Abstract

We report fabrication and simulation of an F2 glass six-strut suspended core fiber (SCF) with small effective core diameter of 2.5 μm for cylindrical vector (CV) modes generation and propagation. Simulation results show that the fiber has a large effective refractive index difference in the order of 10−4-10−3 between the first higher-order CV modes, including TE01, HE21even and odd and TM01 modes. TE01 and TM01 were experimentally generated and were evaluated as having high purity of 82 percent and 85 percent, respectively. The results demonstrate that the SCF is a competitive waveguide candidate for selectable CV mode generation and propagation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of an azimuthally polarized beam with a metallic ring core fiber

Jue-Ling Li, Chun-Can Wang, and Wei-Qiang Wang
Appl. Opt. 52(32) 7759-7768 (2013)

Complex mode amplitude measurement for a six-mode optical fiber

Steven Golowich, Nenad Bozinovic, Poul Kristensen, and Siddharth Ramachandran
Opt. Express 21(4) 4931-4944 (2013)

Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions

Keyan Wei, Wending Zhang, Ligang Huang, Dong Mao, Feng Gao, Ting Mei, and Jianlin Zhao
Opt. Express 25(3) 2733-2741 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [Crossref] [PubMed]
  2. D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
    [Crossref] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  4. T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” ChemPhysChem 13(8), 1986–2000 (2012).
    [Crossref] [PubMed]
  5. C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013).
    [Crossref] [PubMed]
  6. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
    [Crossref] [PubMed]
  7. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  8. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(1), s83–s88 (2002).
    [Crossref]
  9. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  10. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D. 33(15), 1817–1822 (2000).
    [Crossref]
  11. B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
    [Crossref]
  12. S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8(5), 75 (2006).
    [Crossref]
  13. G. Machavariani, S. Jackel, Y. Lumer, I. Moshe, and A. Meir, “Spatially variable retardation plate for beam brightness enhancement in a high-power laser,” Opt. Lett. 32(17), 2626–2628 (2007).
    [Crossref] [PubMed]
  14. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
    [Crossref] [PubMed]
  15. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [Crossref] [PubMed]
  16. Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
    [Crossref]
  17. S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4(1), 3853 (2015).
    [Crossref] [PubMed]
  18. X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, and P. S. J. Russell, “Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber,” Optica 1(3), 165–169 (2014).
    [Crossref]
  19. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).
  20. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [Crossref] [PubMed]
  21. S. Piehler, X. Délen, M. Rumpel, J. Didierjean, N. Aubry, T. Graf, F. Balembois, P. Georges, and M. A. Ahmed, “Amplification of cylindrically polarized laser beams in single crystal fiber amplifiers,” Opt. Express 21(9), 11376–11381 (2013).
    [Crossref] [PubMed]
  22. M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35(9), 1332–1334 (2010).
    [Crossref] [PubMed]
  23. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  24. M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4(1), 3627 (2015).
    [Crossref] [PubMed]
  25. J. Demas, M. D. W. Grogan, T. Alkeskjold, and S. Ramachandran, “Sensing with optical vortices in photonic-crystal fibers,” Opt. Lett. 37(18), 3768–3770 (2012).
    [Crossref] [PubMed]
  26. L. Yan, E. Auksorius, N. Bozinovic, G. J. Tearney, and S. Ramachandran, “Optical fiber vortices for STED nanoscopy,” in CLEO: 2013 (Optical Society of America, San Jose, California, 2013), p. CTu3N.2.
  27. H. Ji, Y. Ruan, S. A. Vahid, H. Ebendorff-Heidepriem, and T. M. Monro, “Suspended core fibers for the transmission of cylindrical vector modes,” J. Lit. Technol. 34(24), 5620–5626 (2016).
    [Crossref]
  28. J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express 19(5), 4242–4254 (2011).
    [Crossref] [PubMed]
  29. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  30. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
    [Crossref] [PubMed]
  31. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
    [Crossref]
  32. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
    [Crossref] [PubMed]
  33. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
    [Crossref] [PubMed]
  34. S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [Crossref] [PubMed]
  35. H. Ebendorff-Heidepriem, Y. Li, and T. Monro, “Reduced loss in extruded soft glass microstructured fibre,” in COIN-ACOFT 2007 - Joint International Conference on the Optical Internet and the 32nd Australian Conference on Optical Fibre Technology(2007), p. 1–3.
  36. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
    [Crossref]
  37. E. Collett, Polarized light: fundamentals and applications (Marcel Dekker, Inc., 1993).
  38. L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2(10), 900–903 (2015).
    [Crossref]
  39. B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
    [Crossref] [PubMed]

2016 (1)

H. Ji, Y. Ruan, S. A. Vahid, H. Ebendorff-Heidepriem, and T. M. Monro, “Suspended core fibers for the transmission of cylindrical vector modes,” J. Lit. Technol. 34(24), 5620–5626 (2016).
[Crossref]

2015 (3)

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4(1), 3853 (2015).
[Crossref] [PubMed]

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4(1), 3627 (2015).
[Crossref] [PubMed]

L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2(10), 900–903 (2015).
[Crossref]

