Abstract

We demonstrate a novel method for measuring terahertz (THz) photoconductivity of semiconductors on length scales smaller than the diffraction limit at THz frequencies. This method is based on a near-field microscope that measures the transmission of a THz pulse through the semiconductor following photoexcitation by an ultrafast laser pulse. Combining back-excitation of the sample using a Dove prism, and a dual lock-in detection scheme, our microscope design offers a flexible platform for near-field time-resolved THz time-domain spectroscopy, using fluences available to typical laser oscillators. Experimental results on a thin film of gallium arsenide grown by metal organic chemical vapor deposition are presented as a proof-of-concept, demonstrating the ability to map the complex conductivity as well as sub-ps dynamics of photoexcited carriers with a resolution of λ/10 at 0.5 THz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved terahertz spectroscopy of charge carrier dynamics in the chalcogenide glass As30Se30Te40 [Invited]

Tianwu Wang, Elena A. Romanova, Nabil Abdel-Moneim, David Furniss, Anna Loth, Zhuoqi Tang, Angela Seddon, Trevor Benson, Andrei Lavrinenko, and Peter Uhd Jepsen
Photon. Res. 4(3) A22-A28 (2016)

Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

Casper Larsen, David G. Cooke, and Peter Uhd Jepsen
J. Opt. Soc. Am. B 28(5) 1308-1316 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011).
    [Crossref]
  2. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  3. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
    [Crossref]
  4. Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [Crossref]
  5. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [Crossref]
  6. M. Schall and P. U. Jepsen, “Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy,” Opt. Lett. 25, 13–15 (2000).
    [Crossref]
  7. J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
    [Crossref] [PubMed]
  8. C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
    [Crossref] [PubMed]
  9. S. Kar, Y. Su, R. R. Nair, and A. K. Sood, “Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-Terahertz probe spectroscopy,” ACS Nano 9, 12004–12010 (2015).
    [Crossref] [PubMed]
  10. E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004).
    [Crossref] [PubMed]
  11. H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
    [Crossref]
  12. M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).
  13. G. L. Dakovski, B. Kubera, S. Lan, and J. Shan, “Finite pump-beam-size effects in optical pump -terahertz probe spectroscopy,” J. Opt. Soc. Am. B 23, 139–141 (2006).
    [Crossref]
  14. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
    [Crossref]
  15. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
    [Crossref] [PubMed]
  16. N. C. J. Van Der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
    [Crossref]
  17. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
    [Crossref]
  18. F. Buersgens, R. Kersting, and H. T. Chen, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
    [Crossref]
  19. A. J. Das, R. Shivanna, and K. S. Narayan, “Photoconductive NSOM for mapping optoelectronic phases in nanostructures,” Nanophotonics 3, 19–34 (2014).
    [Crossref]
  20. K. Dornich, N. Schüler, B. Berger, and J. R. Niklas, “Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity,” Mater. Sci. Eng. B 178, 676–681 (2013).
    [Crossref]
  21. C. Gao and X. D. Xiang, “Quantitative microwave near-field microscopy of dielectric properties,” Rev. Sci. Instruments 69, 3846–3851 (1998).
    [Crossref]
  22. T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
    [Crossref]
  23. M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
    [Crossref]
  24. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 41112–41114 (2009).
    [Crossref]
  25. A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 86103–86110 (2016).
    [Crossref]
  26. S. V. Frolov and Z. V. Vardeny, “Double-modulation electro-optic sampling for pump-and-probe ultrafast correlation measurements,” Rev. Sci. Instruments 69, 1257–1260 (1998).
    [Crossref]
  27. K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. U. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. express 17, 21969–21976 (2009).
    [Crossref] [PubMed]
  28. J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
    [Crossref]
  29. M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
    [Crossref]
  30. P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
    [Crossref]
  31. O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
    [Crossref]
  32. J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
    [Crossref]
  33. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transactions Royal Soc. Lond. A 362, 787–805 (2004).
    [Crossref]
  34. G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

2017 (2)

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
[Crossref]

2016 (2)

