Abstract

We study theoretically a superluminal laser system comprising active and passive (lossy) coupled micro-resonators with equal gain/loss. It is shown that when the system satisfies the white light cavity (WLC) condition, corresponding to zero group index, it also forms a PT-symmetric system (PTSS) at its exceptional point (EP). Slightly above lasing threshold, in the broken symmetry regime near the EP, the system exhibits “superluminal” lasing – a unique lasing condition which is highly attractive for sensing and precision metrology applications. It is also shown that some of the latest experimental studies involving PTSSs have indirectly demonstrated such superluminal lasing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical study on Brillouin fiber laser sensor based on white light cavity

Omer Kotlicki, Jacob Scheuer, and M.S. Shahriar
Opt. Express 20(27) 28234-28248 (2012)

Mechanical exceptional-point-induced transparency and slow light

Bao Wang, Zeng-Xing Liu, Cui Kong, Hao Xiong, and Ying Wu
Opt. Express 27(6) 8069-8080 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC, 2009).
  2. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [Crossref] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  5. L. Thévenaz, “Slow and fast light in optical fibres‏,” Nat. Photonics 2(8), 474–481 (2008).
    [Crossref]
  6. J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
    [Crossref] [PubMed]
  7. J. Scheuer, “Fiber microcoil optical gyroscope,” Opt. Lett. 34(11), 1630–1632 (2009).
    [Crossref] [PubMed]
  8. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
    [Crossref]
  9. R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18-19), 1908–1915 (2009).
    [Crossref]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
    [Crossref] [PubMed]
  11. H. N. Yum, M. E. Kim, Y. J. Jang, and M. S. Shahriar, “Distortion free pulse delay system using a pair of tunable white light cavities,” Opt. Express 19(7), 6705–6713 (2011).
    [Crossref] [PubMed]
  12. J. Scheuer and S. M. Shahriar, “Lasing dynamics of super and sub luminal lasers,” Opt. Express 23(25), 32350–32366 (2015).
    [Crossref] [PubMed]
  13. O. Kotlicki and J. Scheuer, “Wideband Coherent Perfect Absorber based on White-Light Cavity,” Opt. Lett. 39(23), 6624–6627 (2014).
    [Crossref] [PubMed]
  14. J. Scheuer and M. S. Shahriar, “Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach,” Opt. Lett. 38(18), 3534–3537 (2013).
    [Crossref] [PubMed]
  15. D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
    [Crossref]
  16. J. Yablon, Z. Zhou, N. Condon, D. Hileman, S. Tseng, and S. Shahriar, “Demonstration of a highly subluminal laser with suppression of cavity length sensitivity by nearly three orders of magnitude,” Opt. Express 25(24), 30327–30335 (2017).
    [Crossref] [PubMed]
  17. J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
    [Crossref] [PubMed]
  18. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
    [Crossref] [PubMed]
  19. H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
    [Crossref] [PubMed]
  20. D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A (Coll. Park) 94(2), 023828 (2016).
    [Crossref]
  21. D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
    [Crossref]
  22. D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
    [Crossref]
  23. A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
    [Crossref]
  24. H. N. Yum, J. Scheuer, M. Salit, P. R. Hemmer, and M. S. Shahriar, “Demonstration of White Light Cavity Effect Using Stimulated Brillouin Scattering in a Fiber Loop,” J. Lightwave Technol. 31(23), 3865–3872 (2013).
    [Crossref]
  25. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a Tunable-Bandwidth White-Light Interferometer Using Anomalous Dispersion in Atomic Vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
    [Crossref] [PubMed]
  26. O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20(27), 28234–28248 (2012).
    [Crossref] [PubMed]
  27. R. H. Rinkleff and A. Wicht, “The Concept of White Light Cavities Using Atomic Phase Coherence,” Phys. Scr. T 118, 85–88 (2005).
    [Crossref]
  28. A. Rocco, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Anomalous dispersion of transparent atomic two- and three-level ensembles,” Phys. Rev. A 66(5), 053804 (2002).
    [Crossref]
  29. M. Salit and M. S. Shahriar, “Enhancement of sensitivity and bandwidth of gravitational wave detectors using fast-light-based white light cavities,” J. Opt. 12(10), 104014 (2010).
    [Crossref]
  30. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
    [Crossref]
  31. M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16-17), 2425–2440 (2007).
    [Crossref]
  32. H. Yum, X. Liu, Y. J. Jang, M. E. Kim, and S. M. Shahriar, “Pulse Delay Via Tunable White Light Cavities Using Fiber-Optic Resonators,” J. Lightwave Technol. 29(18), 2698–2705 (2011).
    [Crossref]
  33. S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity 21(5), S1031–S1036 (2004).
    [Crossref]
  34. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32(17), 2632–2634 (2007).
    [Crossref] [PubMed]
  35. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
    [Crossref] [PubMed]
  36. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
    [Crossref]
  37. Y. D. Chong, L. Ge, and A. D. Stone, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
    [Crossref] [PubMed]
  38. M. A. Miri, P. LiKamWa, and D. N. Christodoulides, “Large area single-mode parity-time-symmetric laser amplifiers,” Opt. Lett. 37(5), 764–766 (2012).
    [Crossref] [PubMed]
  39. A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
    [Crossref] [PubMed]
  40. P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems,” Phys. Rev. X 3(4), 041030 (2013).
    [Crossref]
  41. M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
    [Crossref] [PubMed]
  42. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
    [Crossref]
  43. H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
    [Crossref] [PubMed]
  44. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
    [Crossref]
  45. L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
    [Crossref] [PubMed]
  46. W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
    [Crossref] [PubMed]
  47. J. Wiersig, “Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection,” Phys. Rev. Lett. 112(20), 203901 (2014).
    [Crossref]
  48. M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
    [Crossref] [PubMed]
  49. H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric coupled microring lasers operating around an exceptional point,” Opt. Lett. 40(21), 4955–4958 (2015).
    [Crossref] [PubMed]
  50. B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
    [Crossref] [PubMed]
  51. A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84(2), 021806 (2011).
    [Crossref]
  52. Y. D. Chong and M. C. Rechtsman, “Tachyonic dispersion in coherent networks,” J. Opt. 18(1), 014001 (2015).
    [Crossref]
  53. T. Goldzak, A. A. Mailybaev, and N. Moiseyev, “Light stops at exceptional points‏,” Phys. Rev. Lett. 120(1), 013901 (2018).
    [Crossref] [PubMed]

2018 (1)

T. Goldzak, A. A. Mailybaev, and N. Moiseyev, “Light stops at exceptional points‏,” Phys. Rev. Lett. 120(1), 013901 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (2)

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[Crossref] [PubMed]

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A (Coll. Park) 94(2), 023828 (2016).
[Crossref]

2015 (3)

2014 (9)

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

J. Wiersig, “Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection,” Phys. Rev. Lett. 112(20), 203901 (2014).
[Crossref]

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

O. Kotlicki and J. Scheuer, “Wideband Coherent Perfect Absorber based on White-Light Cavity,” Opt. Lett. 39(23), 6624–6627 (2014).
[Crossref] [PubMed]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

2013 (3)

2012 (4)

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20(27), 28234–28248 (2012).
[Crossref] [PubMed]

M. A. Miri, P. LiKamWa, and D. N. Christodoulides, “Large area single-mode parity-time-symmetric laser amplifiers,” Opt. Lett. 37(5), 764–766 (2012).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
[Crossref] [PubMed]

2011 (4)

H. Yum, X. Liu, Y. J. Jang, M. E. Kim, and S. M. Shahriar, “Pulse Delay Via Tunable White Light Cavities Using Fiber-Optic Resonators,” J. Lightwave Technol. 29(18), 2698–2705 (2011).
[Crossref]

H. N. Yum, M. E. Kim, Y. J. Jang, and M. S. Shahriar, “Distortion free pulse delay system using a pair of tunable white light cavities,” Opt. Express 19(7), 6705–6713 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84(2), 021806 (2011).
[Crossref]

2010 (3)

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

M. Salit and M. S. Shahriar, “Enhancement of sensitivity and bandwidth of gravitational wave detectors using fast-light-based white light cavities,” J. Opt. 12(10), 104014 (2010).
[Crossref]

2009 (5)

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

J. Scheuer, “Fiber microcoil optical gyroscope,” Opt. Lett. 34(11), 1630–1632 (2009).
[Crossref] [PubMed]

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18-19), 1908–1915 (2009).
[Crossref]

2008 (3)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres‏,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

2007 (4)

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32(17), 2632–2634 (2007).
[Crossref] [PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a Tunable-Bandwidth White-Light Interferometer Using Anomalous Dispersion in Atomic Vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16-17), 2425–2440 (2007).
[Crossref]

2006 (2)

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
[Crossref] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

2005 (1)

R. H. Rinkleff and A. Wicht, “The Concept of White Light Cavities Using Atomic Phase Coherence,” Phys. Scr. T 118, 85–88 (2005).
[Crossref]

2004 (1)

S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity 21(5), S1031–S1036 (2004).
[Crossref]

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

2002 (1)

A. Rocco, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Anomalous dispersion of transparent atomic two- and three-level ensembles,” Phys. Rev. A 66(5), 053804 (2002).
[Crossref]

1999 (2)

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1997 (1)

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Aimez, V.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

Ambichl, P.

P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems,” Phys. Rev. X 3(4), 041030 (2013).
[Crossref]

Arissian, L.

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bahat-Treidel, O.

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84(2), 021806 (2011).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bender, C. M.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

Bersch, C.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
[Crossref] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18-19), 1908–1915 (2009).
[Crossref]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Brandstetter, M.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

Cerjan, A.

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Chang, H.

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A (Coll. Park) 94(2), 023828 (2016).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

Chang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Chen, W.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Chong, Y.

P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems,” Phys. Rev. X 3(4), 041030 (2013).
[Crossref]

Chong, Y. D.

Y. D. Chong and M. C. Rechtsman, “Tachyonic dispersion in coherent networks,” J. Opt. 18(1), 014001 (2015).
[Crossref]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Christodoulides, D. N.

H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric coupled microring lasers operating around an exceptional point,” Opt. Lett. 40(21), 4955–4958 (2015).
[Crossref] [PubMed]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
[Crossref] [PubMed]

M. A. Miri, P. LiKamWa, and D. N. Christodoulides, “Large area single-mode parity-time-symmetric laser amplifiers,” Opt. Lett. 37(5), 764–766 (2012).
[Crossref] [PubMed]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32(17), 2632–2634 (2007).
[Crossref] [PubMed]

Condon, N.

Danzmann, K.

A. Rocco, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Anomalous dispersion of transparent atomic two- and three-level ensembles,” Phys. Rev. A 66(5), 053804 (2002).
[Crossref]

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Deutsch, C.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

Diels, J. C.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

Duchesne, D.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

El-Ganainy, R.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32(17), 2632–2634 (2007).
[Crossref] [PubMed]

Fan, S.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Feng, L.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Fleischhauer, M.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Ge, L.

P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems,” Phys. Rev. X 3(4), 041030 (2013).
[Crossref]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Gianfreda, M.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Goldzak, T.

T. Goldzak, A. A. Mailybaev, and N. Moiseyev, “Light stops at exceptional points‏,” Phys. Rev. Lett. 120(1), 013901 (2018).
[Crossref] [PubMed]

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Guo, A.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hassan, A. U.

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hayenga, W. E.

Heinrich, M.

Hemmer, P. R.

Hileman, D.

Hodaei, H.

Hua, S.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Jang, Y. J.

Jiang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Jiang, X.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Kaya Özdemir, S.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Khajavikhan, M.

Kim, M. E.

Kip, D.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Klang, P.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

Kotlicki, O.

Lee, R. K.

Lei, F.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Li, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Liertzer, M.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

LiKamWa, P.

Liu, X.

Long, G. L.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Luckay, H. A.

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A (Coll. Park) 94(2), 023828 (2016).
[Crossref]

Ma, R.-M.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Mailybaev, A. A.

