 2nd Edition (CRC, 2011).
  17. S. Wolf, J. Kiessling, M. Kunz, G. Popko, K. Buse, and F. Kühnemann, “Upconversion-enabled array spectrometer for the mid-infrared, featuring kilohertz spectra acquisition rates,” Opt. Express 25, 14504–14515 (2017).
    [Crossref] [PubMed]
  18. J. S. Dam, K. P. Sørensen, C. Pedersen, and P. Tidemand-Lichtenberg, “Mid-ir image acquisition using a standard ccd camera,” in Frontiers in Optics 2010/Laser ScienceXXVI, (Optical Society of America, 2010), p. FWX5.
    [Crossref]
  19. A. Barh, C. Pedersen, and P. Tidemand-Lichtenberg, “Ultra-broadband mid-wave-ir upconversion detection,” Opt. Lett. 42, 1504–1507 (2017).
    [Crossref] [PubMed]
  20. A. Barh, P. Tidemand-Lichtenberg, and C. Pedersen, “Thermal noise in mid-infrared broadband upconversion detectors,” Opt. Express 26, 3249–3259 (2018).
    [Crossref] [PubMed]
  21. J. E. Howard, “Imaging properties of off-axis parabolic mirrors,” Appl. Opt. 18, 2714–2722 (1979).
    [Crossref] [PubMed]
  22. A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics 1, 1 – 17 (1996).
    [Crossref]
  23. S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
    [Crossref]
  24. J. Lehman, “Pyroelectric trap detector for spectral responsivity measurements,” Appl. Opt. 36, 9117–9118 (1997).
    [Crossref]
  25. H. Budzier and G. Gerlach, Thermal Infrared Sensors: Theory, Optimisation and Practice(John Wiley & Sons, 2011).
    [Crossref]
  26. A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Transactions on Industry Applications 27, 824–829 (1991).
    [Crossref]
  27. A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomedical Opt. Express 8, 902–917 (2017).
    [Crossref]
  28. D. J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source interferometric imaging at up to 1 mhz,” Opt. Lett. 39, 5333–5336 (2014).
    [Crossref]
  29. I. J. Arnold, H. Moosmüller, N. Sharma, and C. Mazzoleni, “Beam characteristics of fiber-based supercontinuum light sources with mirror- and lens-based beam collimators,” Opt. Express 22, 13860–13869 (2014).
    [Crossref] [PubMed]
  30. A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics 1, 1–17 (1996).
    [Crossref]
  31. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications(SpringerInternational Publishing, 2008).
    [Crossref]
  32. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Progress in Physics 66, 239–303 (2003).
    [Crossref]
  33. G. Poldi and S. Caglio, “Phthalocyanine identification in paintings by reflectance spectroscopy. a laboratory and in situ study,” Optics and Spectroscopy 114, 929–935 (2013).
    [Crossref]
  34. H. Liang, K. Keita, B. Peric, and T. Vajzovic, “Pigment identification with optical coherence tomography and multispectral imaging,” in Proc. OSAV 2008, the 2nd International Topical Meeting on Optical Sensing and Artificial Vision, (2008).
  35. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003).
    [Crossref] [PubMed]
  36. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering(Optical Society of America, 1999).
  37. I. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52, 1377–1379 (1962).
    [Crossref]
  38. C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc.SPIE,  8790, 1–5 (2013).
  39. H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).
  40. C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
    [Crossref]
  41. J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
    [Crossref] [PubMed]
  42. D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy : Introduction to Vibrational and Electronic Spectroscopy(Dover Publications Inc., 1989).

2018 (6)

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Applied Spectroscopy 72, 634–642 (2018).
[Crossref]

S. Liu, M. R. E. Lamont, J. A. Mulligan, and S. G. Adie, “Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle,” Biomed. Opt. Express 9, 4919–4935 (2018).
[Crossref] [PubMed]

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Science and Technology 3, 025008 (2018).
[Crossref]

A. Barh, P. Tidemand-Lichtenberg, and C. Pedersen, “Thermal noise in mid-infrared broadband upconversion detectors,” Opt. Express 26, 3249–3259 (2018).
[Crossref] [PubMed]

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref] [PubMed]

2017 (3)

2015 (2)

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref] [PubMed]

H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).