2014 (2)

2013 (5)

S. Piehler, X. Délen, M. Rumpel, J. Didierjean, N. Aubry, T. Graf, F. Balembois, P. Georges, and M. A. Ahmed, “Amplification of cylindrically polarized laser beams in single crystal fiber amplifiers,” Opt. Express 21(9), 11376–11381 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013).
[Crossref] [PubMed]

2012 (4)

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” ChemPhysChem 13(8), 1986–2000 (2012).
[Crossref] [PubMed]

J. Demas, M. D. W. Grogan, T. Alkeskjold, and S. Ramachandran, “Sensing with optical vortices in photonic-crystal fibers,” Opt. Lett. 37(18), 3768–3770 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (3)

2008 (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

2007 (5)

2006 (2)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
[Crossref]

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8(5), 75 (2006).
[Crossref]

2005 (1)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (2)

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(1), s83–s88 (2002).
[Crossref]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

2000 (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D. 33(15), 1817–1822 (2000).
[Crossref]

1994 (1)

Afshar V, S.

Ahmed, G.

Ahmed, M. A.

Ahmed, N.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Alkeskjold, T.

Aubry, N.

Babic, F.

Balembois, F.

Barrantes, F. J.

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013).
[Crossref] [PubMed]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Birnbaum, K. M.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Boyd, R.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Brunet, C.

Chen, F.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Chiu, D. T.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Davidson, N.

Délen, X.

Demas, J.

Didierjean, J.

Dolinar, S.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Dubinskii, M.

Ebendorff-Heidepriem, H.

Eggeling, C.

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013).
[Crossref] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Erkmen, B. I.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Euser, T. G.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Fridman, M.

Friesem, A. A.

Frosz, M. H.

Georges, P.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Graf, T.

Gregg, P.

Gröblacher, S.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8(5), 75 (2006).
[Crossref]

Grogan, M. D. W.

Gu, M.

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4(1), 3627 (2015).
[Crossref] [PubMed]

Hadden, J. P.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Harke, B.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

Hell, S. W.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hoffmann, P.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Jackel, S.

Jennewein, T.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8(5), 75 (2006).
[Crossref]

Ji, H.

H. Ji, Y. Ruan, S. A. Vahid, H. Ebendorff-Heidepriem, and T. M. Monro, “Suspended core fibers for the transmission of cylindrical vector modes,” J. Lit. Technol. 34(24), 5620–5626 (2016).
[Crossref]

Jiang, X.

Kang, H.

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4(1), 3627 (2015).
[Crossref] [PubMed]

Karimi, E.

Knauer, S.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Kraegeloh, A.

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” ChemPhysChem 13(8), 1986–2000 (2012).
[Crossref] [PubMed]

Kristensen, P.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

LaRochelle, S.

Leger, J.

Li, S.

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4(1), 3853 (2015).
[Crossref] [PubMed]

Li, X.

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4(1), 3627 (2015).
[Crossref] [PubMed]

Lumer, Y.

Machavariani, G.

Marrucci, L.

Marseglia, L.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Medda, R.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

Meir, A.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Messaddeq, Y.

Michaelis, J.

Moffitt, J. R.

Monro, T. M.

Moshe, I.

Müller, T.

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” ChemPhysChem 13(8), 1986–2000 (2012).
[Crossref] [PubMed]

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D. 33(15), 1817–1822 (2000).
[Crossref]

Neupane, B.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Nixon, M.

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D. 33(15), 1817–1822 (2000).
[Crossref]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

O’Brien, J. L.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Osseforth, C.

Patton, B. R.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Piché, M.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(1), s83–s88 (2002).
[Crossref]

Piehler, S.

Ramachandran, S.

L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2(10), 900–903 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

J. Demas, M. D. W. Grogan, T. Alkeskjold, and S. Ramachandran, “Sensing with optical vortices in photonic-crystal fibers,” Opt. Lett. 37(18), 3768–3770 (2012).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Rarity, J. G.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Ruan, Y.

H. Ji, Y. Ruan, S. A. Vahid, H. Ebendorff-Heidepriem, and T. M. Monro, “Suspended core fibers for the transmission of cylindrical vector modes,” J. Lit. Technol. 34(24), 5620–5626 (2016).
[Crossref]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[Crossref] [PubMed]

Rubano, A.

Rumpel, M.

Rusch, L. A.

Russell, P. S. J.

Schartner, E. P.

Schill, H.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Schönle, A.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Schumann, C.

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” ChemPhysChem 13(8), 1986–2000 (2012).
[Crossref] [PubMed]

Smith, J. M.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Sun, W.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Tan, B.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Vahid, S. A.

H. Ji, Y. Ruan, S. A. Vahid, H. Ebendorff-Heidepriem, and T. M. Monro, “Suspended core fibers for the transmission of cylindrical vector modes,” J. Lit. Technol. 34(24), 5620–5626 (2016).
[Crossref]

Vaity, P.

Varin, C.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(1), s83–s88 (2002).
[Crossref]

Vaziri, A.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8(5), 75 (2006).
[Crossref]

Venkatakrishnan, K.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
[Crossref]

Wang, G.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Wang, J.

