Abstract

For an efficient single-photon source a high-count rate into a well-defined spectral and spatial mode is desirable. Here we have developed a hybrid planar Fabry-Pérot microcavity by using a two-photon polymerization process (2PP) where coupling between single-photon sources (diamond colour centres) and resonance modes is observed. The first step consists of using the 2PP process to build a polymer table structure around previously characterized nitrogen-vacancy (NV) centres on top of a distributed Bragg reflector (DBR) with a high reflectivity at the NV zero-phonon line (ZPL). Afterwards, the polymer structure is covered with a silver layer to create a weak (low Q) cavity where resonance fluorescence measurements from the NVs are shown to be in good agreement with analytical and Finite Difference Time Domain (FDTD) results.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices

Mohamed Almokhtar, Masazumi Fujiwara, Hideaki Takashima, and Shigeki Takeuchi
Opt. Express 22(17) 20045-20059 (2014)

Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging

Yu-Ming He, Jin Liu, Sebastian Maier, Monika Emmerling, Stefan Gerhardt, Marcelo Davanço, Kartik Srinivasan, Christian Schneider, and Sven Höfling
Optica 4(7) 802-808 (2017)

Quantum nanophotonics in diamond [Invited]

Tim Schröder, Sara L. Mouradian, Jiabao Zheng, Matthew E. Trusheim, Michael Walsh, Edward H. Chen, Luozhou Li, Igal Bayn, and Dirk Englund
J. Opt. Soc. Am. B 33(4) B65-B83 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
    [Crossref]
  2. S. Prawer and I. Aharonovich, Quantum Information Processing with Diamond: Principles and Applications (Elsevier, 2014).
  3. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
    [Crossref]
  4. J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
    [Crossref]
  5. T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
    [Crossref]
  6. R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
    [Crossref]
  7. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Fabry – Perot microcavity,” 35, 2293–2295 (2010).
  8. T. W. Allen, J. Silverstone, N. Ponnampalam, T. Olsen, A. Meldrum, and R. G. DeCorby, “High-finesse cavities fabricated by buckling self-assembly of a-Si/SiO2 multilayers,” Opt. Express 19(20), 18903–18909 (2011).
    [Crossref] [PubMed]
  9. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
    [Crossref]
  10. J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
    [Crossref]
  11. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556–3558 (2010).
    [Crossref] [PubMed]
  12. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
    [Crossref] [PubMed]
  13. J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
    [Crossref]
  14. A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
    [Crossref] [PubMed]
  15. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  16. M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
    [Crossref] [PubMed]
  17. A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
    [Crossref] [PubMed]
  18. Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
    [Crossref] [PubMed]
  19. L. Chen, M. Lopez-Garcia, M. P. C. Taverne, X. Zheng, Y. D. Ho, and J. Rarity, “Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy,” Opt. Lett. 42(8), 1584–1587 (2017).
    [Crossref] [PubMed]
  20. L. Chen, M. P. C. Taverne, X. Zheng, J.-D. Lin, R. Oulton, M. Lopez-Garcia, Y.-L. D. Ho, and J. G. Rarity, “Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures,” Opt. Express 23, 26565–26575 (2015).
  21. R. Loudon, The Quantum Theory of Light (OUP Oxford, 2000).
  22. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
    [Crossref]
  23. H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
    [Crossref]
  24. L. Novotny, Principles of Nano-Optics (Cambridge University Press, 2007).
  25. C. Lei, D. G. Deppe, Z. Huang, and C. C. Lin, “Emission Characteristics From Dipoles with Fixed Positions in Fabry-Perot Cavities,” IEEE J. Quantum Electron. 29(5), 1383–1386 (1993).
    [Crossref]
  26. M. C. Teich and B. Saleh, “Fundamentals of photonics,” Canada, Wiley Intersci. 3, (1991).
  27. G. H. Meeten, Optical Properties of Polymers (Elsevier Appl. Sci. Publ. Ltd, 1986).
  28. A. E. Siegman, Lasers (University Science Books, 1986).
  29. D. I. Babic and S. W. Corzine, “Analytic Expressions for the Reflection Delay, Penetration Depth, and Absorptance of Quarterwave Dielectric Mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
    [Crossref]
  30. C. W. Wilmsen, H. Temkin, and L. A. Coldren, “Vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Lasers, C. W. Wilmsen, H. Temkin, and L. A. Coldren, eds. (Cambridge University Press, 1999), pp. 474.

