Abstract

A novel technique for improving the dynamic range of slope-assisted Brillouin optical time domain analysis (SA-BOTDA) is proposed. By modulating the pump pulse with a specially designed signal generated using an arbitrary waveform generator, we may manipulate the shape of Brillouin gain spectrum (BGS) to obtain an enlarged strain dynamic range without increasing significant cost on system complexity. In simulation, we realize a 4.8-times improvement by using a 2-tone signal for pump pulse modulation. In experiment, we modulate a 25-ns-width pump pulse with a 2-tone signal whose frequencies are 43 MHz and 86 MHz respectively and achieve a 100-MHz linear slope span, which is about 4.35 times of that in conventional SA-BOTDA technique. Besides, the BGS manipulation technique realizes an efficient utilization of pump power and only introduces a pump power penalty of 3.53 dB, which allows a promising dynamic strain measurement. In the experiment, we successfully measured a sinusoidal strain signal exerted on a 3-m fiber, with a range from −75 με to 875 με and a frequency of 80 Hz. The measured result shows that the suppression ratio of 2nd-order harmonic is 39.35 dB, and the strain measurement accuracy is 5.26 με. The results indicate that the proposed technique has a desirable performance on dynamic strain measurement.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements

Dengwang Zhou, Yongkang Dong, Benzhang Wang, Taofei Jiang, Dexin Ba, Pengbai Xu, Hongying Zhang, Zhiwei Lu, and Hui Li
Opt. Express 25(3) 1889-1902 (2017)

Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA

Dexin Ba, Benzhang Wang, Dengwang Zhou, Mingjing Yin, Yongkang Dong, Hui Li, Zhiwei Lu, and Zhigang Fan
Opt. Express 24(9) 9781-9793 (2016)

Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods

Avi Motil, Roy Davidi, Raanan Hadar, and Moshe Tur
Opt. Express 25(19) 22206-22218 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
    [Crossref] [PubMed]
  2. K. Hotate and T. Hasegawa, “Measurement of brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).
  3. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
    [Crossref] [PubMed]
  4. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
    [Crossref] [PubMed]
  5. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
    [Crossref] [PubMed]
  6. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
    [Crossref] [PubMed]
  7. M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35, 259–261 (2010).
    [Crossref] [PubMed]
  8. M. A. Soto, G. Bolognini, and F. D. Pasquale, “Long-range simplex-coded botda sensor over 120km distance employing optical preamplification,” Opt. Lett. 36, 232–234 (2011).
    [Crossref] [PubMed]
  9. M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24, 1823–1826 (2012).
    [Crossref]
  10. Y. H. Kim, K. Lee, and K. Y. Song, “Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement,” Opt. Express 23, 33241–33248 (2015).
    [Crossref]
  11. A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light: Sci. Appl. 5, e16074 (2016).
    [Crossref]
  12. C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8, 042501 (2015).
    [Crossref]
  13. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34, 2613–2615 (2009).
    [Crossref] [PubMed]
  14. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19, 19845–19854 (2011).
    [Crossref] [PubMed]
  15. Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21, 10697–10705 (2013).
    [Crossref] [PubMed]
  16. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20, 26942–26949 (2012).
    [Crossref] [PubMed]
  17. J. Mariñelarena, J. Urricelqui, and A. Loayssa, “Enhancement of the dynamic range in slope-assisted coherent Brillouin optical time-domain analysis sensors,” IEEE Photonics J. 9, 1–10 (2017).
    [Crossref]
  18. D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
    [Crossref] [PubMed]
  19. G. Yang, X. Fan, and Z. He, “Strain dynamic range enlargement of slope-assisted botda by using brillouin phase-gain ratio,” J. Lightwave Technol. 35, 4451–4458 (2017).
    [Crossref]

2017 (2)

J. Mariñelarena, J. Urricelqui, and A. Loayssa, “Enhancement of the dynamic range in slope-assisted coherent Brillouin optical time-domain analysis sensors,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

G. Yang, X. Fan, and Z. He, “Strain dynamic range enlargement of slope-assisted botda by using brillouin phase-gain ratio,” J. Lightwave Technol. 35, 4451–4458 (2017).
[Crossref]

2016 (2)

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref] [PubMed]

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light: Sci. Appl. 5, e16074 (2016).
[Crossref]

2015 (2)

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8, 042501 (2015).
[Crossref]

Y. H. Kim, K. Lee, and K. Y. Song, “Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement,” Opt. Express 23, 33241–33248 (2015).
[Crossref]

2013 (1)

2012 (3)

J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20, 26942–26949 (2012).
[Crossref] [PubMed]

M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24, 1823–1826 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (1)

2008 (2)

2006 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).

1990 (1)

Ba, D.

Bao, X.