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 86103–86110 (2016).
[Crossref]

2015 (1)

S. Kar, Y. Su, R. R. Nair, and A. K. Sood, “Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-Terahertz probe spectroscopy,” ACS Nano 9, 12004–12010 (2015).
[Crossref] [PubMed]

2014 (4)

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

A. J. Das, R. Shivanna, and K. S. Narayan, “Photoconductive NSOM for mapping optoelectronic phases in nanostructures,” Nanophotonics 3, 19–34 (2014).
[Crossref]

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

2013 (2)

K. Dornich, N. Schüler, B. Berger, and J. R. Niklas, “Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity,” Mater. Sci. Eng. B 178, 676–681 (2013).
[Crossref]

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

2012 (1)

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

2011 (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011).
[Crossref]

2009 (2)

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 41112–41114 (2009).
[Crossref]

K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. U. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. express 17, 21969–21976 (2009).
[Crossref] [PubMed]

2006 (3)

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

G. L. Dakovski, B. Kubera, S. Lan, and J. Shan, “Finite pump-beam-size effects in optical pump -terahertz probe spectroscopy,” J. Opt. Soc. Am. B 23, 139–141 (2006).
[Crossref]

F. Buersgens, R. Kersting, and H. T. Chen, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

2004 (3)

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004).
[Crossref] [PubMed]

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transactions Royal Soc. Lond. A 362, 787–805 (2004).
[Crossref]

2003 (1)

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

2002 (3)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

N. C. J. Van Der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[Crossref]

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

2001 (1)

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

2000 (3)

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

M. Schall and P. U. Jepsen, “Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy,” Opt. Lett. 25, 13–15 (2000).
[Crossref]

1998 (2)

C. Gao and X. D. Xiang, “Quantitative microwave near-field microscopy of dielectric properties,” Rev. Sci. Instruments 69, 3846–3851 (1998).
[Crossref]

S. V. Frolov and Z. V. Vardeny, “Double-modulation electro-optic sampling for pump-and-probe ultrafast correlation measurements,” Rev. Sci. Instruments 69, 1257–1260 (1998).
[Crossref]

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

1995 (1)

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

1990 (1)

Akinwande, D.

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
[Crossref]

Andrews, S. R.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

Baig, S. A.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

Baillergeau, M.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Bauhuis, G. J.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

Berger, B.

K. Dornich, N. Schüler, B. Berger, and J. R. Niklas, “Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity,” Mater. Sci. Eng. B 178, 676–681 (2013).
[Crossref]

Bhattacharya, A.

A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 86103–86110 (2016).
[Crossref]

Bøggild, P.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Boland, J. L.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

Bonn, M.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011).
[Crossref]

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004).
[Crossref] [PubMed]

Brener, I.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

Buersgens, F.

F. Buersgens, R. Kersting, and H. T. Chen, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

Burgess, J. A. J.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Buron, J. D.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Chen, C. H.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Chen, H. T.

F. Buersgens, R. Kersting, and H. T. Chen, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

Chiu, M. H.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Cho, G. C.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

Choi, W.

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
[Crossref]

Choudhary, N.

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
[Crossref]

Cluff, J. A.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

Cocker, T. L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Cooke, D. G.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. U. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. express 17, 21969–21976 (2009).
[Crossref] [PubMed]

Dakovski, G. L.

Das, A. J.

A. J. Das, R. Shivanna, and K. S. Narayan, “Photoconductive NSOM for mapping optoelectronic phases in nanostructures,” Nanophotonics 3, 19–34 (2014).
[Crossref]

Davies, A. G.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Davies, C. L.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

de Bruin, B.

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Dhillon, S.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Docherty, C. J.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Dornich, K.

K. Dornich, N. Schüler, B. Berger, and J. R. Niklas, “Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity,” Mater. Sci. Eng. B 178, 676–681 (2013).
[Crossref]

Eisele, M.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Ercolani, D.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Fattinger, C.

Federici, J. F.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

Freeman, M. R.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Frolov, S. V.