2017 (2)

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
[Crossref] [PubMed]

L. Chen, M. Lopez-Garcia, M. P. C. Taverne, X. Zheng, Y. D. Ho, and J. Rarity, “Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy,” Opt. Lett. 42(8), 1584–1587 (2017).
[Crossref] [PubMed]

2016 (4)

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

2015 (2)

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

L. Chen, M. P. C. Taverne, X. Zheng, J.-D. Lin, R. Oulton, M. Lopez-Garcia, Y.-L. D. Ho, and J. G. Rarity, “Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures,” Opt. Express 23, 26565–26575 (2015).

2014 (2)

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

2013 (1)

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

2012 (1)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

2011 (2)

T. W. Allen, J. Silverstone, N. Ponnampalam, T. Olsen, A. Meldrum, and R. G. DeCorby, “High-finesse cavities fabricated by buckling self-assembly of a-Si/SiO2 multilayers,” Opt. Express 19(20), 18903–18909 (2011).
[Crossref] [PubMed]

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[Crossref]

2010 (3)

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556–3558 (2010).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (2)

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[Crossref]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

1993 (1)

C. Lei, D. G. Deppe, Z. Huang, and C. C. Lin, “Emission Characteristics From Dipoles with Fixed Positions in Fabry-Perot Cavities,” IEEE J. Quantum Electron. 29(5), 1383–1386 (1993).
[Crossref]

1992 (1)

D. I. Babic and S. W. Corzine, “Analytic Expressions for the Reflection Delay, Penetration Depth, and Absorptance of Quarterwave Dielectric Mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[Crossref]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Aharonovich, I.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Albrecht, R.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

Alemán, B.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Allen, T. W.

Andrich, P.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Atikian, H. A.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Awschalom, D.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Babic, D. I.

D. I. Babic and S. W. Corzine, “Analytic Expressions for the Reflection Delay, Penetration Depth, and Absorptance of Quarterwave Dielectric Mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[Crossref]

Banholzer, M. J.

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[Crossref]

Barnes, W. L.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Becher, C.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

Benedikter, J.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Benson, O.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[Crossref]

Beveratos, A.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[Crossref]

Bhaskar, M. K.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Bielejec, E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Björk, G.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Bleszynski Jayich, A.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Bommer, A.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

Borregaard, J.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Bracher, D. O.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Brouri, R.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[Crossref]

Burek, M. J.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Camacho, R. M.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Chang, H. C.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Chen, L.

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Corzine, S. W.

D. I. Babic and S. W. Corzine, “Analytic Expressions for the Reflection Delay, Penetration Depth, and Absorptance of Quarterwave Dielectric Mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[Crossref]

Cui, S.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

DeCorby, R. G.

Deppe, D. G.

C. Lei, D. G. Deppe, Z. Huang, and C. C. Lin, “Emission Characteristics From Dipoles with Fixed Positions in Fabry-Perot Cavities,” IEEE J. Quantum Electron. 29(5), 1383–1386 (1993).
[Crossref]

Deutsch, C.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Dolan, P. R.

Engel, P.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

Englund, D.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Evans, R. E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Fedder, H.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Fischer, J.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

Flagg, E. B.

A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Fabry – Perot microcavity,” 35, 2293–2295 (2010).

Gacoin, T.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[Crossref]

Gädeke, F.

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[Crossref]

Gérard, J. M.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Giessen, H.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
[Crossref] [PubMed]

Gissibl, T.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
[Crossref] [PubMed]

Grangier, P.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[Crossref]

Grazioso, F.

Hadden, J. P.

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

Haeusser, P.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Hansch, T. W.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Hänsch, T. W.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Harrison, J. P.

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

Henze, R.

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

Ho, Y. D.

Ho, Y. L. D.

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

Ho, Y.-L. D.

Hu, E. L.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

C. Lei, D. G. Deppe, Z. Huang, and C. C. Lin, “Emission Characteristics From Dipoles with Fixed Positions in Fabry-Perot Cavities,” IEEE J. Quantum Electron. 29(5), 1383–1386 (1993).
[Crossref]

Hughes, G. M.

Hümmer, T.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Hunger, D.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Jelezko, F.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Jetter, M.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
[Crossref] [PubMed]

Jonsson, P.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Kaschke, J.

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

Kaupp, H.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Kühn, S.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[Crossref]

Lawall, J. R.

A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Fabry – Perot microcavity,” 35, 2293–2295 (2010).

Lee, J. C.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Lei, C.

C. Lei, D. G. Deppe, Z. Huang, and C. C. Lin, “Emission Characteristics From Dipoles with Fixed Positions in Fabry-Perot Cavities,” IEEE J. Quantum Electron. 29(5), 1383–1386 (1993).
[Crossref]

Lin, C. C.

C. Lei, D. G. Deppe, Z. Huang, and C. C. Lin, “Emission Characteristics From Dipoles with Fixed Positions in Fabry-Perot Cavities,” IEEE J. Quantum Electron. 29(5), 1383–1386 (1993).
[Crossref]

Lin, J.-D.

Loncar, M.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Lopez-Garcia, M.

Lukin, M. D.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Mader, M.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Magyar, A. P.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Marseglia, L.

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

McLellan, C. A.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Meldrum, A.

Meuwly, C.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Michler, P.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
[Crossref] [PubMed]

Mücklich, F.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

Muller, A.

A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Fabry – Perot microcavity,” 35, 2293–2295 (2010).

Naber, A.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

Nguyen, C. T.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Nikolay, N.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

O’Brien, J. L.

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

Ohno, K.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Olsen, T.

Oulton, R.

Pacheco, J. L.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Park, H.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Patton, B. R.

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556–3558 (2010).
[Crossref] [PubMed]

Pauly, C.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

Poizat, J. P.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[Crossref]

Ponnampalam, N.

Portalupi, S. L.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
[Crossref] [PubMed]

Rarity, J.

Rarity, J. G.

L. Chen, M. P. C. Taverne, X. Zheng, J.-D. Lin, R. Oulton, M. Lopez-Garcia, Y.-L. D. Ho, and J. G. Rarity, “Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures,” Opt. Express 23, 26565–26575 (2015).

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

Reichel, J.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Russell, K. J.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Sartison, M.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
[Crossref] [PubMed]

Schell, A. W.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

Schlederer, B.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Schröder, T.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[Crossref]

Shi, Q.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

Silverstone, J.

Sipahigil, A.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Smith, J. M.

Solomon, G. S.

A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Fabry – Perot microcavity,” 35, 2293–2295 (2010).

Sontheimer, B.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

Stanley-Clarke, A. C.

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Sukachev, D. D.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Taverne, M. P. C.

Toth, M.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Wasey, J. A. E.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Wegener, M.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

Wolters, J.

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

Worthing, P. T.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Zhang, X.

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Zheng, X.

Zwiller, V.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Appl. Phys. Lett. (3)

J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y. L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97(24), 241901 (2010).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105(7), 073113 (2014).
[Crossref]

J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, and E. L. Hu, “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105(26), 261101 (2014).
[Crossref]

Eur. Phys. J. D (2)

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[Crossref]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: Light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Lei, D. G. Deppe, Z. Huang, and C. C. Lin, “Emission Characteristics From Dipoles with Fixed Positions in Fabry-Perot Cavities,” IEEE J. Quantum Electron. 29(5), 1383–1386 (1993).
[Crossref]

D. I. Babic and S. W. Corzine, “Analytic Expressions for the Reflection Delay, Penetration Depth, and Absorptance of Quarterwave Dielectric Mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[Crossref]

