Abstract

The detailed understandings of temperature profiles and flow-flame interaction in unsteady premixed swirling flames are crucial for the development of low emission turbine engines. Here, a phase-locked tomographic reconstruction technique measuring the large absorption cross section of CO2 at its mid-infrared fundamental band around 4.2 μm is used to acquire the flame temperature and in situ CO2 volume fraction distribution in a turbulent premixed swirling flame under different levels of external acoustic forcing amplitude. The temporally resolved temperature field variation reveals large temperature fluctuation in unsteady premixed swirling flames produced near the nozzle exit due to vortex-driven mixing of surrounding cold gas. The temperature fluctuation quickly dissipates when moving downstream of the flame with the flow velocity of the burnt gas. The accurate high temporal resolution thermodynamic measurements of the phase-locked tomographic thermometry technique reported in this work can be generally applied to periodic reacting flows.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-repetition-rate burst-mode-laser diagnostics of an unconfined lean premixed swirling flame under external acoustic excitation

Sirui Wang, Xunchen Liu, Guoqing Wang, Liangliang Xu, Lei Li, Yingzheng Liu, Zhen Huang, and Fei Qi
Appl. Opt. 58(10) C68-C78 (2019)

Simultaneous high-speed SO2 PLIF imaging and stereo-PIV measurements in premixed swirling flame at 20  kHz

Xiaoyuan Yang, Chen Fu, Guoqing Wang, Zhongqiu Li, Tianyu Li, and Yi Gao
Appl. Opt. 58(10) C121-C129 (2019)

Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and Th. Sattelmayer
Appl. Opt. 32(30) 6167-6172 (1993)

