Abstract

Spatio-temporal coupling in the field of ultrashort optical pulses is a technical enabler for applications but can result in detrimental effects such as increased on-target pulse duration and decreased intensity. Spectrally resolved spatial-phase measurements of a broadband field are demonstrated using a custom multispectral camera combined with two different wavefront sensors: a multilateral spatial shearing interferometer based on an amplitude checkerboard mask and an apodized imaged Hartmann sensor. The spatially and spectrally resolved phase is processed to quantify the commonly occurring pulse-front tilt and radial group delay, which are experimentally found to be in good agreement with models.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses

Seung-Whan Bahk, Christophe Dorrer, and Jake Bromage
Opt. Express 26(7) 8767-8777 (2018)

Investigation of an apodized imaged Hartmann wavefront sensor

C. Dorrer, A. Kalb, P. Fiala, S.-W. Bahk, A. Sharma, and K. Gibney
Appl. Opt. 57(25) 7266-7275 (2018)

Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

L. Freisem, G. S. M. Jansen, D. Rudolf, K. S. E. Eikema, and S. Witte
Opt. Express 26(6) 6860-6871 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
    [Crossref]
  2. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  3. O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25(12), 2464–2468 (1989).
    [Crossref]
  4. H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
    [Crossref] [PubMed]
  5. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [Crossref] [PubMed]
  6. J.-C. Chanteloup, E. Salmon, C. Sauteret, A. Migus, P. Zeitoun, A. Klisnick, A. Carillon, S. Hubert, D. Ros, P. Nickles, and M. Kalachnikov, “Pulse-front control of 15-TW pulses with a tilted compressor, and application to the subpicosecond traveling-wave pumping of a soft x-ray laser,” J. Opt. Soc. Am. B 17(1), 151–157 (2000).
    [Crossref]
  7. A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4(10), 1298–1304 (2017).
    [Crossref]
  8. D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
    [Crossref]
  9. M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
    [Crossref]
  10. C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
    [Crossref]
  11. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989).
    [Crossref] [PubMed]
  12. J. Bromage, C. Dorrer, and J. D. Zuegel, “Angular-dispersion-induced spatiotemporal aberrations in noncollinear optical parametric amplifiers,” Opt. Lett. 35(13), 2251–2253 (2010).
    [Crossref] [PubMed]
  13. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1(2), 308–437 (2009).
    [Crossref]
  14. C. Dorrer and I. A. Walmsley, “Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses,” Opt. Lett. 27(21), 1947–1949 (2002).
    [Crossref] [PubMed]
  15. P. Gabolde and R. Trebino, “Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography,” Opt. Express 14(23), 11460–11467 (2006).
    [Crossref] [PubMed]
  16. P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, “Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution,” J. Opt. Soc. Am. B 25(6), A81–A92 (2008).
    [Crossref]
  17. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
    [Crossref]
  18. S.-W. Bahk, C. Dorrer, R. G. Roides, and J. Bromage, “Chromatic-aberration diagnostic based on a spectrally resolved lateral-shearing interferometer,” Appl. Opt. 55(9), 2413–2417 (2016).
    [Crossref] [PubMed]
  19. S.-W. Bahk, C. Dorrer, and J. Bromage, “Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses,” Opt. Express 26(7), 8767–8777 (2018).
    [Crossref] [PubMed]
  20. E. Rubino, D. Faccio, L. Tartara, P. K. Bates, O. Chalus, M. Clerici, F. Bonaretti, J. Biegert, and P. Di Trapani, “Spatiotemporal amplitude and phase retrieval of space-time coupled ultrashort pulses using the Shackled-FROG technique,” Opt. Lett. 34(24), 3854–3856 (2009).
    [Crossref] [PubMed]
  21. C. P. Hauri, J. Biegert, U. Keller, B. Schaefer, K. Mann, and G. Marowski, “Validity of wave-front reconstruction and propagation of ultrabroadband pulses measured with a Hartmann-Shack sensor,” Opt. Lett. 30(12), 1563–1565 (2005).
    [Crossref] [PubMed]
  22. S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, and J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann-Shack wavefront sensor,” Opt. Lett. 37(15), 3291–3293 (2012).
    [Crossref] [PubMed]
  23. P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55(4−5), 737–748 (2008).
    [Crossref]
  24. C. Dorrer, A. Kalb, P. Fiala, S. W. Bahk, A. Sharma, and K. Gibney, “Investigation of an apodized imaged Hartmann wavefront sensor,” Appl. Opt. 57(25), 7266–7275 (2018).
    [Crossref] [PubMed]
  25. S.-W. Bahk and C. Dorrer, “Wavefront sensing using a checkerboard amplitude mask,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), Paper CM3C.4.
  26. M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” IEEE Access 6, 14118–14129 (2018).
    [Crossref]
  27. P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
    [Crossref] [PubMed]
  28. S.-W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39(4), 1081–1084 (2014).
    [Crossref] [PubMed]
  29. Spectral Devices Inc., London, Ontario, Canada, N6G 4X8.
  30. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70(8), 998–1009 (1980).
    [Crossref]
  31. D. Malacara-Hernández and D. Malacara-Doblado, “What is a Hartmann test?” Appl. Opt. 54(9), 2296–2301 (2015).
    [Crossref] [PubMed]
  32. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
    [PubMed]
  33. J. Primot, “Three-wave lateral shearing interferometer,” Appl. Opt. 32(31), 6242–6249 (1993).
    [Crossref] [PubMed]
  34. J. Qiao, Z. Mulhollan, and C. Dorrer, “Optical differentiation wavefront sensing with binary pixelated transmission filters,” Opt. Express 24(9), 9266–9279 (2016).
    [Crossref] [PubMed]
  35. S.-W. Bahk, J. Bromage, I. A. Begishev, C. Mileham, C. Stoeckl, M. Storm, and J. D. Zuegel, “On-shot focal-spot characterization technique using phase retrieval,” Appl. Opt. 47(25), 4589–4597 (2008).
    [Crossref] [PubMed]
  36. A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, and J. Pfund, “Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts,” Appl. Opt. 44(30), 6419–6425 (2005).
    [Crossref] [PubMed]
  37. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [Crossref]
  38. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
    [Crossref]
  39. Z. Li and N. Miyanaga, “Simulating ultra-intense femtosecond lasers in the 3-dimensional space-time domain,” Opt. Express 26(7), 8453–8469 (2018).
    [Crossref] [PubMed]
  40. Z. Li, N. Miyanaga, and J. Kawanaka, “Single-shot real-time detection technique for pulse-front tilt and curvature of femtosecond pulsed beams with multiple-slit spatiotemporal interferometry,” Opt. Lett. 43(13), 3156–3159 (2018).
    [Crossref] [PubMed]
  41. A. Börzsönyi, L. Mangin-Thro, G. Chériaux, and K. Osvay, “Two-dimensional single-shot measurement of angular dispersion for compressor alignment,” Opt. Lett. 38(4), 410–412 (2013).
    [Crossref] [PubMed]

2018 (6)

2017 (1)

2016 (3)

2015 (1)

2014 (2)

S.-W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39(4), 1081–1084 (2014).
[Crossref] [PubMed]

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, and J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann-Shack wavefront sensor,” Opt. Lett. 37(15), 3291–3293 (2012).
[Crossref] [PubMed]

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (3)

2007 (1)

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

2006 (1)

2005 (3)

2002 (1)

2001 (2)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[Crossref]

2000 (2)

1998 (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

1996 (1)

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[Crossref]

1994 (1)

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

1993 (1)

1989 (2)

Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989).
[Crossref] [PubMed]

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25(12), 2464–2468 (1989).
[Crossref]

1980 (1)

Abbas, A.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Austin, D. R.

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Bahk, S. W.

Bahk, S.-W.

Bates, P. K.

Begishev, I. A.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

S.-W. Bahk, J. Bromage, I. A. Begishev, C. Mileham, C. Stoeckl, M. Storm, and J. D. Zuegel, “On-shot focal-spot characterization technique using phase retrieval,” Appl. Opt. 47(25), 4589–4597 (2008).
[Crossref] [PubMed]

Biegert, J.

Blanchot, N.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Bonaretti, F.

Boni, R.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Bor, Z.

Borot, A.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Börzsönyi, A.

Bowlan, P.

Bromage, J.

Bucht, S.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Bueno, J. M.

Carillon, A.

Chalus, O.

Chanteloup, J.-C.

Chériaux, G.

Chernyshov, A.

Clerici, M.

Coughlan, M. A.

Cousin, S. L.

Davies, A. S.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Di Trapani, P.

Dorrer, C.

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Durst, M.

Faccio, D.

Fiala, P.

Fiorini, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Forget, N.

Freidman, G. I.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Froula, D. H.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Gabolde, P.

Gallet, V.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Gibney, K.

Ginzburg, V. N.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Gobert, O.

A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4(10), 1298–1304 (2017).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Gouton, P.

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref] [PubMed]

Haberberger, D.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Hauri, C. P.

Helmcke, J.

Hubert, S.

Jain, P.

P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55(4−5), 737–748 (2008).
[Crossref]

Kalachnikov, M.

Kalb, A.

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Katin, E. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Katz, J.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Kawanaka, J.

Keller, U.

Kessler, T. J.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Khan, H. S.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Khan, M. J.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Khazanov, E. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Khurshid, K.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Kirsanov, A. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Klisnick, A.

Lapray, P.-J.

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref] [PubMed]

Levis, R. J.

Li, Z.

Lozhkarev, V. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Luchinin, G. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Mal’shakov, A. N.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Malacara-Doblado, D.

Malacara-Hernández, D.

Mangin-Thro, L.

Mann, K.

Marowski, G.

Martinez, O. E.

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25(12), 2464–2468 (1989).
[Crossref]

Martyanov, M. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Migus, A.

Mileham, C.

Miyanaga, N.

Mulhollan, Z.

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Nelson, K. A.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[Crossref]

Nickles, P.

Osvay, K.

Palashov, O. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Palastro, J. P.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Pariente, G.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Pfund, J.

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Poteomkin, A. K.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Primot, J.

Qiao, J.

Quéré, F.

A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4(10), 1298–1304 (2017).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref] [PubMed]

Riehle, F.

Roides, R. G.

Ros, D.

Rouyer, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Rubino, E.

Sainte-Marie, A.

Salmon, E.

Sauteret, C.

Schaefer, B.

Schwiegerling, J.

P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55(4−5), 737–748 (2008).
[Crossref]

Sergeev, A. M.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Seznec, S.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Sharma, A.

Shaw, J. L.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Shaykin, A. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Southwell, W. H.

Sterr, U.

Stoeckl, C.

Storm, M.

Tartara, L.

Thomas, J.-B.

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref] [PubMed]

Trebino, R.

Turnbull, D.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

van Howe, J.

Vincenti, H.

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref] [PubMed]

Walmsley, I.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[Crossref]

Walmsley, I. A.

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1(2), 308–437 (2009).
[Crossref]

C. Dorrer and I. A. Walmsley, “Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses,” Opt. Lett. 27(21), 1947–1949 (2002).
[Crossref] [PubMed]

Wang, X.

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref] [PubMed]

Waxer, L.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[Crossref]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Xu, C.

Yakovlev, I. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Yousaf, A.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Zeitoun, P.

Zhu, G.

Zipfel, W.

Zuegel, J. D.

Adv. Opt. Photonics (1)

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1(2), 308–437 (2009).
[Crossref]

Appl. Opt. (6)

IEEE Access (1)

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

IEEE J. Quantum Electron. (3)

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[Crossref]

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25(12), 2464–2468 (1989).
[Crossref]

J. Mod. Opt. (1)

P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55(4−5), 737–748 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Laser Phys. Lett. (1)

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Nat. Photonics (2)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

Z. Li, N. Miyanaga, and J. Kawanaka, “Single-shot real-time detection technique for pulse-front tilt and curvature of femtosecond pulsed beams with multiple-slit spatiotemporal interferometry,” Opt. Lett. 43(13), 3156–3159 (2018).
[Crossref] [PubMed]

A. Börzsönyi, L. Mangin-Thro, G. Chériaux, and K. Osvay, “Two-dimensional single-shot measurement of angular dispersion for compressor alignment,” Opt. Lett. 38(4), 410–412 (2013).
[Crossref] [PubMed]

E. Rubino, D. Faccio, L. Tartara, P. K. Bates, O. Chalus, M. Clerici, F. Bonaretti, J. Biegert, and P. Di Trapani, “Spatiotemporal amplitude and phase retrieval of space-time coupled ultrashort pulses using the Shackled-FROG technique,” Opt. Lett. 34(24), 3854–3856 (2009).
[Crossref] [PubMed]

C. P. Hauri, J. Biegert, U. Keller, B. Schaefer, K. Mann, and G. Marowski, “Validity of wave-front reconstruction and propagation of ultrabroadband pulses measured with a Hartmann-Shack sensor,” Opt. Lett. 30(12), 1563–1565 (2005).
[Crossref] [PubMed]

S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, and J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann-Shack wavefront sensor,” Opt. Lett. 37(15), 3291–3293 (2012).
[Crossref] [PubMed]

S.-W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39(4), 1081–1084 (2014).
[Crossref] [PubMed]

C. Dorrer and I. A. Walmsley, “Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses,” Opt. Lett. 27(21), 1947–1949 (2002).
[Crossref] [PubMed]

Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989).
[Crossref] [PubMed]

J. Bromage, C. Dorrer, and J. D. Zuegel, “Angular-dispersion-induced spatiotemporal aberrations in noncollinear optical parametric amplifiers,” Opt. Lett. 35(13), 2251–2253 (2010).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Lett. (1)

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[Crossref]

Sensors (1)

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref] [PubMed]

Other (2)

Spectral Devices Inc., London, Ontario, Canada, N6G 4X8.

S.-W. Bahk and C. Dorrer, “Wavefront sensing using a checkerboard amplitude mask,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), Paper CM3C.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Examples of filter arrangements for detecting spectrally resolved fluence distributions with a monochrome camera. The arrangements correspond to (a) the Bayer filter arrangement commonly used in a color red-green-blue (RGB) camera; (b) a generic k × k filter arrangement, with k = 3; and (c) the filter arrangement for the multispectral camera used in this demonstration. The fluence in gray pixels corresponds to transitions between filter pixels and has not been used. Only the filters at λ1 = 800 nm, λ2 = 865 nm, and λ3 = 930 nm overlap with the spectral density of the source used for this demonstration.
Fig. 2
Fig. 2 Application of decoupling matrix for a 2 × 2 multispectral camera using (a) only data in a particular 2 × 2 group and (b) data from all adjacent pixels.
Fig. 3
Fig. 3 (a) Setup for experimental demonstration with an apodized imaged Hartmann sensor. The multiwave lateral shearing interferometer can be located where the Hartmann mask is represented. (b) Spectral density of the source and center wavelength of the three multispectral camera’s filters.
Fig. 4
Fig. 4 (a) Close-up of a full camera frame around one mask hole with the mask at the object plane. [(b)–(d)] Close-up of demosaiced frames at 865 nm around one mask hole for three different longitudinal locations of the mask, corresponding to a total displacement of 50 mm away from the object plane.
Fig. 5
Fig. 5 Experimental characterization of the field after the off-axis spherical mirror. [(a)–(c)] Wavefronts measured at λ1, λ2, and λ3, respectively.
Fig. 6
Fig. 6 Experimental characterization of the field after propagation in the two-singlet imaging system introducing RGD. [(a)–(c)] Wavefronts measured at λ1, λ2, and λ3, respectively; [(d) and (e)] spatially resolved group delay calculated by combining data at λ1 and λ2 and data at λ2 and λ3, respectively, using Eq. (5).
Fig. 7
Fig. 7 Experimental characterization of the field after propagation in a 2.9° fused-silica wedge. [(a)–(c)] Wavefronts measured at λ1, λ2, and λ3, respectively, for a wedge introducing angular dispersion in the x direction. [(d)–(f)] Spatially resolved group delay for three different orientations of the wedge using Eq. (5). (g) Coefficients of the linear fit of the spatially resolved group delay versus x and y for eight different orientations of the wedge (markers) and expected value for the PFT (red line).
Fig. 8
Fig. 8 (a) Close-up of a full camera frame; [(b)–(d)] corresponding decoupled frames at 800 nm, 865 nm, and 930 nm.
Fig. 9
Fig. 9 Experimental characterization of the field after propagation in the two-singlet imaging system and a 1° fused-silica wedge. (a) Wavefront lineouts at λ1, λ2, and λ3 after removal of linear terms. (b) Spatially resolved group delay after the two-lens imaging system calculated by combining data at λ1 and λ2 using Eq. (5). (c) Coefficients of the linear fit of the spatially resolved group delay versus x and y, for eight different orientations of the 1° wedge (markers), and expected value for the PFT (red line).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( M 1 M 2 M K )=( P 11 P 12 P 1K P 21 P 22 P K1 P KK )( A 1 A 2 A K ).
A j ( n,m )= l=1 4 P jl 1 M l ( n,m ) .
A 2 ( n,m )= P 22 1 M 2 ( n,m ) + P 24 1 [ M 4 ( n,m )+ M 4 ( n,m+1 ) ]/2 + P 21 1 [ M 1 ( n,m )+ M 1 ( n+1,m ) ]/2 + P 23 1 [ M 3 ( n,m )+ M 3 ( n,m+1 )+ M 3 ( n+1,m )+ M 3 ( n+1,m+1 ) ]/4 .
φ( x,y,ω )=( p x x+ p y y+q r 2 )( ω ω 0 ) + 2π λ [ t x x+ t y y+ 1 2R r 2 +Q( x,y ) ].
T ij ( x,y ) λ 0 c [ λ i 2π φ( x,y, λ i ) λ j 2π φ( x,y, λ j ) λ i λ j ]= p x x+ p y y+q r 2 .
q= λ cρ n λ ,
p= n λ λtan( α ) c .