T. Goldzak, A. A. Mailybaev, and N. Moiseyev, “Light stops at exceptional points‏,” Phys. Rev. Lett. 120(1), 013901 (2018).
[Crossref] [PubMed]

Makris, K. G.

P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems,” Phys. Rev. X 3(4), 041030 (2013).
[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32(17), 2632–2634 (2007).
[Crossref] [PubMed]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Miri, M. A.

H. Hodaei, M. A. Miri, A. U. Hassan, W. E. Hayenga, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric coupled microring lasers operating around an exceptional point,” Opt. Lett. 40(21), 4955–4958 (2015).
[Crossref] [PubMed]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
[Crossref] [PubMed]

M. A. Miri, P. LiKamWa, and D. N. Christodoulides, “Large area single-mode parity-time-symmetric laser amplifiers,” Opt. Lett. 37(5), 764–766 (2012).
[Crossref] [PubMed]

Moiseyev, N.

T. Goldzak, A. A. Mailybaev, and N. Moiseyev, “Light stops at exceptional points‏,” Phys. Rev. Lett. 120(1), 013901 (2018).
[Crossref] [PubMed]

Monifi, F.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Morandotti, R.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

Mueller, G.

S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity 21(5), S1031–S1036 (2004).
[Crossref]

Müller, G.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Musslimani, Z. H.

Myneni, K.

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A (Coll. Park) 94(2), 023828 (2016).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

Nori, F.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

Odutola, J. A.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

Onishchukov, G.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
[Crossref] [PubMed]

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

Pati, G. S.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16-17), 2425–2440 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a Tunable-Bandwidth White-Light Interferometer Using Anomalous Dispersion in Atomic Vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref] [PubMed]

Peng, B.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Peschel, U.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
[Crossref] [PubMed]

Rechtsman, M. C.

Y. D. Chong and M. C. Rechtsman, “Tachyonic dispersion in coherent networks,” J. Opt. 18(1), 014001 (2015).
[Crossref]

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84(2), 021806 (2011).
[Crossref]

Regensburger, A.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
[Crossref] [PubMed]

Reitze, D.

S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity 21(5), S1031–S1036 (2004).
[Crossref]

Rinkleff, R. H.

R. H. Rinkleff and A. Wicht, “The Concept of White Light Cavities Using Atomic Phase Coherence,” Phys. Scr. T 118, 85–88 (2005).
[Crossref]

A. Rocco, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Anomalous dispersion of transparent atomic two- and three-level ensembles,” Phys. Rev. A 66(5), 053804 (2002).
[Crossref]

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Rocco, A.

A. Rocco, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Anomalous dispersion of transparent atomic two- and three-level ensembles,” Phys. Rev. A 66(5), 053804 (2002).
[Crossref]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

Rotter, S.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems,” Phys. Rev. X 3(4), 041030 (2013).
[Crossref]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Rüter, C. E.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Salamo, G. J.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

Salit, K.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16-17), 2425–2440 (2007).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a Tunable-Bandwidth White-Light Interferometer Using Anomalous Dispersion in Atomic Vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref] [PubMed]

Salit, M.

H. N. Yum, J. Scheuer, M. Salit, P. R. Hemmer, and M. S. Shahriar, “Demonstration of White Light Cavity Effect Using Stimulated Brillouin Scattering in a Fiber Loop,” J. Lightwave Technol. 31(23), 3865–3872 (2013).
[Crossref]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

M. Salit and M. S. Shahriar, “Enhancement of sensitivity and bandwidth of gravitational wave detectors using fast-light-based white light cavities,” J. Opt. 12(10), 104014 (2010).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16-17), 2425–2440 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a Tunable-Bandwidth White-Light Interferometer Using Anomalous Dispersion in Atomic Vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref] [PubMed]

Scherer, A.

Scheuer, J.

Schöberl, J.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

Scully, M.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Segev, M.

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84(2), 021806 (2011).
[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Shahriar, M. S.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[Crossref] [PubMed]

H. N. Yum, J. Scheuer, M. Salit, P. R. Hemmer, and M. S. Shahriar, “Demonstration of White Light Cavity Effect Using Stimulated Brillouin Scattering in a Fiber Loop,” J. Lightwave Technol. 31(23), 3865–3872 (2013).
[Crossref]

J. Scheuer and M. S. Shahriar, “Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach,” Opt. Lett. 38(18), 3534–3537 (2013).
[Crossref] [PubMed]

O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20(27), 28234–28248 (2012).
[Crossref] [PubMed]

H. N. Yum, M. E. Kim, Y. J. Jang, and M. S. Shahriar, “Distortion free pulse delay system using a pair of tunable white light cavities,” Opt. Express 19(7), 6705–6713 (2011).
[Crossref] [PubMed]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

M. Salit and M. S. Shahriar, “Enhancement of sensitivity and bandwidth of gravitational wave detectors using fast-light-based white light cavities,” J. Opt. 12(10), 104014 (2010).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16-17), 2425–2440 (2007).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a Tunable-Bandwidth White-Light Interferometer Using Anomalous Dispersion in Atomic Vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref] [PubMed]

Shahriar, S.

Shahriar, S. M.

Siviloglou, G. A.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

Smith, D. D.

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A (Coll. Park) 94(2), 023828 (2016).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

Stone, A. D.

P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems,” Phys. Rev. X 3(4), 041030 (2013).
[Crossref]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Strasser, G.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

Szameit, A.

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84(2), 021806 (2011).
[Crossref]

Tanner, D. B.

S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity 21(5), S1031–S1036 (2004).
[Crossref]

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres‏,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Tseng, S.

Türeci, H. E.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Unterrainer, K.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

Volatier-Ravat, M.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

Wang, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Wang, Y.

Wen, J.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Whiting, B. F.

S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity 21(5), S1031–S1036 (2004).
[Crossref]

Wicht, A.

R. H. Rinkleff and A. Wicht, “The Concept of White Light Cavities Using Atomic Phase Coherence,” Phys. Scr. T 118, 85–88 (2005).
[Crossref]

A. Rocco, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Anomalous dispersion of transparent atomic two- and three-level ensembles,” Phys. Rev. A 66(5), 053804 (2002).
[Crossref]

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Wiersig, J.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

J. Wiersig, “Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection,” Phys. Rev. Lett. 112(20), 203901 (2014).
[Crossref]

Wise, S.

S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity 21(5), S1031–S1036 (2004).
[Crossref]

Wong, Z. J.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Xiao, M.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Xu, Y.

Yablon, J.

Yang, C.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Yang, L.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

Yariv, A.

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
[Crossref] [PubMed]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[Crossref] [PubMed]

Yilmaz, H.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

Yum, H.

Yum, H. N.

Zhang, X.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Zhao, G.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Zhou, M.

Zhou, Z.

Class. Quantum Gravity (1)

S. Wise, G. Mueller, D. Reitze, D. B. Tanner, and B. F. Whiting, “Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors,” Class. Quantum Gravity 21(5), S1031–S1036 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (2)

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16-17), 2425–2440 (2007).
[Crossref]

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18-19), 1908–1915 (2009).
[Crossref]

J. Opt. (2)

M. Salit and M. S. Shahriar, “Enhancement of sensitivity and bandwidth of gravitational wave detectors using fast-light-based white light cavities,” J. Opt. 12(10), 104014 (2010).
[Crossref]

Y. D. Chong and M. C. Rechtsman, “Tachyonic dispersion in coherent networks,” J. Opt. 18(1), 014001 (2015).
[Crossref]

Nat. Commun. (1)

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat. Commun. 5(1), 4034 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres‏,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Nat. Phys. (2)

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Nature (3)

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488(7410), 167–171 (2012).
[Crossref] [PubMed]

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Commun. (1)

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

Opt. Photonics News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Phys. Rev. A (6)

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

A. Rocco, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Anomalous dispersion of transparent atomic two- and three-level ensembles,” Phys. Rev. A 66(5), 053804 (2002).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84(2), 021806 (2011).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A (Coll. Park) 94(2), 023828 (2016).
[Crossref]

Phys. Rev. Lett. (7)

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
[Crossref] [PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a Tunable-Bandwidth White-Light Interferometer Using Anomalous Dispersion in Atomic Vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[Crossref] [PubMed]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-Symmetry Breaking In Complex Optical Potentials,” Phys. Rev. Lett. 103(9), 093902 (2009).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

T. Goldzak, A. A. Mailybaev, and N. Moiseyev, “Light stops at exceptional points‏,” Phys. Rev. Lett. 120(1), 013901 (2018).
[Crossref] [PubMed]

J. Wiersig, “Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection,” Phys. Rev. Lett. 112(20), 203901 (2014).
[Crossref]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Phys. Rev. X (1)

P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems,” Phys. Rev. X 3(4), 041030 (2013).
[Crossref]

Phys. Scr. T (1)

R. H. Rinkleff and A. Wicht, “The Concept of White Light Cavities Using Atomic Phase Coherence,” Phys. Scr. T 118, 85–88 (2005).
[Crossref]

Science (4)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref] [PubMed]

Other (1)

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of white light cavity implementations. Inset: amplitude and phase transmission properties.
Fig. 2
Fig. 2 (a) schematic of a white light cavity structure; (b) roundtrip phase response of a WLC
Fig. 3
Fig. 3 (a) Real and (b) Imaginary parts of the solutions of the characteristic Eq. (6)
Fig. 4
Fig. 4 roundtrip phase (blue) and gain (green) in the right cavity of Fig. 2 for different coupling levels: (a) below the EP; (b) at the EP; (c) above the EP; (d) above the critically coupling level of the left cavity in Fig. 2
Fig. 5
Fig. 5 Magnitude (a) and phase (b) of the field a with respect to b in Fig. 2
Fig. 6
Fig. 6 - Steady state intensity in the active cavity as a function of the coupling coefficient and the small signal gain. The loss coefficient is fixed at α = 1.6.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

n ¯ g = c L d φ R T d ω = ( n + ω d n d ω ) + c L d d ω Δ ϕ = n g + c L d d ω Δ ϕ
exp ( α / 2 ) = ( 1 κ ) / 1 κ
e g / 2 1 κ e α / 2 1 1 κ e α / 2 = 1 ,
a e i φ / 2 e g / 4 = t e i φ / 2 e g / 4 a + i κ e i φ / 2 e α / 4 b b e i φ / 2 e α / 4 = t e i φ / 2 e α / 4 b + i κ e i φ / 2 e g / 4 a ,
cos h [ ( g α ) / 4 + i φ ] = cos h [ ( g + α ) / 4 ] 1 κ ,
cos ( φ ) = cos h ( α / 2 ) 1 κ ,
cos h ( α / 2 ) 1 κ E P = 1 ,
n ¯ g = c L d φ R T d ω ,
n ¯ g = n g ( 1 + Δ ν F S R d d ω Δ ϕ ) ,
t p a s s i v e = 1 κ 1 α e i φ 1 ( 1 κ ) ( 1 α ) e i φ ,
tan ( Δ ϕ ) = κ 1 κ sin ( φ ) ( 2 α ) 1 κ ( 2 κ ) 1 α cos ( φ ) ,
d d ω Δ ϕ | ϕ = 0 = κ / Δ ν F S R ( 1 κ 1 α ) ( 1 1 κ 1 α ) ,
d d ω Δ ϕ | ϕ = 0 4 κ / Δ ν F S R α 2 κ 2 ,
n ¯ g n g ( 1 4 κ α 2 κ 2 ) ,
κ t = κ / τ R T = κ Δ ν F S R , γ = α / τ R T = α Δ ν F S R
n ¯ g = n g ( 1 4 ( γ / κ t ) 2 ( κ t / Δ ν F S R ) 2 ) n g [ 1 ( 2 κ t / γ ) 2 ] ,
n ¯ g = n g [ 1 ( κ t / κ E P ) 2 ] ,
1 1 / n g < κ t / κ P T < 1 ,

Metrics