Abstract

Building biomimetic neuron structures that emulate the topological features of biological neural networks at multiple scales has been an active area in neuron cell culturing, neuron-chip interface and computer chip design. However, due to the fact that biological neural networks possess extraordinary connectivity and complexity from millimeter down to nanometer scale, with different dendritic branch angles, branch lengths, and branch diameters, previous methods to reproduce the topological features of biological neural networks are either limited to two dimensions or lack of fabrication resolution in building three-dimensional (3D) structures. Here we report on the generation of 3D biomimetic neuron structures at a micrometer scale, with high mechanical stability and controlled topologies by studying the effect of 3D direct laser writing (DLW) on the capillary force. This work provides an optical technology platform to replicate the topological features of biological neural networks and paves the avenue towards more applications of using 3D direct laser writing in engineered neural networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct laser writing for micro-optical devices using a negative photoresist

Naoto Tsutsumi, Junichi Hirota, Kenji Kinashi, and Wataru Sakai
Opt. Express 25(25) 31539-31551 (2017)

Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses

Mangirdas Malinauskas, Paulius Danilevičius, and Saulius Juodkazis
Opt. Express 19(6) 5602-5610 (2011)

Direct laser writing of three-dimensional narrow bandgap and high refractive-index PbSe structures in a solution

Zongsong Gan, Yaoyu Cao, and Min Gu
Opt. Express 21(9) 11202-11208 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Merz and P. Fromherz, “Polyester microstructures for topographical control of outgrowth and synapse formation of snail neurons,” Adv. Mater. 14(2), 141–144 (2002).
    [Crossref]
  2. P. Fromherz, “Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue,” Ann. N. Y. Acad. Sci. 1093(1), 143–160 (2006).
    [Crossref] [PubMed]
  3. R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
    [Crossref] [PubMed]
  4. R. A. McDougal and G. M. Shepherd, “3D-printer visualization of neuron models,” Front. Neuroinform. 9, 18 (2015).
    [Crossref] [PubMed]
  5. Y. Berdichevsky, K. J. Staley, and M. L. Yarmush, “Building and manipulating neural pathways with microfluidics,” Lab Chip 10(8), 999–1004 (2010).
    [Crossref] [PubMed]
  6. S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
    [Crossref] [PubMed]
  7. D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” J. Neurosci. 8(11), 4098–4120 (1988).
    [Crossref] [PubMed]
  8. H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
    [Crossref] [PubMed]
  9. Y. Yi, J. Park, J. Lim, C. J. Lee, and S. H. Lee, “Central nervous system and its disease models on a chip,” Trends Biotechnol. 33(12), 762–776 (2015).
    [Crossref] [PubMed]
  10. C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
    [Crossref] [PubMed]
  11. M. F. Hasan and Y. Berdichevsky, “Neural circuits on a chip,” Micromachines (Basel) 7(9), 157 (2016).
    [Crossref]
  12. J. C. Rah, L. Feng, S. Druckmann, H. Lee, and J. Kim, “From a meso- to micro-scale connectome: array tomography and mGRASP,” Front. Neuroanat. 9, 78 (2015).
    [Crossref] [PubMed]
  13. O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural description of the human brain,” PLOS Comput. Biol. 1(4), e42 (2005).
    [Crossref] [PubMed]
  14. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
    [Crossref] [PubMed]
  15. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
    [Crossref] [PubMed]
  16. V. Schmidt and M. R. Belegratis, Laser technology in biomimetics: Basics and applications (Springer Science & Business Media, 2014).
  17. X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
    [Crossref]
  18. V. Ajeti, C. H. Lien, S. J. Chen, P. J. Su, J. M. Squirrell, K. H. Molinarolo, G. E. Lyons, K. W. Eliceiri, B. M. Ogle, and P. J. Campagnola, “Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning,” Opt. Express 21(21), 25346–25355 (2013).
    [Crossref] [PubMed]
  19. H. B. Sun and S. Kawata, NMR• 3D Analysis• Photopolymerization (Springer, 2004).
  20. K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1(4), 586–597 (2011).
    [Crossref]
  21. Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
    [Crossref] [PubMed]
  22. J. M. DeSimone, “Practical approaches to green solvents,” Science 297(5582), 799–803 (2002).
    [Crossref] [PubMed]
  23. B. Roman and J. Bico, “Elasto-capillarity: deforming an elastic structure with a liquid droplet,” J. Phys. Condens. Matter 22(49), 493101 (2010).
    [Crossref] [PubMed]
  24. X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
    [Crossref]
  25. Neuron topology database: Neuromorpho.org.

2017 (1)

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

2016 (1)

M. F. Hasan and Y. Berdichevsky, “Neural circuits on a chip,” Micromachines (Basel) 7(9), 157 (2016).
[Crossref]

2015 (7)

J. C. Rah, L. Feng, S. Druckmann, H. Lee, and J. Kim, “From a meso- to micro-scale connectome: array tomography and mGRASP,” Front. Neuroanat. 9, 78 (2015).
[Crossref] [PubMed]

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

R. A. McDougal and G. M. Shepherd, “3D-printer visualization of neuron models,” Front. Neuroinform. 9, 18 (2015).
[Crossref] [PubMed]

Y. Yi, J. Park, J. Lim, C. J. Lee, and S. H. Lee, “Central nervous system and its disease models on a chip,” Trends Biotechnol. 33(12), 762–776 (2015).
[Crossref] [PubMed]

C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
[Crossref] [PubMed]

2014 (1)

H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

Y. Berdichevsky, K. J. Staley, and M. L. Yarmush, “Building and manipulating neural pathways with microfluidics,” Lab Chip 10(8), 999–1004 (2010).
[Crossref] [PubMed]

B. Roman and J. Bico, “Elasto-capillarity: deforming an elastic structure with a liquid droplet,” J. Phys. Condens. Matter 22(49), 493101 (2010).
[Crossref] [PubMed]

2006 (1)

P. Fromherz, “Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue,” Ann. N. Y. Acad. Sci. 1093(1), 143–160 (2006).
[Crossref] [PubMed]

2005 (1)

O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural description of the human brain,” PLOS Comput. Biol. 1(4), e42 (2005).
[Crossref] [PubMed]

2002 (3)

J. M. DeSimone, “Practical approaches to green solvents,” Science 297(5582), 799–803 (2002).
[Crossref] [PubMed]

M. Merz and P. Fromherz, “Polyester microstructures for topographical control of outgrowth and synapse formation of snail neurons,” Adv. Mater. 14(2), 141–144 (2002).
[Crossref]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[Crossref] [PubMed]

1988 (1)

D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” J. Neurosci. 8(11), 4098–4120 (1988).
[Crossref] [PubMed]

Ajeti, V.

Andrieux, A.

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Aronson, J.

C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
[Crossref] [PubMed]

Berdichevsky, Y.

M. F. Hasan and Y. Berdichevsky, “Neural circuits on a chip,” Micromachines (Basel) 7(9), 157 (2016).
[Crossref]

Y. Berdichevsky, K. J. Staley, and M. L. Yarmush, “Building and manipulating neural pathways with microfluidics,” Lab Chip 10(8), 999–1004 (2010).
[Crossref] [PubMed]

Bico, J.

B. Roman and J. Bico, “Elasto-capillarity: deforming an elastic structure with a liquid droplet,” J. Phys. Condens. Matter 22(49), 493101 (2010).
[Crossref] [PubMed]

Bisbal, M.

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Brocard, J.

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Bugnicourt, G.

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Campagnola, P. J.

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref] [PubMed]

Chen, S. J.

Choi, S. H.

C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
[Crossref] [PubMed]

Chu, J.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Cumming, B. P.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

D’Avanzo, C.

C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
[Crossref] [PubMed]

Demkó, L.

H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
[Crossref] [PubMed]

Dermutz, H.

H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
[Crossref] [PubMed]

DeSimone, J. M.

J. M. DeSimone, “Practical approaches to green solvents,” Science 297(5582), 799–803 (2002).
[Crossref] [PubMed]

Dong, X.

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

Druckmann, S.

J. C. Rah, L. Feng, S. Druckmann, H. Lee, and J. Kim, “From a meso- to micro-scale connectome: array tomography and mGRASP,” Front. Neuroanat. 9, 78 (2015).
[Crossref] [PubMed]

Duan, X.