Nat. Photonics (1)

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

New J. Phys. (3)

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hansch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Appl. (1)

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity,” Phys. Rev. Appl. 6(5), 054010 (2016).
[Crossref]

Phys. Rev. Lett. (1)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Sci. Rep. (3)

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Rep. 7(1), 39916 (2017).
[Crossref] [PubMed]

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, and O. Benson, “Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures,” Sci. Rep. 3(1), 1577 (2013).
[Crossref] [PubMed]

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6(1), 31135 (2016).
[Crossref] [PubMed]

Science (1)

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref] [PubMed]

Other (8)

L. Novotny, Principles of Nano-Optics (Cambridge University Press, 2007).

R. Loudon, The Quantum Theory of Light (OUP Oxford, 2000).

A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Fabry – Perot microcavity,” 35, 2293–2295 (2010).

S. Prawer and I. Aharonovich, Quantum Information Processing with Diamond: Principles and Applications (Elsevier, 2014).

C. W. Wilmsen, H. Temkin, and L. A. Coldren, “Vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Lasers, C. W. Wilmsen, H. Temkin, and L. A. Coldren, eds. (Cambridge University Press, 1999), pp. 474.

M. C. Teich and B. Saleh, “Fundamentals of photonics,” Canada, Wiley Intersci. 3, (1991).

G. H. Meeten, Optical Properties of Polymers (Elsevier Appl. Sci. Publ. Ltd, 1986).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Confocal microscopy setup raster-scans nanodiamonds located on top of a substrate. Spectral and spatial filtering is applied to detect exclusively the NV fluorescence. The HBT setup measures coincidence counts at detectors D3 and D4 (SPCM-AQRH-14-FC). (b) A 15×15 μm scan allows visibility of NV centres (inside yellow circles). Scan made with a 0.15 μm  stepsize and 10 s integration time.
Fig. 2
Fig. 2 (a) Blue: Fluorescence spectrum of selected ND measured with our confocal microscope. Red: Smoothed data (b) Blue: Antibunching behaviour of selected ND showing a g ( 2 ) ( 0 ) <1 with a timebin of 0.25 ns . Red: Smoothed data.
Fig. 3
Fig. 3 (a) 2PP process, where the polymer exposed to the focal volume of the excitation beam (red) gets solidified through a two-photon absorption process. (b) Reference marks and two hybrid planar microcavities made with the 2PP process.
Fig. 4
Fig. 4 (a) A FIB image of a hybrid Fabry-Pérot microcavity, (b) Cross-section of hybrid microcavity shows a thickness of ~800nm for the polymer/silver layer. The transversal cut also reveals the alternating layers of the DBR.
Fig. 5
Fig. 5 (a) Blue: White light reflectance spectrum of hybrid planar microcavity with a FSR = 25 THz. Red: White light spectrum of DBR used as substrate for NDs. (b) Lorentzian fit (red) to a resonant dip (blue) with a FWHM = 17.3 nm and Q = 40.
Fig. 6
Fig. 6 (a) Blue: Fluorescence spectrum of pre-selected ND inside hybrid planar microcavity. Resonant peaks due to coupling to modes of cavity are shown. Visible resonant peaks at: 620 nm, 650 nm, 683.1 nm and 723.5 nm. Red: FDTD simulation of hybrid planar microcavity. Black: Background fluorescence of substrate measured next to ND. (b) Blue: Antibunching measurement from pre-selected ND inside cavity. Red: Smoothed data.
Fig. 7
Fig. 7 (a) Cross-section of hybrid planar microcavity with a dipole parallel to the DBR surface for FDTD simulations (b) Effective mirror model used for analytical calculations of the resonant modes.

Tables (1)

Tables Icon

Table 1 Comparison table for analytical, FDTD and measured resonant frequencies

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ )= C N ( τ )( 1 ρ 2 )/ ρ 2 ,
k 1 ( L 1,analytical + L eff )+ k 2 L 2 k B L eff =qπ,
L eff = λ B 4Δn  ,

Metrics