References

  • View by:
  • |
  • |
  • |

  1. T. C. Lieuwen and V. Yang, Combustion Instabilities In Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, 2006).
    [Crossref]
  2. I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
    [Crossref]
  3. S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck, “Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech. 46, 147–173 (2014).
    [Crossref]
  4. Y. Huang and V. Yang, “Dynamics and stability of lean-premixed swirl-stabilized combustion,” Prog. Energy Combust. Sci. 35, 293–364 (2009).
    [Crossref]
  5. T. Poinsot, “Prediction and control of combustion instabilities in real engines,” Proc. Combust. Inst. 36, 1–28 (2017).
    [Crossref]
  6. A. V. Singh, A. Eshaghi, M. Yu, A. K. Gupta, and K. M. Bryden, “Simultaneous time-resolved fluctuating temperature and acoustic pressure field measurements in a premixed swirl flame,” Appl. Energy 115, 116–127 (2014).
    [Crossref]
  7. X. Zhu, R. Li, D. Li, P. Zhang, and R. Qian, “Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection,” Int. J. Heat Mass Transf. 89, 964–976 (2015).
    [Crossref]
  8. A. M. Elbaz and W. L. Roberts, “Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions,” Fuel 169, 120–134 (2016).
    [Crossref]
  9. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
    [Crossref]
  10. B. R. Halls, P. S. Hsu, S. Roy, T. R. Meyer, and J. R. Gord, “Two-color volumetric laser-induced fluorescence for 3d OH and temperature fields in turbulent reacting flows,” Opt. Lett. 43, 2961–2964 (2018).
    [Crossref] [PubMed]
  11. A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2d-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” The J. Chem. Phys. 138, 221101 (2013).
    [Crossref] [PubMed]
  12. J. D. Miller, M. N. Slipchenko, J. G. Mance, S. Roy, and J. R. Gord, “1-kHz two-dimensional coherent anti-Stokes Raman scattering (2d-CARS) for gas-phase thermometry,” Opt. Express 24, 24971–24979 (2016).
    [Crossref] [PubMed]
  13. W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36, 4182–4184 (2011).
    [Crossref] [PubMed]
  14. L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2d imaging of temperature and H2o concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).
    [Crossref] [PubMed]
  15. X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H_2o absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29 (2011).
    [Crossref] [PubMed]
  16. X. An, M. S. Brittelle, P. T. Lauzier, J. R. Gord, S. Roy, G.-H. Chen, and S. T. Sanders, “Demonstration of temperature imaging by H2O absorption spectroscopy using compressed sensing tomography,” Appl. Opt. 54, 9190–9199 (2015).
    [Crossref] [PubMed]
  17. C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
    [Crossref]
  18. C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
    [Crossref]
  19. C. Liu and L. Xu, “Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review,” Appl. Spectrosc. Rev. pp. 1–44 (2018).
    [Crossref]
  20. R. N. Halthore and F. C. Gouldin, “Laser scattering measurements for gas densities in a swirling flow combustor,” AIAA J. 24, 1129–1136 (1986).
    [Crossref]
  21. V. Tangirala and J. F. Driscoll, “Temperatures within Non-premixed Flames: Effects of Rapid Mixing Due to Swirl,” Combust. Sci. Technol. 60, 143–162 (1988).
    [Crossref]
  22. A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, “Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame,” Proc. Combust. Inst. 34, 3629–3636 (2013).
    [Crossref]
  23. S. Kampmann, T. Seeger, and A. Leipertz, “Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical swirl combustor,” Appl. Opt. 34, 2780–2786 (1995).
    [Crossref] [PubMed]
  24. K. P. Geigle, M. Köhler, W. O’Loughlin, and W. Meier, “Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations,” Proc. Combust. Inst. 35, 3373–3380 (2015).
    [Crossref]
  25. L. M. L. Cantu, J. Grohmann, W. Meier, and M. Aigner, “Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy,” Exp. Therm. Fluid Sci. 95, 52–59 (2018).
    [Crossref]
  26. O. Keck, W. Meier, W. Stricker, and M. Aigner, “Establishment of a Confined Swirling Natural Gas/Air Flame as a Standard Flame: Temperature and Species Distributions from Laser Raman Measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
    [Crossref]
  27. P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
    [Crossref]
  28. C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
    [Crossref]
  29. B. D. Bellows, M. K. Bobba, J. M. Seitzman, and T. Lieuwen, “Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor,” J. Eng. for Gas Turbines Power 129, 954 (2007).
    [Crossref]
  30. B. D. Bellows, M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen, “Flame transfer function saturation mechanisms in a swirl-stabilized combustor,” Proc. Combust. Inst. 31, 3181–3188 (2007).
    [Crossref]
  31. P. Palies, D. Durox, T. Schuller, and S. Candel, “The combined dynamics of swirler and turbulent premixed swirling flames,” Combust. Flame 157, 1698–1717 (2010).
    [Crossref]
  32. D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
    [Crossref]
  33. X. Liu, Y. Xu, Z. Su, W. S. Tam, and I. Leonov, “Jet-cooled infrared spectra of molecules and complexes with a cw mode-hop-free external-cavity QCL and a distributed-feedback QCL,” Appl. Phys. B 102, 629–639 (2010).
    [Crossref]
  34. R. M. Spearrin, W. Ren, J. B. Jeffries, and R. K. Hanson, “Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases,” Appl. Phys. B 116, 855–865 (2014).
    [Crossref]
  35. G. Wang, B. Mei, X. Liu, G. Zhang, Y. Li, and F. Qi, “Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy,” Proc. Combust. Inst. (2018).
  36. J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2μm,” Combust. Flame 178, 158–167 (2017).
    [Crossref]
  37. P. Nau, P. Kutne, G. Eckel, W. Meier, C. Hotz, and S. Fleck, “Infrared absorption spectrometer for the determination of temperature and species profiles in an entrained flow gasifier,” Appl. Opt. 56, 2982–2990 (2017).
    [Crossref] [PubMed]
  38. L. H. Ma, L. Y. Lau, and W. Ren, “Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy,” Appl. Phys. B 123, 83 (2017).
    [Crossref]
  39. C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2d thermochemistry measurements in premixed jet flames,” Appl. Phys. B 124, 123 (2018).
    [Crossref]
  40. C. Wei, D. I. Pineda, C. S. Goldenstein, and R. M. Spearrin, “Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared,” Opt. Express 26, 20944–20951 (2018).
    [Crossref] [PubMed]
  41. R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786–6795 (2005).
    [Crossref] [PubMed]
  42. X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm,” Appl. Phys. B 124, 61 (2018).
    [Crossref]
  43. H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption,” AIAA J. 45, 390–398 (2007).
    [Crossref]
  44. P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
    [Crossref]
  45. D. R. Snelling, K. A. Thomson, G. J. Smallwood, and O. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
    [Crossref]
  46. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146 (1992).
    [Crossref] [PubMed]
  47. K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, “Deconvolution of axisymmetric flame properties using Tikhonov regularization,” Appl. Opt. 45, 4638–4646 (2006).
    [Crossref] [PubMed]
  48. S. Johnson, “Faddeeva W function implementation,”.
  49. H. Wang, C. Law, and T. Lieuwen, “Linear response of stretch-affected premixed flames to flow oscillations,” Combust. Flame 156, 889–895 (2009).
    [Crossref]
  50. P. Preetham, S. K. Thumuluru, T. Lieuwen, and H. Santosh, “Linear Response of Laminar Premixed Flames to Flow Oscillations: Unsteady Stretch Effects,” J. Propuls. Power 26, 524–532 (2010).
    [Crossref]

