Abstract

The paper presents a new approach to developing exposed-core fibers. We designed a new asymmetric structure of suspended core fibers with series of additional air holes in the cladding. Using the standard wet etching method we removed a part of glass, demonstrating that the method allows to open a selected air hole surrounding the suspended core. Such modified of fibers can be used to build sensors and devices dedicated to chemical and biological studies and based on the interaction of light with liquids. We used the developed fiber to develop an interferometric sensor that measures changes in the refractive index with a high accuracy. As a proof of concept, we present the experimental measurement results of the ethanol concentration in water.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

Exposed-core microstructured optical fibers for real-time fluorescence sensing

Stephen C. Warren-Smith, Heike Ebendorff-Heidepriem, Tze Cheung Foo, Roger Moore, Claire Davis, and Tanya M. Monro
Opt. Express 17(21) 18533-18542 (2009)

Femtosecond laser-assisted selective infiltration of microstructured optical fibers

Ying Wang, C. R. Liao, and D. N. Wang
Opt. Express 18(17) 18056-18060 (2010)

References

  • View by:
  • |
  • |
  • |

  1. I. R. Matias, S. Ikezawa, and J. Corres, Fiber optic sensors: current status and future possibilities (Springer, 2016).
  2. S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber optic sensors (CRC, 2008).
  3. K. Newby, W. M. Reichert, J. D. Andrade, and R. E. Benner, “Remote spectroscopic sensing of chemical adsorption using a single multimode optical fiber,” Appl. Opt. 23(11), 1812–1815 (1984).
    [Crossref] [PubMed]
  4. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007).
    [Crossref] [PubMed]
  5. T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22(19), 22802–22807 (2014).
    [Crossref] [PubMed]
  6. S. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13(9), 3454–3459 (2005).
    [Crossref] [PubMed]
  7. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  8. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  9. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
    [Crossref] [PubMed]
  10. Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19(23), 22863–22873 (2011).
    [Crossref] [PubMed]
  11. S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [Crossref] [PubMed]
  12. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
    [Crossref] [PubMed]
  13. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
    [Crossref] [PubMed]
  14. E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
    [Crossref]
  15. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
    [Crossref] [PubMed]
  16. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
    [Crossref]
  17. C. M. B. Cordeiro, E. M. Dos Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
    [Crossref] [PubMed]
  18. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
    [Crossref] [PubMed]
  19. S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
    [Crossref] [PubMed]
  20. P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
    [Crossref]
  21. E. P. Schartner, A. Dowler, and H. Ebendorff-Heidepriem, “Fabrication of low-loss, small-core exposed core microstructured optical fibers,” Opt. Mater. Express 7(5), 1496–1502 (2017).
    [Crossref]
  22. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [Crossref] [PubMed]
  23. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
    [Crossref] [PubMed]
  24. A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express 19(16), 15244–15254 (2011).
    [Crossref] [PubMed]
  25. L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sens. Actuat. B Chem. 221, 320–327 (2015).
    [Crossref]
  26. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  27. S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
    [Crossref]
  28. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  29. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
    [Crossref] [PubMed]
  30. R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar V, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
    [Crossref]
  31. S. P. Pujari, L. Scheres, A. T. M. Marcelis, and H. Zuilhof, “Covalent surface modification of oxide surfaces,” Angew. Chem. Int. Ed. Engl. 53(25), 6322–6356 (2014).
    [Crossref] [PubMed]
  32. C. Silva, J. Coelho, P. Caldas, and P. Jorge, “Fibre sensing system based on long-period gratings for monitoring aqueous environments,” Fiber Optic Sensors (Intech, 2012), pp. 317–342.
  33. R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
    [Crossref]
  34. J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
    [Crossref] [PubMed]
  35. J. A. Sethian, Level set methods and fast marching methods evolving interfaces in computational geometry, Fluid mechanics, Computer vision, and Materials science. (Cambridge University, 1999).
  36. H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).
  37. S. C. Warren-Smith, S. Afshar V, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
    [Crossref] [PubMed]
  38. H. Saad, M. T. Ali, and M. K. Abd-Rahman, “High Sensitivity Optical POF Sensor for Detecting Low Ethanol Concentration in Water,” Adv. Mat. Res. 1107, 693–698 (2015).
    [Crossref]

2017 (2)

H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).

