Abstract

We report the wavelength tuning, linewidth narrowing and power enhancement of a continuous-wave intracavity Raman laser by incorporating solid etalons in the high-Q fundamental resonator. With a-cut Nd:GdVO4 and a-cut BaWO4 serving as the laser and Raman crystals respectively, tilting of a 50 μm-thick etalon in the high-Q fundamental cavity enabled the fundamental to be tuned from 1061.00 nm to 1065.20 nm. This gave rise to Stokes output which was tunable from 1176.46 nm to 1181.63 nm whilst the narrowed fundamental linewidth resulted in higher effective Raman gain and as a consequence enhanced output power, as well as the narrow-linewidth Stokes output. Frequency-doubling of the Stokes field resulted in yellow output tunable from 588.23 nm to 590.81 nm, which covers the guide star wavelength of 589.16 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient diode-pumped actively Q-switched Nd:YAG?BaWO4 intracavity Raman laser

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang
Opt. Lett. 30(24) 3335-3337 (2005)

An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission

Andrew J. Lee, Helen M. Pask, James A. Piper, Huaijin Zhang, and Jiyang Wang
Opt. Express 18(6) 5984-5992 (2010)

Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser

Xiaoli Li, Andrew J. Lee, Yujing Huo, Huaijin Zhang, Jiyang Wang, James A. Piper, Helen M. Pask, and David J. Spence
Opt. Express 20(17) 19305-19312 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
    [Crossref] [PubMed]
  2. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
    [Crossref] [PubMed]
  3. A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm,” Opt. Lett. 39(13), 4037–4040 (2014).
    [Crossref] [PubMed]
  4. X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
    [Crossref] [PubMed]
  5. D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1400108 (2015).
    [Crossref]
  6. L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
    [Crossref]
  7. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
    [Crossref] [PubMed]
  8. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
    [Crossref]
  9. G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
    [Crossref] [PubMed]
  10. W. Jiang, Z. Li, S. Zhu, H. Yin, Z. Chen, G. Zhang, and W. Chen, “YVO4 Raman laser pumped by a passively Q-switched Yb:YAG laser,” Opt. Express 25(13), 14033–14042 (2017).
    [Crossref] [PubMed]
  11. R. Casula, J. P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4 µm continuous-wave diamond Raman laser,” Opt. Express 25(25), 31377–31383 (2017).
    [Crossref] [PubMed]
  12. C. H. Li and Y. C. Huang, “Pulsed Intracavity Frequency-doubled CaWO4 Raman Laser for Narrow-line Sodium-yellow Radiation,” in CLEO 2012 (OSA, 2012), paper JTuD112.
  13. O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
    [Crossref] [PubMed]
  14. X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
    [Crossref]
  15. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19(24), 24165–24170 (2011).
    [Crossref] [PubMed]
  16. J. Lin, H. M. Pask, D. J. Spence, C. J. Hamilton, and G. P. A. Malcolm, “Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output,” Opt. Express 20(5), 5219–5224 (2012).
    [Crossref] [PubMed]
  17. M. A. Krainak, A. W. Yu, and D. Janches, “Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument,” Proc. SPIE 8959, 89590I (2014).
  18. Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
    [Crossref]
  19. L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
    [Crossref] [PubMed]
  20. G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, and T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
    [Crossref] [PubMed]
  21. T. T. Basiev, A. A. Sobol, Yu. K. Voronko, and P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2010).
    [Crossref]
  22. D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
    [Crossref]
  23. W. R. Leeb, “Losses introduced by tilting intracavity etalons,” Appl. Phys. (Berl.) 6(2), 267–272 (1975).
    [Crossref]
  24. Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, Y. C. Huang, Y. F. Chen, and Y. H. Chen, “Single-longitudinal-mode, tunable dual-wavelength,CW Nd:YVO4 laser,” Opt. Express 14(12), 5329–5334 (2006).
    [Crossref] [PubMed]
  25. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
    [Crossref]
  26. S. N. L. O. Software, http://www.as-photonics.com/snlo .
  27. G. Shayeganrad, Y.-C. Huang, and L. Mashhadi, “Tunable single and multiwavelength continuous-wave c-cut Nd:YVO4 laser,” Appl. Phys. B 108(1), 67–72 (2012).
    [Crossref]
  28. A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
    [Crossref]
  29. Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
    [Crossref]

2018 (1)

Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
[Crossref]

2017 (3)

2016 (2)

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
[Crossref] [PubMed]

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

2015 (1)

D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1400108 (2015).
[Crossref]

2014 (3)

2013 (1)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

2012 (5)

2011 (3)

2010 (2)

T. T. Basiev, A. A. Sobol, Yu. K. Voronko, and P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2010).
[Crossref]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[Crossref] [PubMed]

2009 (1)

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
[Crossref]

1998 (1)

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

1975 (1)

W. R. Leeb, “Losses introduced by tilting intracavity etalons,” Appl. Phys. (Berl.) 6(2), 267–272 (1975).
[Crossref]

Bai, F.

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Basiev, T. T.

T. T. Basiev, A. A. Sobol, Yu. K. Voronko, and P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2010).
[Crossref]

Bonner, G. M.

Casula, R.

Chai, B. H. T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Chen, S. Y.

Chen, W.

Chen, Y. F.

Chen, Y. H.

Chen, Z.

Chiang, A. C.

Cong, Z.

Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
[Crossref]

L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
[Crossref] [PubMed]

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Dawson, M. D.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19(24), 24165–24170 (2011).
[Crossref] [PubMed]

Dekker, P.

Di Labio, L.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Fan, H.

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

Fan, L.

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

Feurer, T.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Fornasiero, L.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Garnov, S. V.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Granados, E.

Guina, M.

Hamilton, C. J.

Hastie, J. E.

Huang, Y. C.

Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, Y. C. Huang, Y. F. Chen, and Y. H. Chen, “Single-longitudinal-mode, tunable dual-wavelength,CW Nd:YVO4 laser,” Opt. Express 14(12), 5329–5334 (2006).
[Crossref] [PubMed]

C. H. Li and Y. C. Huang, “Pulsed Intracavity Frequency-doubled CaWO4 Raman Laser for Narrow-line Sodium-yellow Radiation,” in CLEO 2012 (OSA, 2012), paper JTuD112.

Huang, Y.-C.

G. Shayeganrad, Y.-C. Huang, and L. Mashhadi, “Tunable single and multiwavelength continuous-wave c-cut Nd:YVO4 laser,” Appl. Phys. B 108(1), 67–72 (2012).
[Crossref]

Huber, G.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Huo, Y.

Janches, D.

M. A. Krainak, A. W. Yu, and D. Janches, “Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument,” Proc. SPIE 8959, 89590I (2014).

Jensen, T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Jiang, W.

Jin, G.

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Kemp, A. J.

Krainak, M. A.

M. A. Krainak, A. W. Yu, and D. Janches, “Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument,” Proc. SPIE 8959, 89590I (2014).

Kück, S.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

Kutovoi, S. A.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Lee, A. J.

Leeb, W. R.

W. R. Leeb, “Losses introduced by tilting intracavity etalons,” Appl. Phys. (Berl.) 6(2), 267–272 (1975).
[Crossref]

Li, C. H.

C. H. Li and Y. C. Huang, “Pulsed Intracavity Frequency-doubled CaWO4 Raman Laser for Narrow-line Sodium-yellow Radiation,” in CLEO 2012 (OSA, 2012), paper JTuD112.

Li, L.

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
[Crossref] [PubMed]

Li, X.

Li, Z.

Lin, J.

Lin, Y. Y.

Liu, Z.

Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
[Crossref]

L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
[Crossref] [PubMed]

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Lüthy, W.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Lux, O.

Malcolm, G. P. A.

Mashhadi, L.

G. Shayeganrad, Y.-C. Huang, and L. Mashhadi, “Tunable single and multiwavelength continuous-wave c-cut Nd:YVO4 laser,” Appl. Phys. B 108(1), 67–72 (2012).
[Crossref]

McKay, A.

Men, S.

Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
[Crossref]

Mildren, R. P.

Omatsu, T.

Parrotta, D. C.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19(24), 24165–24170 (2011).
[Crossref] [PubMed]

Pask, H. M.

Penttinen, J. P.

Piper, J. A.

Qiao, X.

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

Qin, Z.

Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
[Crossref]

Sabella, A.

Sarang, S.

Sato, Y.

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
[Crossref]

Shayeganrad, G.

G. Shayeganrad, Y.-C. Huang, and L. Mashhadi, “Tunable single and multiwavelength continuous-wave c-cut Nd:YVO4 laser,” Appl. Phys. B 108(1), 67–72 (2012).
[Crossref]

Shcherbakov, I. A.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Shen, M.

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

Sirotkin, A. A.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Sobol, A. A.

T. T. Basiev, A. A. Sobol, Yu. K. Voronko, and P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2010).
[Crossref]

Spence, D. J.

D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1400108 (2015).
[Crossref]

G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
[Crossref] [PubMed]

J. Lin, H. M. Pask, D. J. Spence, C. J. Hamilton, and G. P. A. Malcolm, “Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output,” Opt. Express 20(5), 5219–5224 (2012).
[Crossref] [PubMed]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[Crossref] [PubMed]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[Crossref] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[Crossref] [PubMed]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[Crossref] [PubMed]

Taira, T.

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
[Crossref]

Tao, X.

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Tu, R. Y.

Vlasov, V. I.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Voronko, Yu. K.

T. T. Basiev, A. A. Sobol, Yu. K. Voronko, and P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2010).
[Crossref]

Wan, X.

L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
[Crossref] [PubMed]

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Wang, J.

Wang, L.

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

Wang, Q.

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
[Crossref] [PubMed]

Wang, W.

Williams, R. J.

Wu, Z.

Xia, C.

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

Yin, H.

Yu, A. W.

M. A. Krainak, A. W. Yu, and D. Janches, “Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument,” Proc. SPIE 8959, 89590I (2014).

Zagumennyi, A. I.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Zavartsev, Yu. D.

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Zhang, G.

Zhang, H.

Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
[Crossref]

G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
[Crossref] [PubMed]

G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, and T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
[Crossref] [PubMed]

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Zhang, X.

Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
[Crossref]

L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
[Crossref] [PubMed]

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Zhang, Y.

Zhao, W.

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

Zhu, S.

Zverev, P. G.

T. T. Basiev, A. A. Sobol, Yu. K. Voronko, and P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2010).
[Crossref]

Appl. Phys. (Berl.) (1)

W. R. Leeb, “Losses introduced by tilting intracavity etalons,” Appl. Phys. (Berl.) 6(2), 267–272 (1975).
[Crossref]

Appl. Phys. B (2)

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[Crossref]

G. Shayeganrad, Y.-C. Huang, and L. Mashhadi, “Tunable single and multiwavelength continuous-wave c-cut Nd:YVO4 laser,” Appl. Phys. B 108(1), 67–72 (2012).
[Crossref]

Appl. Phys. Express (1)

X. Wan, Q. Wang, Z. Liu, X. Zhang, L. Li, Z. Cong, F. Bai, G. Jin, H. Zhang, and X. Tao, “Frequency-doubled Nd:Gd3Ga5O12/BaWO4 Raman laser emitting at 589 nm,” Appl. Phys. Express 5(10), 102702 (2012).
[Crossref]

Chin. Phys. B (1)

L. Fan, W. Zhao, X. Qiao, C. Xia, L. Wang, H. Fan, and M. Shen, “An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode,” Chin. Phys. B 25(11), 114207 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1400108 (2015).
[Crossref]

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
[Crossref]

Laser Phys. (2)

Z. Liu, S. Men, Z. Cong, Z. Qin, X. Zhang, and H. Zhang, “A pulsed single-frequency Nd:GGG/BaWO4 Raman laser,” Laser Phys. 28(4), 045002 (2018).
[Crossref]

A. A. Sirotkin, S. V. Garnov, A. I. Zagumennyi, Yu. D. Zavartsev, S. A. Kutovoi, V. I. Vlasov, L. Di Labio, W. Lüthy, T. Feurer, and I. A. Shcherbakov, “New lasers based on c-cut vanadat crystals,” Laser Phys. 19(5), 1083–1091 (2009).
[Crossref]

Opt. Express (12)

G. M. Bonner, J. Lin, A. J. Kemp, J. Wang, H. Zhang, D. J. Spence, and H. M. Pask, “Spectral broadening in continuous-wave intracavity Raman lasers,” Opt. Express 22(7), 7492–7502 (2014).
[Crossref] [PubMed]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24(24), 27812–27820 (2016).
[Crossref] [PubMed]

W. Jiang, Z. Li, S. Zhu, H. Yin, Z. Chen, G. Zhang, and W. Chen, “YVO4 Raman laser pumped by a passively Q-switched Yb:YAG laser,” Opt. Express 25(13), 14033–14042 (2017).
[Crossref] [PubMed]

R. Casula, J. P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4 µm continuous-wave diamond Raman laser,” Opt. Express 25(25), 31377–31383 (2017).
[Crossref] [PubMed]

Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, Y. C. Huang, Y. F. Chen, and Y. H. Chen, “Single-longitudinal-mode, tunable dual-wavelength,CW Nd:YVO4 laser,” Opt. Express 14(12), 5329–5334 (2006).
[Crossref] [PubMed]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[Crossref] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[Crossref] [PubMed]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[Crossref] [PubMed]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19(24), 24165–24170 (2011).
[Crossref] [PubMed]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[Crossref] [PubMed]

J. Lin, H. M. Pask, D. J. Spence, C. J. Hamilton, and G. P. A. Malcolm, “Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output,” Opt. Express 20(5), 5219–5224 (2012).
[Crossref] [PubMed]

G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, and T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

T. T. Basiev, A. A. Sobol, Yu. K. Voronko, and P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2010).
[Crossref]

Proc. SPIE (1)

M. A. Krainak, A. W. Yu, and D. Janches, “Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument,” Proc. SPIE 8959, 89590I (2014).

Prog. Quantum Electron. (1)

D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

Other (2)

C. H. Li and Y. C. Huang, “Pulsed Intracavity Frequency-doubled CaWO4 Raman Laser for Narrow-line Sodium-yellow Radiation,” in CLEO 2012 (OSA, 2012), paper JTuD112.

S. N. L. O. Software, http://www.as-photonics.com/snlo .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of the experimental setup of the intracavity Raman laser. Fundamental cavity length was 163 mm (M1-M2-M3: 98 + 65 mm), and the Stokes cavity length was 158 mm (M3-M2-M4-M5: 65 + 50 + 43 mm) for Stokes output and 225 mm (M3-M2-M4-M5: 65 + 50 + 110 mm) for yellow output.
Fig. 2
Fig. 2 (a) Fundamental spectrum broadening induced by SRS and corresponding Stokes spectrum under 18.7 W incident pump power. (b) Fundamental spectra with different etalons under 18.7 W incident pump power. (c) Power transfer with different etalons. Inset: typical Stokes spectra with fundamental linewidth control (300 μm etalon, 9.8 W and 18.7 W pump).
Fig. 3
Fig. 3 (a) Tuning curve of the Raman laser with the 50-μm etalon under incident pump power of 18.7 W and (b) fluorescence spectrum of the a-cut Nd:GdVO4 crystal and tuning ranges with each etalons. The dotted line is a guide to the eye.
Fig. 4
Fig. 4 (a) Power transfer (λ = 589.58 nm under maximum power) and (b) wavelength tuning of the yellow output with and without spectrum control. Inset: typical yellow spectrum with fundamental linewidth control (100 μm etalon, 9.8 W pump). The lines are a guide to the eye.
Fig. 5
Fig. 5 Theoretical walk-off losses with different etalon parameters. The arrows mark the tilt angle needed for tuning the fundamental wavelength over one FSR.

Tables (1)

Tables Icon

Table 1 Parameters and experimental tuning range of each etalon used.

Metrics