2018 (5)

B. R. Halls, P. S. Hsu, S. Roy, T. R. Meyer, and J. R. Gord, “Two-color volumetric laser-induced fluorescence for 3d OH and temperature fields in turbulent reacting flows,” Opt. Lett. 43, 2961–2964 (2018).
[Crossref] [PubMed]

L. M. L. Cantu, J. Grohmann, W. Meier, and M. Aigner, “Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy,” Exp. Therm. Fluid Sci. 95, 52–59 (2018).
[Crossref]

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2d thermochemistry measurements in premixed jet flames,” Appl. Phys. B 124, 123 (2018).
[Crossref]

C. Wei, D. I. Pineda, C. S. Goldenstein, and R. M. Spearrin, “Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared,” Opt. Express 26, 20944–20951 (2018).
[Crossref] [PubMed]

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm,” Appl. Phys. B 124, 61 (2018).
[Crossref]

2017 (5)

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2μm,” Combust. Flame 178, 158–167 (2017).
[Crossref]

P. Nau, P. Kutne, G. Eckel, W. Meier, C. Hotz, and S. Fleck, “Infrared absorption spectrometer for the determination of temperature and species profiles in an entrained flow gasifier,” Appl. Opt. 56, 2982–2990 (2017).
[Crossref] [PubMed]

L. H. Ma, L. Y. Lau, and W. Ren, “Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy,” Appl. Phys. B 123, 83 (2017).
[Crossref]

T. Poinsot, “Prediction and control of combustion instabilities in real engines,” Proc. Combust. Inst. 36, 1–28 (2017).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

2016 (2)

J. D. Miller, M. N. Slipchenko, J. G. Mance, S. Roy, and J. R. Gord, “1-kHz two-dimensional coherent anti-Stokes Raman scattering (2d-CARS) for gas-phase thermometry,” Opt. Express 24, 24971–24979 (2016).
[Crossref] [PubMed]

A. M. Elbaz and W. L. Roberts, “Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions,” Fuel 169, 120–134 (2016).
[Crossref]

2015 (5)

X. An, M. S. Brittelle, P. T. Lauzier, J. R. Gord, S. Roy, G.-H. Chen, and S. T. Sanders, “Demonstration of temperature imaging by H2O absorption spectroscopy using compressed sensing tomography,” Appl. Opt. 54, 9190–9199 (2015).
[Crossref] [PubMed]

C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
[Crossref]

C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
[Crossref]

K. P. Geigle, M. Köhler, W. O’Loughlin, and W. Meier, “Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations,” Proc. Combust. Inst. 35, 3373–3380 (2015).
[Crossref]

X. Zhu, R. Li, D. Li, P. Zhang, and R. Qian, “Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection,” Int. J. Heat Mass Transf. 89, 964–976 (2015).
[Crossref]

2014 (4)

R. M. Spearrin, W. Ren, J. B. Jeffries, and R. K. Hanson, “Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases,” Appl. Phys. B 116, 855–865 (2014).
[Crossref]

A. V. Singh, A. Eshaghi, M. Yu, A. K. Gupta, and K. M. Bryden, “Simultaneous time-resolved fluctuating temperature and acoustic pressure field measurements in a premixed swirl flame,” Appl. Energy 115, 116–127 (2014).
[Crossref]

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck, “Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech. 46, 147–173 (2014).
[Crossref]

2013 (4)

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2d-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” The J. Chem. Phys. 138, 221101 (2013).
[Crossref] [PubMed]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2d imaging of temperature and H2o concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).
[Crossref] [PubMed]

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, “Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame,” Proc. Combust. Inst. 34, 3629–3636 (2013).
[Crossref]

2011 (2)

2010 (3)

X. Liu, Y. Xu, Z. Su, W. S. Tam, and I. Leonov, “Jet-cooled infrared spectra of molecules and complexes with a cw mode-hop-free external-cavity QCL and a distributed-feedback QCL,” Appl. Phys. B 102, 629–639 (2010).
[Crossref]

P. Palies, D. Durox, T. Schuller, and S. Candel, “The combined dynamics of swirler and turbulent premixed swirling flames,” Combust. Flame 157, 1698–1717 (2010).
[Crossref]

P. Preetham, S. K. Thumuluru, T. Lieuwen, and H. Santosh, “Linear Response of Laminar Premixed Flames to Flow Oscillations: Unsteady Stretch Effects,” J. Propuls. Power 26, 524–532 (2010).
[Crossref]

2009 (2)

H. Wang, C. Law, and T. Lieuwen, “Linear response of stretch-affected premixed flames to flow oscillations,” Combust. Flame 156, 889–895 (2009).
[Crossref]