E. P. Schartner, A. Dowler, and H. Ebendorff-Heidepriem, “Fabrication of low-loss, small-core exposed core microstructured optical fibers,” Opt. Mater. Express 7(5), 1496–1502 (2017).
[Crossref]

2016 (2)

2015 (3)

H. Saad, M. T. Ali, and M. K. Abd-Rahman, “High Sensitivity Optical POF Sensor for Detecting Low Ethanol Concentration in Water,” Adv. Mat. Res. 1107, 693–698 (2015).
[Crossref]

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sens. Actuat. B Chem. 221, 320–327 (2015).
[Crossref]

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

2014 (5)

2013 (1)

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

2012 (1)

2011 (3)

2009 (4)

2008 (2)

2007 (5)

2006 (1)

2005 (2)

2004 (1)

2003 (1)

1984 (1)

Abd-Rahman, M. K.

H. Saad, M. T. Ali, and M. K. Abd-Rahman, “High Sensitivity Optical POF Sensor for Detecting Low Ethanol Concentration in Water,” Adv. Mat. Res. 1107, 693–698 (2015).
[Crossref]

Abell, A. D.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Abu Bakar, M. H.

Adam, J.-L.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Afshar V, S.

Ali, M. T.

H. Saad, M. T. Ali, and M. K. Abd-Rahman, “High Sensitivity Optical POF Sensor for Detecting Low Ethanol Concentration in Water,” Adv. Mat. Res. 1107, 693–698 (2015).
[Crossref]

Andrade, J. D.

André, R. M.

Anis, H.

Bang, O.

Bartelt, H.

Benner, R. E.

Bjarklev, A.

Boussard-Pledel, C.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Brilland, L.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Brito Cruz, C. H.

Buczynski, R.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Bureau, B.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Carlsen, A.

Cho, J. H.

H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).

Cordeiro, C. M. B.

Cox, F. M.

Davis, C.

de Matos, C. J. S.

Dellith, J.

Docherty, A.

Dos Santos, E. M.

Dowler, A.

Duy, P. P.

H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).

Ebendorff-Heidepriem, H.

E. P. Schartner, A. Dowler, and H. Ebendorff-Heidepriem, “Fabrication of low-loss, small-core exposed core microstructured optical fibers,” Opt. Mater. Express 7(5), 1496–1502 (2017).
[Crossref]

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar V, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[Crossref] [PubMed]

Eggleton, B. J.

Emiliyanov, G.

Ferreiira, D. S.

Filipkowski, A.

Folkenberg, J. R.

Foo, T. C.

Francois, A.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Franczyk, M.

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Frazao, O.

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

Gordon, J. D.

Grivas, C.

Hansen, T. P.

Harb, A.

Heng, S.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Hill, K.

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sens. Actuat. B Chem. 221, 320–327 (2015).
[Crossref]

Ho, H. L.

Hoffmann, P.

Hoiby, P.

Hoiby, P. E.

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Hoo, Y. L.

Jensen, J.

Jensen, J. B.

Jin, W.

Jung, J. H.

H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).

Kamil, Y. M.

Kasztelanic, R.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Khetani, A.

Klantsataya, E.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Konorov, S.

Kostecki, R.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar V, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

Kuhlmey, B. T.

Kujawa, I.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Large, M. C. J.

Liu, D.

Lowder, T. L.

Lwin, R.

Mahdi, M. A.

Marcelis, A. T. M.

S. P. Pujari, L. Scheres, A. T. M. Marcelis, and H. Zuilhof, “Covalent surface modification of oxide surfaces,” Angew. Chem. Int. Ed. Engl. 53(25), 6322–6356 (2014).
[Crossref] [PubMed]

McAdam, G.

Mechin, D.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Monro, T. M.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sens. Actuat. B Chem. 221, 320–327 (2015).
[Crossref]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar V, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Afshar V, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[Crossref] [PubMed]

S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[Crossref] [PubMed]

Moore, R.

Narayanaswamy, R.

Newby, K.

Nguyen, L. V.

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sens. Actuat. B Chem. 221, 320–327 (2015).
[Crossref]

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Nowosielski, J. M.

Park, H.

H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).

Pedersen, L.

Pedersen, L. H.

Perrella, C.

Petrovich, M. N.

Piechal, B.

Pniewski, J.

Pujari, S. P.

S. P. Pujari, L. Scheres, A. T. M. Marcelis, and H. Zuilhof, “Covalent surface modification of oxide surfaces,” Angew. Chem. Int. Ed. Engl. 53(25), 6322–6356 (2014).
[Crossref] [PubMed]

Pysz, D.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Reichert, W. M.

Reynolds, T.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Richardson, D. J.

Riishede, J.

Roriz, P.

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

Rowland, K. J.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Ruan, S. C.

Ruan, Y.

Saad, H.

H. Saad, M. T. Ali, and M. K. Abd-Rahman, “High Sensitivity Optical POF Sensor for Detecting Low Ethanol Concentration in Water,” Adv. Mat. Res. 1107, 693–698 (2015).
[Crossref]

Scalora, M.

Schartner, E. P.

E. P. Schartner, A. Dowler, and H. Ebendorff-Heidepriem, “Fabrication of low-loss, small-core exposed core microstructured optical fibers,” Opt. Mater. Express 7(5), 1496–1502 (2017).
[Crossref]

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[Crossref] [PubMed]

Scheres, L.

S. P. Pujari, L. Scheres, A. T. M. Marcelis, and H. Zuilhof, “Covalent surface modification of oxide surfaces,” Angew. Chem. Int. Ed. Engl. 53(25), 6322–6356 (2014).
[Crossref] [PubMed]

Schultz, S. M.

Selfridge, R. H.

Shi, C.

Silva, S.

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

Stepien, R.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Taghizadeh, M. R.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Tiwari, V. S.

Toupin, P.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Troles, J.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Tsiminis, G.

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Tuan Le, A. H.

H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).

van Brakel, A.

Waddie, A. J.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Wang, A.

Wang, D. N.

Warren-Smith, S. C.

S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
[Crossref] [PubMed]

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sens. Actuat. B Chem. 221, 320–327 (2015).
[Crossref]

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Afshar V, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[Crossref] [PubMed]

S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

Wu, D. K. C.

Xia, L.

Yadav, T. K.

Yi, J.

H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).

Yu, X.

Zhang, Y.

Zheltikov, A.

Zhou, C.

Zuilhof, H.

S. P. Pujari, L. Scheres, A. T. M. Marcelis, and H. Zuilhof, “Covalent surface modification of oxide surfaces,” Angew. Chem. Int. Ed. Engl. 53(25), 6322–6356 (2014).
[Crossref] [PubMed]

Adv. Mat. Res. (1)

H. Saad, M. T. Ali, and M. K. Abd-Rahman, “High Sensitivity Optical POF Sensor for Detecting Low Ethanol Concentration in Water,” Adv. Mat. Res. 1107, 693–698 (2015).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

S. P. Pujari, L. Scheres, A. T. M. Marcelis, and H. Zuilhof, “Covalent surface modification of oxide surfaces,” Angew. Chem. Int. Ed. Engl. 53(25), 6322–6356 (2014).
[Crossref] [PubMed]

Appl. Opt. (3)

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Curr. Photovolt. Res. (1)

H. Park, J. H. Cho, J. H. Jung, P. P. Duy, A. H. Tuan Le, and J. Yi, “A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application,” Curr. Photovolt. Res. 5(3), 75–82 (2017).

Int. J. Appl. Glass Sci. (1)

E. P. Schartner, G. Tsiminis, A. Francois, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

J. Non-Cryst. Solids (1)

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Laser Phys. Lett. (1)

R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8(6), 443–448 (2011).
[Crossref]

Opt. Express (15)

S. C. Warren-Smith, S. Afshar V, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[Crossref] [PubMed]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express 19(16), 15244–15254 (2011).
[Crossref] [PubMed]

C. M. B. Cordeiro, E. M. Dos Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
[Crossref] [PubMed]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[Crossref] [PubMed]

S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
[Crossref] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[Crossref] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[Crossref] [PubMed]

T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22(19), 22802–22807 (2014).
[Crossref] [PubMed]

S. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13(9), 3454–3459 (2005).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19(23), 22863–22873 (2011).
[Crossref] [PubMed]

S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (3)

Photonics (1)

S. Silva, P. Roriz, and O. Frazao, “Refractive index measurements of liquids based on microstructured optical fibers,” Photonics 1(4), 516–529 (2014).
[Crossref]

Sens. Actuat. B Chem. (1)

L. V. Nguyen, K. Hill, S. C. Warren-Smith, and T. M. Monro, “Interferometric-type optical biosensor based on exposed-core microstructured optical fiber,” Sens. Actuat. B Chem. 221, 320–327 (2015).
[Crossref]

Other (4)

J. A. Sethian, Level set methods and fast marching methods evolving interfaces in computational geometry, Fluid mechanics, Computer vision, and Materials science. (Cambridge University, 1999).

C. Silva, J. Coelho, P. Caldas, and P. Jorge, “Fibre sensing system based on long-period gratings for monitoring aqueous environments,” Fiber Optic Sensors (Intech, 2012), pp. 317–342.

I. R. Matias, S. Ikezawa, and J. Corres, Fiber optic sensors: current status and future possibilities (Springer, 2016).

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber optic sensors (CRC, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Scheme of preforms for fabricating fibers with an open side channel: a) PR1, b) PR2.
Fig. 2
Fig. 2 SEM images of the fibers made from PR1 preform.
Fig. 3
Fig. 3 SEM images of the fibers made from PR2 preform.
Fig. 4
Fig. 4 Expected cross-section of etched fibers for both preforms PR1 and PR2 (computer simulation). Value ‘Border’ indicates the minimum thickness of the glass edge surrounding the central hollows, and ‘Time’ defines the time that elapses from the opening of the first hollow surrounding core and the opening of the second hollow.
Fig. 5
Fig. 5 Simulation results of the F1.5 fiber etching in HF acid with a concentration of 10%: a) a map of the time for total etching of different part in fiber F1.5, b-f) the view of etched fiber at subsequent times.
Fig. 6
Fig. 6 Monitoring of the etching process. Light intensity in the etched fiber: a, b) fiber F1.5, c, d) fiber F2.1 (Color oval shows areas where light intensity was measured).
Fig. 7
Fig. 7 Simulation results of the F2.1 fiber etching in HF acid with a concentration of 5%: a-b) fiber etching time map, c-f) the view of etched fiber at subsequent times.
Fig. 8
Fig. 8 Etched fiber: a) example of fiber etched at 0.5 mm, side view, b) the cross-section through the etched fiber F1.5, c) the cross-section through the etched fiber F2.1.
Fig. 9
Fig. 9 Dependency of the effective refraction index on the concentration of water-ethanol mixture and intensity distribution in two polarization components of the fundamental mode (FM) in fiber labeled F2.1 with one channel infiltrated with pure water (wavelength λ = 634 nm). Arrows indicate the polarization distribution and the field profile shown is the normalized electric field.
Fig. 10
Fig. 10 Effective mode area a) and modal power fraction b) as a function of water-ethanol mixture for F2.1 fiber (wavelength λ = 634 nm).
Fig. 11
Fig. 11 Proof-of-concept system for measurements of water-ethanol concentration based on the Mach-Zehnder interferometer.
Fig. 12
Fig. 12 The results of measuring water-ethanol concentration a), comparison of the experimental results with theory predictions and interpretation of the results b). The data in percentages represent the concentration of ethanol in water.

Tables (3)

Tables Icon

Table 1 The most important parameters of the fibers made from the PR1 preform (in the bold box: the best fiber selected– see Section 3).

Tables Icon

Table 2 The most important parameters of the fibers made from the PR2 preform (in the bold box the best fiber selected– see Section 3).

Tables Icon

Table 3 Comparison of experimental results with theoretical predictions (normalized data).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A eff = | A s z dA | 2 A | s z | 2 dA
PF= H s z dA A s z dA

Metrics