2014 (3)

2013 (3)

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[Crossref]

G. Poldi and S. Caglio, “Phthalocyanine identification in paintings by reflectance spectroscopy. a laboratory and in situ study,” Optics and Spectroscopy 114, 929–935 (2013).
[Crossref]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc.SPIE,  8790, 1–5 (2013).

2010 (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Communications 1, 81 (2010).
[Crossref] [PubMed]

2009 (1)

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
[Crossref]

2007 (2)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Applied Physics B 88, 337–357 (2007).
[Crossref]

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

2004 (1)

2003 (4)

1997 (1)

1996 (2)

A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics 1, 1 – 17 (1996).
[Crossref]

A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics 1, 1–17 (1996).
[Crossref]

1991 (2)

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Transactions on Industry Applications 27, 824–829 (1991).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1979 (1)

1962 (1)

Adie, S. G.

Agrawal, A.

A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomedical Opt. Express 8, 902–917 (2017).
[Crossref]

Ahn, Y. C.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
[Crossref]

An, C.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Science and Technology 3, 025008 (2018).
[Crossref]

Arnold, I. J.

Barh, A.

Bennett, J. M.

J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering(Optical Society of America, 1999).

Berer, T.

Bertolucci, M. D.

D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy : Introduction to Vibrational and Electronic Spectroscopy(Dover Publications Inc., 1989).

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Communications 1, 81 (2010).
[Crossref] [PubMed]

Bouma, B. E.

Brandstetter, M.

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Applied Spectroscopy 72, 634–642 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref] [PubMed]

Brown, R. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Budzier, H.

H. Budzier and G. Gerlach, Thermal Infrared Sensors: Theory, Optimisation and Practice(John Wiley & Sons, 2011).
[Crossref]

Buse, K.

Caglio, S.

G. Poldi and S. Caglio, “Phthalocyanine identification in paintings by reflectance spectroscopy. a laboratory and in situ study,” Optics and Spectroscopy 114, 929–935 (2013).
[Crossref]

Cambrey, A. D.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Cense, B.

Chang, E. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H. M.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Chen, T. C.

Chen, Z.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
[Crossref]

Cheung, C. S.

H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc.SPIE,  8790, 1–5 (2013).

Childs, T. D.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Choi, H.

Choma, M. A.

Chow, M.

D. Varnell, M. C. Zheng, M. Chow, and C. Gmachl, “Spectroscopy and imaging using a mid-ir quantum cascade optical coherence tomography (oct) system,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. ATu1J.7.
[Crossref]

Clarkson, W. A.

H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc.SPIE,  8790, 1–5 (2013).

Cockburn, J. W.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Colley, C. S.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Dam, J. S.

J. S. Dam, K. P. Sørensen, C. Pedersen, and P. Tidemand-Lichtenberg, “Mid-ir image acquisition using a standard ccd camera,” in Frontiers in Optics 2010/Laser ScienceXXVI, (Optical Society of America, 2010), p. FWX5.
[Crossref]

Daniel, J. M. O.

H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc.SPIE,  8790, 1–5 (2013).

de Boer, J. F.

Delpy, D. T.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Drexler, W.

D. J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source interferometric imaging at up to 1 mhz,” Opt. Lett. 39, 5333–5336 (2014).
[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Progress in Physics 66, 239–303 (2003).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications(SpringerInternational Publishing, 2008).
[Crossref]

Duswald, K.

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Applied Spectroscopy 72, 634–642 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref] [PubMed]

Fechtig, D. J.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Progress in Physics 66, 239–303 (2003).
[Crossref]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics 1, 1–17 (1996).
[Crossref]

A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics 1, 1 – 17 (1996).
[Crossref]

Fink, M.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Communications 1, 81 (2010).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications(SpringerInternational Publishing, 2008).
[Crossref]

Gerlach, G.

H. Budzier and G. Gerlach, Thermal Infrared Sensors: Theory, Optimisation and Practice(John Wiley & Sons, 2011).
[Crossref]

Gigan, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Communications 1, 81 (2010).
[Crossref] [PubMed]

Gmachl, C.

D. Varnell, M. C. Zheng, M. Chow, and C. Gmachl, “Spectroscopy and imaging using a mid-ir quantum cascade optical coherence tomography (oct) system,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. ATu1J.7.
[Crossref]

Golde, J.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE(SpringerInternational Publishing, 2018), pp. 1–44.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Ha, J.

Harris, D. C.

D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy : Introduction to Vibrational and Electronic Spectroscopy(Dover Publications Inc., 1989).

Hebden, J. C.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Progress in Physics 66, 239–303 (2003).
[Crossref]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

Hogg, R. A.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Hossain, A.

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Transactions on Industry Applications 27, 824–829 (1991).
[Crossref]

Hou, C. C.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Howard, J. E.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Izatt, J. A.

Jang, J.

Jang, W.

Jeong, H. W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
[Crossref]

Jung, W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
[Crossref]

Kalashnikov, D. A.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Science and Technology 3, 025008 (2018).
[Crossref]

Keita, K.

H. Liang, K. Keita, B. Peric, and T. Vajzovic, “Pigment identification with optical coherence tomography and multispectral imaging,” in Proc. OSAV 2008, the 2nd International Topical Meeting on Optical Sensing and Artificial Vision, (2008).

Kiessling, J.

Kilgus, J.

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref] [PubMed]

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Applied Spectroscopy 72, 634–642 (2018).
[Crossref]

Kim, B. M.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
[Crossref]

Kirillin, M.

Kirsten, L.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE(SpringerInternational Publishing, 2018), pp. 1–44.

Koch, E.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE(SpringerInternational Publishing, 2018), pp. 1–44.

Krivitsky, L. A.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Science and Technology 3, 025008 (2018).
[Crossref]

Kühnemann, F.

Kunz, M.

Lamont, M. R. E.

Langer, G.

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref] [PubMed]

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Applied Spectroscopy 72, 634–642 (2018).
[Crossref]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Progress in Physics 66, 239–303 (2003).
[Crossref]

Lee, S.

Lee, S. W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
[Crossref]

Lehman, J.

Leitgeb, R.

Leitgeb, R. A.

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Communications 1, 81 (2010).
[Crossref] [PubMed]

Liang, H.

H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc.SPIE,  8790, 1–5 (2013).

H. Liang, K. Keita, B. Peric, and T. Vajzovic, “Pigment identification with optical coherence tomography and multispectral imaging,” in Proc. OSAV 2008, the 2nd International Topical Meeting on Optical Sensing and Artificial Vision, (2008).

Lim, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Liu, F. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Liu, S.

Malitson, I. H.

Mattsson, L.

Mazzoleni, C.

Moosmüller, H.

Mulligan, J. A.

Nassif, N.

Nehmetallah, G.

A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomedical Opt. Express 8, 902–917 (2017).
[Crossref]

Ng, W. H.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Ning, J. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Oh, W.-Y.

Park, B. H.

Park, J.-H.

Park, Y.

Paterova, A. V.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Science and Technology 3, 025008 (2018).
[Crossref]

Pedersen, C.

Peric, B.

H. Liang, K. Keita, B. Peric, and T. Vajzovic, “Pigment identification with optical coherence tomography and multispectral imaging,” in Proc. OSAV 2008, the 2nd International Topical Meeting on Optical Sensing and Artificial Vision, (2008).

Pfefer, T. J.

A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomedical Opt. Express 8, 902–917 (2017).
[Crossref]

Poldi, G.

G. Poldi and S. Caglio, “Phthalocyanine identification in paintings by reflectance spectroscopy. a laboratory and in situ study,” Optics and Spectroscopy 114, 929–935 (2013).
[Crossref]

Popko, G.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Communications 1, 81 (2010).
[Crossref] [PubMed]

Puliafito, G. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Rashid, M. H.

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Transactions on Industry Applications 27, 824–829 (1991).
[Crossref]

Rogalski, A.

A. Rogalski, Infrared Detectors 2nd Edition (CRC, 2011).

Sarunic, M. V.

Schmoll, T.

Schnabel, C.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE(SpringerInternational Publishing, 2018), pp. 1–44.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sergeeva, E.

Sharma, N.

Sørensen, K. P.

J. S. Dam, K. P. Sørensen, C. Pedersen, and P. Tidemand-Lichtenberg, “Mid-ir image acquisition using a standard ccd camera,” in Frontiers in Optics 2010/Laser ScienceXXVI, (Optical Society of America, 2010), p. FWX5.
[Crossref]

Spring, M.

H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Applied Physics B 88, 337–357 (2007).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Su, R.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

Tidemand-Lichtenberg, P.

Tokurakawa, M.

H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc.SPIE,  8790, 1–5 (2013).

Tomlins, P. H.

A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomedical Opt. Express 8, 902–917 (2017).
[Crossref]

Vajzovic, T.

H. Liang, K. Keita, B. Peric, and T. Vajzovic, “Pigment identification with optical coherence tomography and multispectral imaging,” in Proc. OSAV 2008, the 2nd International Topical Meeting on Optical Sensing and Artificial Vision, (2008).

Varnell, D.

D. Varnell, M. C. Zheng, M. Chow, and C. Gmachl, “Spectroscopy and imaging using a mid-ir quantum cascade optical coherence tomography (oct) system,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. ATu1J.7.
[Crossref]

Walther, J.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE(SpringerInternational Publishing, 2018), pp. 1–44.

Wang, Z. G.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Wilson, L. R.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Wolf, S.

Woolliams, P. D.

A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomedical Opt. Express 8, 902–917 (2017).
[Crossref]

Yang, C.

Yang, H.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Science and Technology 3, 025008 (2018).
[Crossref]

Yu, H.

Yun, S. H.

Zhang, J. C.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Zhang, Z. Y.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Zheng, M. C.

D. Varnell, M. C. Zheng, M. Chow, and C. Gmachl, “Spectroscopy and imaging using a mid-ir quantum cascade optical coherence tomography (oct) system,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. ATu1J.7.
[Crossref]

Zhuo, N.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Zibik, E. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Zimmerleiter, R.

Zorin, I.

Appl. Opt. (2)

Applied Physics B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Applied Physics B 88, 337–357 (2007).
[Crossref]

Applied Spectroscopy (1)

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Applied Spectroscopy 72, 634–642 (2018).
[Crossref]

Biomed. Opt. Express (1)

Biomedical Opt. Express (1)

A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomedical Opt. Express 8, 902–917 (2017).
[Crossref]

IEEE Transactions on Industry Applications (1)

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Transactions on Industry Applications 27, 824–829 (1991).
[Crossref]

J. Korean Phy. Soc. (1)

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phy. Soc. 55, 2354–2360 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

Journal of Biomedical Optics (2)

A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics 1, 1 – 17 (1996).
[Crossref]

A. F. Fercher, “Optical coherence tomography,” Journal of Biomedical Optics 1, 1–17 (1996).
[Crossref]

Light Sci. Appl. (1)

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7, 17170 (2018).
[Crossref]

Nature Communications (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Communications 1, 81 (2010).
[Crossref] [PubMed]

Opt. Express (10)

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22, 15804–15819 (2014).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[Crossref]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[Crossref] [PubMed]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref] [PubMed]

S. Wolf, J. Kiessling, M. Kunz, G. Popko, K. Buse, and F. Kühnemann, “Upconversion-enabled array spectrometer for the mid-infrared, featuring kilohertz spectra acquisition rates,” Opt. Express 25, 14504–14515 (2017).
[Crossref] [PubMed]

I. J. Arnold, H. Moosmüller, N. Sharma, and C. Mazzoleni, “Beam characteristics of fiber-based supercontinuum light sources with mirror- and lens-based beam collimators,” Opt. Express 22, 13860–13869 (2014).
[Crossref] [PubMed]

A. Barh, P. Tidemand-Lichtenberg, and C. Pedersen, “Thermal noise in mid-infrared broadband upconversion detectors,” Opt. Express 26, 3249–3259 (2018).
[Crossref] [PubMed]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003).
[Crossref] [PubMed]

Opt. Lett. (3)

Optics and Spectroscopy (1)

G. Poldi and S. Caglio, “Phthalocyanine identification in paintings by reflectance spectroscopy. a laboratory and in situ study,” Optics and Spectroscopy 114, 929–935 (2013).
[Crossref]

Proc.SPIE (2)

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc.SPIE,  8790, 1–5 (2013).

H. Liang, C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and M. Spring, “High resolution fourier domain optical coherence tomography at 2 microns for painted objects,” Proc.SPIE 9527, 952705 (2015).

Quantum Science and Technology (1)

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Science and Technology 3, 025008 (2018).
[Crossref]

Reports on Progress in Physics (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on Progress in Physics 66, 239–303 (2003).
[Crossref]

Review of Scientific Instruments (1)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Review of Scientific Instruments 78, 123108 (2007).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, G. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Other (9)

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE(SpringerInternational Publishing, 2018), pp. 1–44.

D. Varnell, M. C. Zheng, M. Chow, and C. Gmachl, “Spectroscopy and imaging using a mid-ir quantum cascade optical coherence tomography (oct) system,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. ATu1J.7.
[Crossref]

J. S. Dam, K. P. Sørensen, C. Pedersen, and P. Tidemand-Lichtenberg, “Mid-ir image acquisition using a standard ccd camera,” in Frontiers in Optics 2010/Laser ScienceXXVI, (Optical Society of America, 2010), p. FWX5.
[Crossref]

A. Rogalski, Infrared Detectors 2nd Edition (CRC, 2011).

H. Budzier and G. Gerlach, Thermal Infrared Sensors: Theory, Optimisation and Practice(John Wiley & Sons, 2011).
[Crossref]

H. Liang, K. Keita, B. Peric, and T. Vajzovic, “Pigment identification with optical coherence tomography and multispectral imaging,” in Proc. OSAV 2008, the 2nd International Topical Meeting on Optical Sensing and Artificial Vision, (2008).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications(SpringerInternational Publishing, 2008).
[Crossref]

D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy : Introduction to Vibrational and Electronic Spectroscopy(Dover Publications Inc., 1989).

J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering(Optical Society of America, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Spectrum of the supercontinuum source measured by an FTIR spectrometer using a HgCdTe detector sensitive from 2 μm to 14 μm. A neutral density (ND) filter with an optical density (OD) of 1 is used to avoid the oversaturation. The spectral range being exploited for OCT measurements is indicated.
Fig. 2
Fig. 2 (a) Schema of the MIR FD-OCT setup, (b) Simulated intensity distribution (logarithmic scale, normalized) in the array plane (X,Y coordinates) for the spectrum at discrete wavelengths, T - toroidal and S - spherical mirror.
Fig. 3
Fig. 3 (a) The post-processing algorithm flowchart, (b) Post-processing of the measured data where the processing steps are applied to the signal in k-space, ( k = 1 / λ); The zoomed-in detail represents the linear filtering step.
Fig. 4
Fig. 4 (a) B-scan of the gold mirror with ND filter in the sample arm (OD = 1), (b) Lateral resolution measured using a USAF resolution test target, the line width (LW) is 35.08 μm, (c) Axial response function defined for mirror surface (about 50 μm FWHM).
Fig. 5
Fig. 5 Illustration of the specimens: (a) Schematic model of the multilayer ceramic sample, (b) Bright field microscopy images of color pigments in thin paint layer samples: 1 - white titanium, 2 - cadmium red, 3 - yellowish green.
Fig. 6
Fig. 6 B-scans and A-scans (at dashed lines) of the single-crystal sapphire wafer (a,b) with the rough surface facing upwards (300 μm thickness) and of (c,d) the zirconia plate (300 μm thickness) covered by a diffusive tape.
Fig. 7
Fig. 7 Comparison measurements of the multilayer ceramic structure: 1 and 2 - surfaces of the 300 μm thick alumina plate (top surface covered by a diffusive tape); 3 - first surface of 450 μm alumina plate with micro-channels and 4 - rear surface of this plate. A - image artifact caused by the interference of the second surface and the beam-splitter.
Fig. 8
Fig. 8 Comparison measurements (b,c) of a lacquered oil paint test sample (a) on the substrate made up by white titanium, cadmium red and yellowish green correspondingly (S - substrate surface)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR max = 20 log  I m σ 10 log  ( R m T 2 ) ,