Y. Huang and V. Yang, “Dynamics and stability of lean-premixed swirl-stabilized combustion,” Prog. Energy Combust. Sci. 35, 293–364 (2009).
[Crossref]

2007 (3)

B. D. Bellows, M. K. Bobba, J. M. Seitzman, and T. Lieuwen, “Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor,” J. Eng. for Gas Turbines Power 129, 954 (2007).
[Crossref]

B. D. Bellows, M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen, “Flame transfer function saturation mechanisms in a swirl-stabilized combustor,” Proc. Combust. Inst. 31, 3181–3188 (2007).
[Crossref]

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption,” AIAA J. 45, 390–398 (2007).
[Crossref]

2006 (2)

K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, “Deconvolution of axisymmetric flame properties using Tikhonov regularization,” Appl. Opt. 45, 4638–4646 (2006).
[Crossref] [PubMed]

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[Crossref]

2005 (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[Crossref]

R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786–6795 (2005).
[Crossref] [PubMed]

2002 (1)

O. Keck, W. Meier, W. Stricker, and M. Aigner, “Establishment of a Confined Swirling Natural Gas/Air Flame as a Standard Flame: Temperature and Species Distributions from Laser Raman Measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[Crossref]

1999 (1)

1995 (1)

1992 (1)

1991 (1)

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[Crossref]

1988 (1)

V. Tangirala and J. F. Driscoll, “Temperatures within Non-premixed Flames: Effects of Rapid Mixing Due to Swirl,” Combust. Sci. Technol. 60, 143–162 (1988).
[Crossref]

1986 (1)

R. N. Halthore and F. C. Gouldin, “Laser scattering measurements for gas densities in a swirling flow combustor,” AIAA J. 24, 1129–1136 (1986).
[Crossref]

Aigner, M.

L. M. L. Cantu, J. Grohmann, W. Meier, and M. Aigner, “Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy,” Exp. Therm. Fluid Sci. 95, 52–59 (2018).
[Crossref]

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[Crossref]

O. Keck, W. Meier, W. Stricker, and M. Aigner, “Establishment of a Confined Swirling Natural Gas/Air Flame as a Standard Flame: Temperature and Species Distributions from Laser Raman Measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[Crossref]

An, X.

Arndt, C. M.

C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
[Crossref]

Bai, X.-S.

A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, “Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame,” Proc. Combust. Inst. 34, 3629–3636 (2013).
[Crossref]

Bellows, B. D.

B. D. Bellows, M. K. Bobba, J. M. Seitzman, and T. Lieuwen, “Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor,” J. Eng. for Gas Turbines Power 129, 954 (2007).
[Crossref]

B. D. Bellows, M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen, “Flame transfer function saturation mechanisms in a swirl-stabilized combustor,” Proc. Combust. Inst. 31, 3181–3188 (2007).
[Crossref]

Bengtsson, P.-E.

A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, “Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame,” Proc. Combust. Inst. 34, 3629–3636 (2013).
[Crossref]

Best, P. E.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[Crossref]

Bobba, M. K.

B. D. Bellows, M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen, “Flame transfer function saturation mechanisms in a swirl-stabilized combustor,” Proc. Combust. Inst. 31, 3181–3188 (2007).
[Crossref]

B. D. Bellows, M. K. Bobba, J. M. Seitzman, and T. Lieuwen, “Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor,” J. Eng. for Gas Turbines Power 129, 954 (2007).
[Crossref]

Bohlin, A.

A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, “Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame,” Proc. Combust. Inst. 34, 3629–3636 (2013).
[Crossref]

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2d-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” The J. Chem. Phys. 138, 221101 (2013).
[Crossref] [PubMed]

Bourgouin, J.-F.

S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck, “Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech. 46, 147–173 (2014).
[Crossref]

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

Brittelle, M. S.

Bryden, K. M.

A. V. Singh, A. Eshaghi, M. Yu, A. K. Gupta, and K. M. Bryden, “Simultaneous time-resolved fluctuating temperature and acoustic pressure field measurements in a premixed swirl flame,” Appl. Energy 115, 116–127 (2014).
[Crossref]

Cai, W.

Candel, S.

S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck, “Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech. 46, 147–173 (2014).
[Crossref]

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

P. Palies, D. Durox, T. Schuller, and S. Candel, “The combined dynamics of swirler and turbulent premixed swirling flames,” Combust. Flame 157, 1698–1717 (2010).
[Crossref]

Cantu, L. M. L.

L. M. L. Cantu, J. Grohmann, W. Meier, and M. Aigner, “Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy,” Exp. