Abstract

In this paper, we numerically investigate a method to obtain narrow-bandwidth near-field thermal radiation spectra by using two-dimensional (2D) photonic crystal (PC) slabs. Our examination reveals that near-field thermal radiation spectra can be artificially controlled via the photonic band engineering of 2D-PC slabs, where the radiation is enhanced in a range of frequencies of the flat bands and suppressed inside the photonic bandgap. By designing a thermal emitter with a 2D-PC slab of appropriate thickness, and by adjusting the gap between the emitter and the absorber, we can implement narrowband near-field thermal radiation that overcomes the far-field blackbody limit in the near-infrared range. Further, its linewidth is as small as Δλ = 0.14 µm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate

Takuya Inoue, Kohei Watanabe, Takashi Asano, and Susumu Noda
Opt. Express 26(2) A192-A208 (2018)

Photonic band engineering in absorbing media for spectrally selective optoelectronic films

Botong Qiu, Yida Lin, Ebuka S. Arinze, Arlene Chiu, Lulin Li, and Susanna M. Thon
Opt. Express 26(21) 26933-26945 (2018)

Spectrally selective thermal radiation based on intersubband transitions and photonic crystals

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda
Opt. Express 17(21) 19190-19203 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
    [Crossref]
  2. J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
    [Crossref] [PubMed]
  3. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
    [Crossref]
  4. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
    [Crossref]
  5. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
    [Crossref]
  6. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
    [Crossref]
  7. M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
    [Crossref] [PubMed]
  8. A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
    [Crossref] [PubMed]
  9. A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
    [Crossref] [PubMed]
  10. X. Liu and Z. M. Zhang, “High-performance electroluminescent refrigeration enabled by photon tunneling,” Nano Energy 26, 353–359 (2016).
    [Crossref]
  11. K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
    [Crossref]
  12. J. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
    [Crossref]
  13. P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
    [Crossref]
  14. A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
    [Crossref] [PubMed]
  15. R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
    [Crossref]
  16. X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
    [Crossref]
  17. H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B Condens. Matter Mater. Phys. 91(1), 014302 (2015).
    [Crossref]
  18. X. L. Liu and Z. M. Zhang, “Near-field thermal radiation between metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
    [Crossref]
  19. Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117(4), 044301 (2016).
    [Crossref] [PubMed]
  20. V. Fernández-Hurtado, F. J. García-Vidal, S. Fan, and J. C. Cuevas, “Enhancing near-field radiative heat transfer with Si-based metasurfaces,” Phys. Rev. Lett. 118(20), 203901 (2017).
    [Crossref] [PubMed]
  21. K. Isobe, D. Hirashima, and K. Hanamura, “Spectrally enhanced near-field radiation transfer using nanometer-sized pillar array structured surfaces,” Int. J. Heat Mass Transfer 115, 467–473 (2017).
    [Crossref]
  22. H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat Mass Transfer 123, 67–74 (2018).
    [Crossref]
  23. M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
    [Crossref]
  24. T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
    [Crossref]
  25. T. Inoue, K. Watanabe, T. Asano, and S. Noda, “Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate,” Opt. Express 26(2), A192–A208 (2018).
    [Crossref] [PubMed]
  26. T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
    [Crossref] [PubMed]
  27. G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
    [Crossref]
  28. P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
    [Crossref]
  29. C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9-10), 1703–1718 (2006).
    [Crossref]
  30. M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
    [Crossref]
  31. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Alx Ga 1− x As, and In 1− x Gax Asy P 1− y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
    [Crossref]
  32. D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
    [Crossref]
  33. L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
    [Crossref]

2018 (4)

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
[Crossref] [PubMed]

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat Mass Transfer 123, 67–74 (2018).
[Crossref]

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

T. Inoue, K. Watanabe, T. Asano, and S. Noda, “Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate,” Opt. Express 26(2), A192–A208 (2018).
[Crossref] [PubMed]

2017 (4)

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

V. Fernández-Hurtado, F. J. García-Vidal, S. Fan, and J. C. Cuevas, “Enhancing near-field radiative heat transfer with Si-based metasurfaces,” Phys. Rev. Lett. 118(20), 203901 (2017).
[Crossref] [PubMed]

K. Isobe, D. Hirashima, and K. Hanamura, “Spectrally enhanced near-field radiation transfer using nanometer-sized pillar array structured surfaces,” Int. J. Heat Mass Transfer 115, 467–473 (2017).
[Crossref]

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

2016 (4)

X. Liu and Z. M. Zhang, “High-performance electroluminescent refrigeration enabled by photon tunneling,” Nano Energy 26, 353–359 (2016).
[Crossref]

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117(4), 044301 (2016).
[Crossref] [PubMed]

2015 (3)

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B Condens. Matter Mater. Phys. 91(1), 014302 (2015).
[Crossref]

X. L. Liu and Z. M. Zhang, “Near-field thermal radiation between metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

2014 (1)

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

2012 (1)

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

2011 (1)

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

2009 (2)

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

2008 (1)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

2006 (2)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9-10), 1703–1718 (2006).
[Crossref]

2005 (2)

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

2003 (1)

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

2002 (2)

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

J. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

1994 (1)

J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
[Crossref] [PubMed]

1993 (1)

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

1989 (1)

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Alx Ga 1− x As, and In 1− x Gax Asy P 1− y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

1982 (1)

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Adachi, S.

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Alx Ga 1− x As, and In 1− x Gax Asy P 1− y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

Asano, T.

T. Inoue, K. Watanabe, T. Asano, and S. Noda, “Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate,” Opt. Express 26(2), A192–A208 (2018).
[Crossref] [PubMed]

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Basu, S.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Ben-Abdallah, P.

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

Bermel, P.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Bernardi, M. P.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Blandre, E.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B Condens. Matter Mater. Phys. 91(1), 014302 (2015).
[Crossref]

Carminati, R.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

J. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Celanovic, I.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Chalabi, H.

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B Condens. Matter Mater. Phys. 91(1), 014302 (2015).
[Crossref]

Chapuis, P.-O.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Chen, K.

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

Cohen, G. M.

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Cuevas, J. C.

V. Fernández-Hurtado, F. J. García-Vidal, S. Fan, and J. C. Cuevas, “Enhancing near-field radiative heat transfer with Si-based metasurfaces,” Phys. Rev. Lett. 118(20), 203901 (2017).
[Crossref] [PubMed]

Dalvit, D. A. R.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

De Zoysa, M.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Domingues, G.

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

Drevillon, J.

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

Duan, Y.

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat Mass Transfer 123, 67–74 (2018).
[Crossref]

Dupré, O.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Elzouka, M.

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

Fan, S.

V. Fernández-Hurtado, F. J. García-Vidal, S. Fan, and J. C. Cuevas, “Enhancing near-field radiative heat transfer with Si-based metasurfaces,” Phys. Rev. Lett. 118(20), 203901 (2017).
[Crossref] [PubMed]

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

Fernández-Hurtado, V.

V. Fernández-Hurtado, F. J. García-Vidal, S. Fan, and J. C. Cuevas, “Enhancing near-field radiative heat transfer with Si-based metasurfaces,” Phys. Rev. Lett. 118(20), 203901 (2017).
[Crossref] [PubMed]

Fiorino, A.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
[Crossref] [PubMed]

Francoeur, M.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Fu, C. J.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9-10), 1703–1718 (2006).
[Crossref]

García-Vidal, F. J.

V. Fernández-Hurtado, F. J. García-Vidal, S. Fan, and J. C. Cuevas, “Enhancing near-field radiative heat transfer with Si-based metasurfaces,” Phys. Rev. Lett. 118(20), 203901 (2017).
[Crossref] [PubMed]

Greffet, J.-J.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

J. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Guérout, R.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

Hanamura, K.

K. Isobe, D. Hirashima, and K. Hanamura, “Spectrally enhanced near-field radiation transfer using nanometer-sized pillar array structured surfaces,” Int. J. Heat Mass Transfer 115, 467–473 (2017).
[Crossref]

Hashimoto, K.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Hasman, E.

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B Condens. Matter Mater. Phys. 91(1), 014302 (2015).
[Crossref]

Hirashima, D.

K. Isobe, D. Hirashima, and K. Hanamura, “Spectrally enhanced near-field radiation transfer using nanometer-sized pillar array structured surfaces,” Int. J. Heat Mass Transfer 115, 467–473 (2017).
[Crossref]

Ho, K.-M.

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Holden, T. M.

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Hugonin, J.-P.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

Ilic, O.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Inoue, T.

T. Inoue, K. Watanabe, T. Asano, and S. Noda, “Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate,” Opt. Express 26(2), A192–A208 (2018).
[Crossref] [PubMed]

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

Isobe, K.

K. Isobe, D. Hirashima, and K. Hanamura, “Spectrally enhanced near-field radiation transfer using nanometer-sized pillar array structured surfaces,” Int. J. Heat Mass Transfer 115, 467–473 (2017).
[Crossref]

Jellison, G. E.

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

Joannopoulos, J. D.

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Johnson, S. G.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Joulain, K.

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

J. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Kahn, M.

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Karalis, A.

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

King, W. P.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Kronik, L.

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Lambrecht, A.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

Laroche, M.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

Li, Z.-Y.

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Lin, L.-L.

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Liu, X.

X. Liu and Z. M. Zhang, “High-performance electroluminescent refrigeration enabled by photon tunneling,” Nano Energy 26, 353–359 (2016).
[Crossref]

Liu, X. L.

X. L. Liu and Z. M. Zhang, “Near-field thermal radiation between metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

Lockwood, D. J.

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

Loomis, J. J.

J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
[Crossref] [PubMed]

Lowndes, D. H.

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

Lussange, J.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

Maris, H. J.

J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
[Crossref] [PubMed]

Marquier, F.

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Meyhofer, E.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
[Crossref] [PubMed]

Mittapally, R.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
[Crossref] [PubMed]

Mulet, J.

J. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Mulet, J.-P.

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Muñoz, M.

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Ndao, S.

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

Noda, S.

T. Inoue, K. Watanabe, T. Asano, and S. Noda, “Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate,” Opt. Express 26(2), A192–A208 (2018).
[Crossref] [PubMed]

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Park, K.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Pollak, F. H.

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Reddy, P.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
[Crossref] [PubMed]

Reynaud, S.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

Ritter, D.

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

Rodriguez, A. W.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Rosa, F. S. S.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

Rowell, N. L.

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

Santhanam, P.

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

Shibahara, T.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Soljacic, M.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Suemitsu, M.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Thompson, D.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
[Crossref] [PubMed]

Timans, P. J.

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

Tsutsumi, T.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Vaillon, R.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Wang, L.

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117(4), 044301 (2016).
[Crossref] [PubMed]

Watanabe, K.

Xiao, T. P.

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

Yablonovitch, E.

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

Yang, Y.

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117(4), 044301 (2016).
[Crossref] [PubMed]

Yang, Z.

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat Mass Transfer 123, 67–74 (2018).
[Crossref]

Yu, G.

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

Yu, H.

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat Mass Transfer 123, 67–74 (2018).
[Crossref]

Zhang, Z. M.

X. Liu and Z. M. Zhang, “High-performance electroluminescent refrigeration enabled by photon tunneling,” Nano Energy 26, 353–359 (2016).
[Crossref]

X. L. Liu and Z. M. Zhang, “Near-field thermal radiation between metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9-10), 1703–1718 (2006).
[Crossref]

Zhu, L.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
[Crossref] [PubMed]

ACS Photonics (1)

X. L. Liu and Z. M. Zhang, “Near-field thermal radiation between metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
[Crossref]

Appl. Phys. Lett. (2)

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

Int. J. Heat Mass Transfer (3)

K. Isobe, D. Hirashima, and K. Hanamura, “Spectrally enhanced near-field radiation transfer using nanometer-sized pillar array structured surfaces,” Int. J. Heat Mass Transfer 115, 467–473 (2017).
[Crossref]

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat Mass Transfer 123, 67–74 (2018).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale-radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49(9-10), 1703–1718 (2006).
[Crossref]

J. Appl. Phys. (7)

M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, “Optical constants of In0.53Ga0.47As/InP: Experiment and Modeling,” J. Appl. Phys. 92(10), 5878–5885 (2002).
[Crossref]

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Alx Ga 1− x As, and In 1− x Gax Asy P 1− y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

L.-L. Lin, Z.-Y. Li, and K.-M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

P. J. Timans, “Emissivity of silicon at elevated temperatures,” J. Appl. Phys. 74(10), 6353–6364 (1993).
[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

Microscale Thermophys. Eng. (1)

J. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Nano Energy (1)

X. Liu and Z. M. Zhang, “High-performance electroluminescent refrigeration enabled by photon tunneling,” Nano Energy 26, 353–359 (2016).
[Crossref]

Nat. Nanotechnol. (1)

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. 13(9), 806–811 (2018).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

H. Chalabi, E. Hasman, and M. L. Brongersma, “Near-field radiative thermal transfer between a nanostructured periodic material and a planar substrate,” Phys. Rev. B Condens. Matter Mater. Phys. 91(1), 014302 (2015).
[Crossref]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 85(18), 180301 (2012).
[Crossref]

Phys. Rev. Lett. (3)

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117(4), 044301 (2016).
[Crossref] [PubMed]

V. Fernández-Hurtado, F. J. García-Vidal, S. Fan, and J. C. Cuevas, “Enhancing near-field radiative heat transfer with Si-based metasurfaces,” Phys. Rev. Lett. 118(20), 203901 (2017).
[Crossref] [PubMed]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Sci. Adv. (1)

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref] [PubMed]

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

Solid State Commun. (1)

D. J. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun. 136(7), 404–409 (2005).
[Crossref]

Surf. Sci. Rep. (1)

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a)(b) Schematic of near-field thermal radiation transfer system, which consists of a Si thermal emitter employing a triangular-lattice PC slab and an InGaAs PV cell with an intermediate Si substrate. (c) Absorption coefficient spectra of intrinsic Si at various temperatures. (d) Calculated photonic band diagram of a 2-µm-thick hole-type PC slab. (e)(f) Calculated photonic band diagrams of 0.2-µm-thick hole-type and 0.3-µm-thick rod-type PC slabs. Gray regions indicate a photonic band gap (PBG) for one polarization mode, yellow region indicates flat photonic bands with increased photonic density of states, and blue region indicates photonic bands with a low effective refractive index (i.e. small photonic density of state).
Fig. 2
Fig. 2 (a)(b) Thermal radiation transfer spectra from the 2-µm-thick (a) and 0.2-µm-thick (b) hole-type PC slabs (1400 K) to the PV cell (300 K) at a gap of 100 nm (red line). The thermal radiation transfer spectrum from the planar Si slab of the same volume is shown in blue in each figure. The far-field blackbody spectrum at 1400 K is shown in black. The frequency range of the PBG of the PC is superimposed in gray. (c)(d) Thermal radiation transfer spectra from the 2-µm-thick (c) and 0.2-µm-thick (d) hole-type PC slabs at various gap sizes.
Fig. 3
Fig. 3 (a)–(d) Calculated exchange function of near-field thermal radiation transfer from the 0.2-µm-thick hole-type PC slab in the first Brillouin zone at various gap sizes. The dotted white lines show the light lines of the PC slab and the horizontal dashed lines show the bandgap of In0.53Ga0.47As. The optical band shown with an orange ellipse in Fig. 3(b) makes the greatest contribution to radiation transfer, which results in the frequency-selective thermal radiation spectra shown in Fig. 2(d).
Fig. 4
Fig. 4 (a) Thermal radiation transfer spectra from the 0.3-µm-thick rod-type PC slab (1400 K) to the PV cell (300 K) at a gap of 100 nm (red line). Thermal radiation transfer spectrum from the planar Si slab of the same volume is shown in blue. The far-field blackbody spectrum at 1400 K is shown in black. The frequency range of the PBG and flat band of the PC are superimposed in gray and yellow, respectively. (b) Thermal radiation transfer spectra from the rod-type PC slab at various gap sizes. (c)–(f) Calculated exchange function of the near-field thermal radiation transfer from the rod-type PC slab in the first Brillouin zone at various gap sizes. The dotted white lines show the light lines of the PC slab and the horizontal dashed lines show the bandgap of In0.53Ga0.47As.
Fig. 5
Fig. 5 (a)(b) Interband absorption power in the InGaAs pn junction (red line) and other losses that cannot be converted into electrical power, for the hole-type and rod-type PC. The total emission flux from the emitter is shown in black. (c) Ratio of interband absorption power in InGaAs to the total radiation power for both PCs. (d) Below-bandgap absorption in the PV cell for the rod-type PC slab and the planar slab of the same volume.

Metrics