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

Eliceiri, K. W.

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref] [PubMed]

Farsari, M.

Feng, L.

J. C. Rah, L. Feng, S. Druckmann, H. Lee, and J. Kim, “From a meso- to micro-scale connectome: array tomography and mGRASP,” Front. Neuroanat. 9, 78 (2015).
[Crossref] [PubMed]

Fotakis, C.

Fromherz, P.

P. Fromherz, “Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue,” Ann. N. Y. Acad. Sci. 1093(1), 143–160 (2006).
[Crossref] [PubMed]

M. Merz and P. Fromherz, “Polyester microstructures for topographical control of outgrowth and synapse formation of snail neurons,” Adv. Mater. 14(2), 141–144 (2002).
[Crossref]

Gaidukeviciute, A.

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref] [PubMed]

Gilmore, K. J.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Gorkin, R.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Gory-Fauré, S.

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Gou, X.

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

Grüter, R. R.

H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
[Crossref] [PubMed]

Gu, M.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref] [PubMed]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[Crossref] [PubMed]

Hasan, M. F.

M. F. Hasan and Y. Berdichevsky, “Neural circuits on a chip,” Micromachines (Basel) 7(9), 157 (2016).
[Crossref]

Hockberger, P. E.

D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” J. Neurosci. 8(11), 4098–4120 (1988).
[Crossref] [PubMed]

Hou, Y.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Hu, Y.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Huang, W.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

in het Panhuis, M.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Jin, F.

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

Kahler, K. H.

D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” J. Neurosci. 8(11), 4098–4120 (1988).
[Crossref] [PubMed]

Kim, D. Y.

C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
[Crossref] [PubMed]

Kim, J.

J. C. Rah, L. Feng, S. Druckmann, H. Lee, and J. Kim, “From a meso- to micro-scale connectome: array tomography and mGRASP,” Front. Neuroanat. 9, 78 (2015).
[Crossref] [PubMed]

Kim, Y. H.

C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
[Crossref] [PubMed]

Kleinfeld, D.

D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” J. Neurosci. 8(11), 4098–4120 (1988).
[Crossref] [PubMed]

Kötter, R.

O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural description of the human brain,” PLOS Comput. Biol. 1(4), e42 (2005).
[Crossref] [PubMed]

Lao, Z.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Lee, C. J.

Y. Yi, J. Park, J. Lim, C. J. Lee, and S. H. Lee, “Central nervous system and its disease models on a chip,” Trends Biotechnol. 33(12), 762–776 (2015).
[Crossref] [PubMed]

Lee, H.

J. C. Rah, L. Feng, S. Druckmann, H. Lee, and J. Kim, “From a meso- to micro-scale connectome: array tomography and mGRASP,” Front. Neuroanat. 9, 78 (2015).
[Crossref] [PubMed]

Lee, S. H.

Y. Yi, J. Park, J. Lim, C. J. Lee, and S. H. Lee, “Central nervous system and its disease models on a chip,” Trends Biotechnol. 33(12), 762–776 (2015).
[Crossref] [PubMed]

Li, J.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Liang, H.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Lien, C. H.

Lim, J.

Y. Yi, J. Park, J. Lim, C. J. Lee, and S. H. Lee, “Central nervous system and its disease models on a chip,” Trends Biotechnol. 33(12), 762–776 (2015).
[Crossref] [PubMed]

Lin, J.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Lozano, R.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Lyons, G. E.

McDougal, R. A.

R. A. McDougal and G. M. Shepherd, “3D-printer visualization of neuron models,” Front. Neuroinform. 9, 18 (2015).
[Crossref] [PubMed]

Merz, M.

M. Merz and P. Fromherz, “Polyester microstructures for topographical control of outgrowth and synapse formation of snail neurons,” Adv. Mater. 14(2), 141–144 (2002).
[Crossref]

Molinarolo, K. H.

Ogle, B. M.

Park, J.

Y. Yi, J. Park, J. Lim, C. J. Lee, and S. H. Lee, “Central nervous system and its disease models on a chip,” Trends Biotechnol. 33(12), 762–776 (2015).
[Crossref] [PubMed]

Rah, J. C.

J. C. Rah, L. Feng, S. Druckmann, H. Lee, and J. Kim, “From a meso- to micro-scale connectome: array tomography and mGRASP,” Front. Neuroanat. 9, 78 (2015).
[Crossref] [PubMed]

Reinhardt, C.

Roman, B.

B. Roman and J. Bico, “Elasto-capillarity: deforming an elastic structure with a liquid droplet,” J. Phys. Condens. Matter 22(49), 493101 (2010).
[Crossref] [PubMed]

Romero-Ortega, M.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Roth, S.

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Saoudi, Y.

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Shepherd, G. M.

R. A. McDougal and G. M. Shepherd, “3D-printer visualization of neuron models,” Front. Neuroinform. 9, 18 (2015).
[Crossref] [PubMed]

Sporns, O.

O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural description of the human brain,” PLOS Comput. Biol. 1(4), e42 (2005).
[Crossref] [PubMed]

Squirrell, J. M.

Staley, K. J.

Y. Berdichevsky, K. J. Staley, and M. L. Yarmush, “Building and manipulating neural pathways with microfluidics,” Lab Chip 10(8), 999–1004 (2010).
[Crossref] [PubMed]

Stevens, L.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Stewart, E. M.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Straub, M.

Su, P. J.

Tanzi, R. E.

C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
[Crossref] [PubMed]

Terzaki, K.

Thompson, B. C.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Tononi, G.

O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural description of the human brain,” PLOS Comput. Biol. 1(4), e42 (2005).
[Crossref] [PubMed]

Truong, A. M.

H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
[Crossref] [PubMed]

Vamvakaki, M.

Vasilantonakis, N.

Villard, C.

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Vörös, J.

H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
[Crossref] [PubMed]

Wallace, G. G.

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Wu, D.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Xing, J.

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

Yarmush, M. L.

Y. Berdichevsky, K. J. Staley, and M. L. Yarmush, “Building and manipulating neural pathways with microfluidics,” Lab Chip 10(8), 999–1004 (2010).
[Crossref] [PubMed]

Yi, Y.

Y. Yi, J. Park, J. Lim, C. J. Lee, and S. H. Lee, “Central nervous system and its disease models on a chip,” Trends Biotechnol. 33(12), 762–776 (2015).
[Crossref] [PubMed]

Zambelli, T.

H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
[Crossref] [PubMed]

Zhao, Y.

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

Zheng, M.

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

Zhou, X.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Adv. Mater. (1)

M. Merz and P. Fromherz, “Polyester microstructures for topographical control of outgrowth and synapse formation of snail neurons,” Adv. Mater. 14(2), 141–144 (2002).
[Crossref]

AIP Adv. (1)

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Ann. N. Y. Acad. Sci. (1)

P. Fromherz, “Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue,” Ann. N. Y. Acad. Sci. 1093(1), 143–160 (2006).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, and X. Duan, “Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization,” Appl. Surf. Sci. 416, 273–280 (2017).
[Crossref]

BioEssays (1)

C. D’Avanzo, J. Aronson, Y. H. Kim, S. H. Choi, R. E. Tanzi, and D. Y. Kim, “Alzheimer’s in 3D culture: challenges and perspectives,” BioEssays 37(10), 1139–1148 (2015).
[Crossref] [PubMed]

Biomaterials (1)

R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, “3D printing of layered brain-like structures using peptide modified gellan gum substrates,” Biomaterials 67, 264–273 (2015).
[Crossref] [PubMed]

Front. Neuroanat. (1)

J. C. Rah, L. Feng, S. Druckmann, H. Lee, and J. Kim, “From a meso- to micro-scale connectome: array tomography and mGRASP,” Front. Neuroanat. 9, 78 (2015).
[Crossref] [PubMed]

Front. Neuroinform. (1)

R. A. McDougal and G. M. Shepherd, “3D-printer visualization of neuron models,” Front. Neuroinform. 9, 18 (2015).
[Crossref] [PubMed]

J. Neurosci. (1)

D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” J. Neurosci. 8(11), 4098–4120 (1988).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

B. Roman and J. Bico, “Elasto-capillarity: deforming an elastic structure with a liquid droplet,” J. Phys. Condens. Matter 22(49), 493101 (2010).
[Crossref] [PubMed]

Lab Chip (1)

Y. Berdichevsky, K. J. Staley, and M. L. Yarmush, “Building and manipulating neural pathways with microfluidics,” Lab Chip 10(8), 999–1004 (2010).
[Crossref] [PubMed]

Langmuir (1)

H. Dermutz, R. R. Grüter, A. M. Truong, L. Demkó, J. Vörös, and T. Zambelli, “Local polymer replacement for neuron patterning and in situ neurite guidance,” Langmuir 30(23), 7037–7046 (2014).
[Crossref] [PubMed]

Micromachines (Basel) (1)

M. F. Hasan and Y. Berdichevsky, “Neural circuits on a chip,” Micromachines (Basel) 7(9), 157 (2016).
[Crossref]

Nat. Commun. (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

PLOS Comput. Biol. (1)

O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural description of the human brain,” PLOS Comput. Biol. 1(4), e42 (2005).
[Crossref] [PubMed]

PLoS One (1)

S. Roth, M. Bisbal, J. Brocard, G. Bugnicourt, Y. Saoudi, A. Andrieux, S. Gory-Fauré, and C. Villard, “How morphological constraints affect axonal polarity in mouse neurons,” PLoS One 7(3), e33623 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Science (1)

J. M. DeSimone, “Practical approaches to green solvents,” Science 297(5582), 799–803 (2002).
[Crossref] [PubMed]

Trends Biotechnol. (1)

Y. Yi, J. Park, J. Lim, C. J. Lee, and S. H. Lee, “Central nervous system and its disease models on a chip,” Trends Biotechnol. 33(12), 762–776 (2015).
[Crossref] [PubMed]

Other (3)

Neuron topology database: Neuromorpho.org.

H. B. Sun and S. Kawata, NMR• 3D Analysis• Photopolymerization (Springer, 2004).

V. Schmidt and M. R. Belegratis, Laser technology in biomimetics: Basics and applications (Springer Science & Business Media, 2014).

Supplementary Material (1)

NameDescription
» Visualization 1       This is a video of confocal microscopy video of fluorescent biomimetic neuron structures obtained using Nikon confocal microscope. Rhodamine 6G is

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Illustration of the setup of a typical 3D direct laser writing system. (b) Diagram demonstrating the process of building biomimetic neuron structures using 3D direct laser writing. (c) Single branch model of biomimetic neuron structures. (d) Multiple branch structure model of biomimetic neuron structures.
Fig. 2
Fig. 2 (a) Side view of SEM images (tilting angle of 30°) of single branch structures with branch angle of 45° fabricated at varied writing speed and laser power; inset top: illustration of the forces interacting on the single branch structure; bottom: single branch structure deformed by capillary force. (b) and (c) Quantitative study on critical boundary of single branch structures with different branch angles. (d) Relationship between laser power/writing speed and line width (branch diameter), ‘ + ’ and ‘o’ are experimental results, solid lines are theoretical fitting.
Fig. 3
Fig. 3 Side view of the SEM images (tilting angle of 30 °) of multiple branch structures with average branch angles of 30°, 45°, and 60° fabricated at varied writing speed and laser power, correspondingly (a), (b), and (c).
Fig. 4
Fig. 4 (a), (b), (c), (d), are top view of the SEM images of 3D biomimetic neuron structures with different average branch angles fabricated with optimized conditions. (e) and (f) are fluorescent images of 3D biomimetic neuron structures fabricated by 3D DLW (see Visualization 1), corresponding to the biomimetic neuron structure in figure (d).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F c 2πγ×R( P,s )× cos 2 α/ | cosθ |
F r ( π/2 ) 2 ×E× R 4 / L 2
R critical ( θ,L ) ( 1/π ×γ×1/E × cos 2 α× L 2 ×1/ | cosθ | ) 1/3
R critical ( θ,L )= ω 0 [ 2 ln( 2 π × P ω 0 ×s× I th )] 1/2

Metrics