Bernini, R.

Bolognini, G.

Chen, L.

Denisov, A.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light: Sci. Appl. 5, e16074 (2016).
[Crossref]

Dong, Y.

Fan, X.

Fan, Z.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).

He, Z.

Horiguchi, T.

Hotate, K.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8, 042501 (2015).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16, 12148–12153 (2008).
[Crossref] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).

Kim, Y. H.

Kishi, M.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8, 042501 (2015).
[Crossref]

Kressel, I.

Kurashima, T.

Lee, K.

Li, H.

Li, W.

Li, Y.

Loayssa, A.

J. Mariñelarena, J. Urricelqui, and A. Loayssa, “Enhancement of the dynamic range in slope-assisted coherent Brillouin optical time-domain analysis sensors,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20, 26942–26949 (2012).
[Crossref] [PubMed]

Lu, Z.

Mariñelarena, J.

J. Mariñelarena, J. Urricelqui, and A. Loayssa, “Enhancement of the dynamic range in slope-assisted coherent Brillouin optical time-domain analysis sensors,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Minardo, A.

Mizuno, Y.

Motil, A.

Pasquale, F. D.

Peled, Y.

Sagues, M.

Song, K. Y.

Soto, M. A.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light: Sci. Appl. 5, e16074 (2016).
[Crossref]

M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24, 1823–1826 (2012).
[Crossref]

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Long-range simplex-coded botda sensor over 120km distance employing optical preamplification,” Opt. Lett. 36, 232–234 (2011).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35, 259–261 (2010).
[Crossref] [PubMed]

Taki, M.

M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24, 1823–1826 (2012).
[Crossref]

Tateda, M.

Thevenaz, L.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light: Sci. Appl. 5, e16074 (2016).
[Crossref]

Thévenaz, L.

Tur, M.

Urricelqui, J.

J. Mariñelarena, J. Urricelqui, and A. Loayssa, “Enhancement of the dynamic range in slope-assisted coherent Brillouin optical time-domain analysis sensors,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20, 26942–26949 (2012).
[Crossref] [PubMed]

Wang, B.

Yang, G.

Yaron, L.

Yin, M.

Zeni, L.

Zhang, C.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8, 042501 (2015).
[Crossref]

Zhou, D.

Zornoza, A.

Zou, W.

Appl. Phys. Express (1)

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8, 042501 (2015).
[Crossref]

IEEE Photonics J. (1)

J. Mariñelarena, J. Urricelqui, and A. Loayssa, “Enhancement of the dynamic range in slope-assisted coherent Brillouin optical time-domain analysis sensors,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett. 24, 1823–1826 (2012).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).

J. Lightwave Technol. (1)

Light: Sci. Appl. (1)

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light: Sci. Appl. 5, e16074 (2016).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Sensors (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The principle of stimulated Brillouin scattering.
Fig. 2
Fig. 2 The principle of BGS manipulation with a 2-tone modulated pump pulse.
Fig. 3
Fig. 3 The simulated pump pulse spectrum with and without modulation.
Fig. 4
Fig. 4 The simulated (a) BGS and (b) corresponding slope.
Fig. 5
Fig. 5 The relationship between linear slope span and (a) modulation frequency; (b) modulation depth when modulation frequency is 48 MHz.
Fig. 6
Fig. 6 The experimental setup. IM: intensity modulator; OBPF: optical band-pass filter; FUT: fiber under test; AOM: acousto-optic modulator; PS: polarization scrambler; EDFA: erbium-doped fiber amplifier; AWG: arbitrary waveform generator; DAQ: data acquisition system; PD: photo-detector.
Fig. 7
Fig. 7 The spectra of different pump pulse before and after passing through FUT.
Fig. 8
Fig. 8 (a) The BGS obtained by using different pump pulses. (b) The slope of BGS with different pump pulses.
Fig. 9
Fig. 9 (a) The schematic to exert dynamic strain to FUT. (b) The time-domain dynamic strain measurement result and (c) corresponding spectrum.
Fig. 10
Fig. 10 (a) The relationship between the BGS shape and BFS measurement error. (b) The strain measurement error with different pump pulses.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E Stokes ( t ) = E S ( 1 + G SBS ) exp ( j ω S t )
G SBS ( Δ v ) = g 0 | E p | 2 v B 2 v B 2 + ( 2 Δ v ) 2
G SBS ( Δ v ) = P ( ω ) g 0 | E p | 2 v B 2 v B 2 + 4 ( Δ v ω ) 2 d ω
E Pump ( t ) = A ( t ) [ 1 + A 1 cos ( 2 π f 0 t + φ 1 ) + A 2 cos ( 2 π 2 f 0 t + φ 2 ) ] exp ( j ω P t )

Metrics