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4(1), 3853 (2015).
[Crossref] [PubMed]

Warren-Smith, S. C.

Weihs, G.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8(5), 75 (2006).
[Crossref]

Westphal, V.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

Wichmann, J.

Wildanger, D.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Willig, K. I.

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013).
[Crossref] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Wong, G. K. L.

Xi, X. M.

Yan, L.

Yan, M. F.

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Yan, Y.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Yang, J. Y.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Zeilinger, A.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8(5), 75 (2006).
[Crossref]

Zhan, Q.

Zhang, L.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Adv. Mater. (1)

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(1), s83–s88 (2002).
[Crossref]

ChemPhysChem (1)

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” ChemPhysChem 13(8), 1986–2000 (2012).
[Crossref] [PubMed]

IEEE Photonics J. (1)

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

J. Lit. Technol. (1)

H. Ji, Y. Ruan, S. A. Vahid, H. Ebendorff-Heidepriem, and T. M. Monro, “Suspended core fibers for the transmission of cylindrical vector modes,” J. Lit. Technol. 34(24), 5620–5626 (2016).
[Crossref]

J. Micromech. Microeng. (1)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16(5), 1080–1085 (2006).
[Crossref]

J. Neurochem. (1)

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013).
[Crossref] [PubMed]

J. Phys. D. (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D. 33(15), 1817–1822 (2000).
[Crossref]

Laser Photonics Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Nanophotonics (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

Nat. Methods (1)

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

New J. Phys. (1)

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8(5), 75 (2006).
[Crossref]

Opt. Express (9)

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[Crossref] [PubMed]

S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express 19(5), 4242–4254 (2011).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[Crossref] [PubMed]

C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
[Crossref] [PubMed]

S. Piehler, X. Délen, M. Rumpel, J. Didierjean, N. Aubry, T. Graf, F. Balembois, P. Georges, and M. A. Ahmed, “Amplification of cylindrically polarized laser beams in single crystal fiber amplifiers,” Opt. Express 21(9), 11376–11381 (2013).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (2)

Phys. Rev. Lett. (2)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4(1), 3627 (2015).
[Crossref] [PubMed]

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4(1), 3853 (2015).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (3)

L. Yan, E. Auksorius, N. Bozinovic, G. J. Tearney, and S. Ramachandran, “Optical fiber vortices for STED nanoscopy,” in CLEO: 2013 (Optical Society of America, San Jose, California, 2013), p. CTu3N.2.

H. Ebendorff-Heidepriem, Y. Li, and T. Monro, “Reduced loss in extruded soft glass microstructured fibre,” in COIN-ACOFT 2007 - Joint International Conference on the Optical Internet and the 32nd Australian Conference on Optical Fibre Technology(2007), p. 1–3.

E. Collett, Polarized light: fundamentals and applications (Marcel Dekker, Inc., 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross-sectional images and definitions of the cross-sectional structure features of (a) extruded preform taken by digital camera; (b) drawn cane taken by optical microscope; (c)-(e) drawn SCF taken by SEM.
Fig. 2
Fig. 2 Measured loss spectrum for the fabricated fiber.
Fig. 3
Fig. 3 The first higher order mode field distributions at 808 nm wavelength and 1.6 glass refractive index for (a) air-clad fiber with circular core of 2.5 μm diameter, (b) ideal six-strut fiber with symmetric hexagonal core of 2.5 μm effective diameter, (c) real six-strut fiber with asymmetric hexagonal core of 2.5 μm effective diameter.
Fig. 4
Fig. 4 Schematics of the experimental setup for CV modes generation in the six-strut SCF using input doughnut beam generated through an S-wave plate together with a linear polarizer.
Fig. 5
Fig. 5 (a)(1) Azimuthally polarized TE01 mode; (b) (1) radially polarized TM01 mode and (c)(1) hybrid polarized HE21 mode fields at λ of 808 nm obtained by imaging the near field at the end face of the fiber (fabricated six-strut SCF with effective core diameter of 2.5 μm) onto a CCD camera together with the linear polarizer in four orientations as indicated by the arrows in columns (2)-(5) and (6). Vector plots of the electric field orientations that were calculated from the measured horizontally and vertically polarized light intensity data. The insets in (a)(1), (b)(1) and(c)(1) are the calculated field distributions of the azimuthally polarized TE01, radially polarized TM01 and hybrid HE21 modes of the fabricated SCF.
Fig. 6
Fig. 6 TE01 mode (a) field distribution; (b) profile along horizontal dashed line and (c) profile along vertical dashed line.
Fig. 7
Fig. 7 Field intensity contour of (a) measured azimuthally polarized TE01 mode; (b) calculated azimuthally polarized TE01 mode using measured horizontally and vertically polarized distribution data; (c) measured radially polarized TM01 mode; (d) calculated radially polarized TM01 mode using measured horizontally and vertically polarized distribution data.

Tables (1)

Tables Icon

Table 1 Refractive index differences between the neighboring first higher order modes for circular core air-clad fiber, symmetric and asymmetric hexagonal core six-strut fibers.

Metrics