S. V. Frolov and Z. V. Vardeny, “Double-modulation electro-optic sampling for pump-and-probe ultrafast correlation measurements,” Rev. Sci. Instruments 69, 1257–1260 (1998).
[Crossref]

Fujiwara, M.

Gao, C.

C. Gao and X. D. Xiang, “Quantitative microwave near-field microscopy of dielectric properties,” Rev. Sci. Instruments 69, 3846–3851 (1998).
[Crossref]

Georgiou, G.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

Gómez Rivas, J.

A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 86103–86110 (2016).
[Crossref]

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

Grischkowsky, D.

Gupta, M.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Han, G. H.

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
[Crossref]

Hansen, O.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Harel, R.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

Hashimoto, H.

Haverkamp, E. J.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

Hegmann, F. A.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Heinz, T. F.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011).
[Crossref]

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004).
[Crossref] [PubMed]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

Hendry, E.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011).
[Crossref]

Herz, L. M.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Hilke, M.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Hillenbrand, R.

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transactions Royal Soc. Lond. A 362, 787–805 (2004).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Hsu, J. W.

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

Hsu, J. W. P.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

Huber, M. A.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Huber, R.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Huggard, P. G.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

Iwaszczuk, K.

Jagadish, C.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

Jelic, V.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Jepsen, P. U.

Johnston, M. B.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Joyce, H. J.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Kar, S.

S. Kar, Y. Su, R. R. Nair, and A. K. Sood, “Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-Terahertz probe spectroscopy,” ACS Nano 9, 12004–12010 (2015).
[Crossref] [PubMed]

Keiding, S.

Keiding, S. R.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

Keilmann, F.

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transactions Royal Soc. Lond. A 362, 787–805 (2004).
[Crossref]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Kelly, J. J.

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Kersting, R.

F. Buersgens, R. Kersting, and H. T. Chen, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

Klaassen, A.

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Knoesel, E.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004).
[Crossref] [PubMed]

Kubera, B.

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 41112–41114 (2009).
[Crossref]

Lan, S.

Larsen, P. K.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Lee, M.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

Lee, M. Y.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Lee, Y. H.

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
[Crossref]

Li, L. H.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Li, L. J.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Linfield, E. H.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

Mangeney, J.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Maussang, K.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Mitrofanov, O.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

Molesky, S. J.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Moore, G. P.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

Mulder, P.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 41112–41114 (2009).
[Crossref]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

Nair, R. R.

S. Kar, Y. Su, R. R. Nair, and A. K. Sood, “Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-Terahertz probe spectroscopy,” ACS Nano 9, 12004–12010 (2015).
[Crossref] [PubMed]

Narayan, K. S.

A. J. Das, R. Shivanna, and K. S. Narayan, “Photoconductive NSOM for mapping optoelectronic phases in nanostructures,” Nanophotonics 3, 19–34 (2014).
[Crossref]

Nielsen, P. F.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Niklas, J. R.

K. Dornich, N. Schüler, B. Berger, and J. R. Niklas, “Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity,” Mater. Sci. Eng. B 178, 676–681 (2013).
[Crossref]

Nirrengarten, T.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Palomo, J.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Park, J.

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
[Crossref]

Parkinson, P.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

Peters, T. P. J.

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Petersen, D. H.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Pfeiffer, L. N.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

Planken, P. C. M.

N. C. J. Van Der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[Crossref]

Plankl, M.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Reyes, G. D. L.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Ritchie, D. A.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

Schall, M.

Schermer, J. J.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

Schüler, N.

K. Dornich, N. Schüler, B. Berger, and J. R. Niklas, “Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity,” Mater. Sci. Eng. B 178, 676–681 (2013).
[Crossref]

Shan, J.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011).
[Crossref]

G. L. Dakovski, B. Kubera, S. Lan, and J. Shan, “Finite pump-beam-size effects in optical pump -terahertz probe spectroscopy,” J. Opt. Soc. Am. B 23, 139–141 (2006).
[Crossref]

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004).
[Crossref] [PubMed]

Shaw, C. J.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

Shivanna, R.

A. J. Das, R. Shivanna, and K. S. Narayan, “Photoconductive NSOM for mapping optoelectronic phases in nanostructures,” Nanophotonics 3, 19–34 (2014).
[Crossref]

Sood, A. K.

S. Kar, Y. Su, R. R. Nair, and A. K. Sood, “Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-Terahertz probe spectroscopy,” ACS Nano 9, 12004–12010 (2015).
[Crossref] [PubMed]

Sorba, L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Su, Y.

S. Kar, Y. Su, R. R. Nair, and A. K. Sood, “Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-Terahertz probe spectroscopy,” ACS Nano 9, 12004–12010 (2015).
[Crossref] [PubMed]

Sun, J.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Tan, H. H.

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Tignon, J.

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Titova, L. V.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Tsui, Y. Y.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

Tyagi, H. K.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

Ulbricht, R.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011).
[Crossref]

van Deelen, J.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

Van Der Valk, N. C. J.

N. C. J. Van Der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[Crossref]

van Exter, M.

van Niftrik, A. T. J.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Vardeny, Z. V.

S. V. Frolov and Z. V. Vardeny, “Double-modulation electro-optic sampling for pump-and-probe ultrafast correlation measurements,” Rev. Sci. Instruments 69, 1257–1260 (1998).
[Crossref]

Viti, L.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Vitiello, M. S.

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Voncken, M. M. A. J.

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 41112–41114 (2009).
[Crossref]

Wang, F.

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004).
[Crossref] [PubMed]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

West, K. W.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

Whiteway, E.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Wu, Q.

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

Wynn, J. D.

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

Xiang, X. D.

C. Gao and X. D. Xiang, “Quantitative microwave near-field microscopy of dielectric properties,” Rev. Sci. Instruments 69, 3846–3851 (1998).
[Crossref]

Yurgens, A.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Zhang, X. C.

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

ACS Nano (2)

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8, 11147–11153 (2014).
[Crossref] [PubMed]

S. Kar, Y. Su, R. R. Nair, and A. K. Sood, “Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-Terahertz probe spectroscopy,” ACS Nano 9, 12004–12010 (2015).
[Crossref] [PubMed]

APL Photonics (1)

A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 86103–86110 (2016).
[Crossref]

Appl. Phys. Lett. (7)

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 41112–41114 (2009).
[Crossref]

O. Mitrofanov, M. Lee, J. W. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79, 907–909 (2001).
[Crossref]

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

N. C. J. Van Der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[Crossref]

F. Buersgens, R. Kersting, and H. T. Chen, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).
[Crossref]

J. Appl. Phys. (1)

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[Crossref]

J. Chem. Phys. (1)

E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

M. M. A. J. Voncken, J. J. Schermer, A. T. J. van Niftrik, G. J. Bauhuis, P. Mulder, P. K. Larsen, T. P. J. Peters, B. de Bruin, A. Klaassen, and J. J. Kelly, “Etching AlAs with HF for epitaxial lift-off applications,” J. Electrochem. Soc. 151, G347–G352 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

H. J. Joyce, S. A. Baig, P. Parkinson, C. L. Davies, J. L. Boland, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires,” J. Phys. D: Appl. Phys. 50, 224001 (2017).
[Crossref]

Mater. Sci. Eng. B (1)

K. Dornich, N. Schüler, B. Berger, and J. R. Niklas, “Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity,” Mater. Sci. Eng. B 178, 676–681 (2013).
[Crossref]

Mater. Today (1)

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today 20, 116–130 (2017).
[Crossref]

Nano Lett. (1)

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12, 5074–5081 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

A. J. Das, R. Shivanna, and K. S. Narayan, “Photoconductive NSOM for mapping optoelectronic phases in nanostructures,” Nanophotonics 3, 19–34 (2014).
[Crossref]

Nat. Photonics (2)

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution,” Nat. Photonics 8, 841–845 (2014).
[Crossref]

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Opt. express (1)

Opt. Lett. (1)

Philos. Transactions Royal Soc. Lond. A (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transactions Royal Soc. Lond. A 362, 787–805 (2004).
[Crossref]

Phys. Medicine Biol. (1)

J. F. Federici, O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Terahertz near-field imaging,” Phys. Medicine Biol. 47, 3727–3734 (2002).
[Crossref]

Phys. Rev. B (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777 (2000).
[Crossref]

Rev. Mod. Phys. (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011).
[Crossref]

Rev. Sci. Instruments (2)

S. V. Frolov and Z. V. Vardeny, “Double-modulation electro-optic sampling for pump-and-probe ultrafast correlation measurements,” Rev. Sci. Instruments 69, 1257–1260 (1998).
[Crossref]

C. Gao and X. D. Xiang, “Quantitative microwave near-field microscopy of dielectric properties,” Rev. Sci. Instruments 69, 3846–3851 (1998).
[Crossref]

Sci. Reports (2)

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. Gómez Rivas, “Photo-generated THz antennas,” Sci. Reports 4, 1–5 (2014).

M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, “Diffraction-limited ultrabroadband terahertz spectroscopy,” Sci. Reports 6, 1–7 (2016).

Thin Solid Films (1)

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. van Deelen, A. T. J. van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511–512, 645653 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic representation of the TR-THz-NF microscope. The addition of a Dove prism allows to perform spatially dependent time-resolved differential transmittance measurements. The red line denotes the pump beam that excites the sample, a beam splitter (BS) splits of a small portion of the power to probe THz transients using the near-field detector (orange line). The THz emitter is excited by the light blue line resembling a fiber carrying 1560nm light to generate a THz beam (dashed blue line) which is collected and focused onto the sample using lenses.
Fig. 2
Fig. 2 Schematic representation of the total internal reflection configuration designed for combining a pump beam with the THz microprobe detector. The Dove prism ensures that the pump beam hits the interface at the probe position under an angle larger than the critical angle to suppress transmission of the large pump fluence towards the detector. Inset: Photograph of the sample.
Fig. 3
Fig. 3 (a) THz transmittance through photoexcited GaAs as a function of pump delay time, for a probe delay corresponding to the peak THz field amplitude, corresponding with Time=0 in (b). (b) Referenced and pumped transients, showing the difference in field amplitudes of which the ratio is the square root of the transmittance T 1 2.
Fig. 4
Fig. 4 (a) Time-resolved differential transmittance measurements along a straight line starting on GaAs and ending on the bare quartz substrate. The edge between the two regions is marked with a grey dashed-dotted line. (b) Two individual time-resolved differential transmittance measurements highlighting the variations in the decay time over sub-diffraction length scales, with their corresponding single exponential fits.
Fig. 5
Fig. 5 (a) Spatial scan, recording the frequency dependent transmittance from GaAs to quartz. THz transients are measured 50 ps after the arrival of the optical pump pulse, these transients are Fourier transformed an plotted against their measured position for 3 frequencies. (b) Spatial derivative of the transmittance, fitted by Gaussians to give a FWHM of 60 ±10µm.
Fig. 6
Fig. 6 Comparison between measured and simulated transmittance spectra of a GaAs photoexcited disk with a radius of 25 µm, on a thin layer (3 µm thick) with a carrier concentration of 1.25 · 1016 cm−3 and a mobility of 3300 cm2V−1s−1.
Fig. 7
Fig. 7 Dual modulation detection scheme for simultaneous detection of pumped and reference states in a TRTS experiment.
Fig. 8
Fig. 8 (a) The raw signal of Aref (blue) and Apump (red) of a measurement with low excitation power. (b) The ratio of Apump/Aref plotted as a function of delay time, showing that sub-picosecond dynamics can be recorded up to a diffeerence of only 0.1%.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ ˜ ( ω ) = 10 6 N e μ e 1 i ω g τ ,
ϵ ˜ ( ω ) = ϵ + i σ ˜ ω ϵ 0 .
S 1 = 1.5 A r e f + 1.5 A p u m p = 3 E r e f 1.5 Δ A ,
S 2 = 1.5 A r e f + 1.5 A p u m p = 1.5 Δ A .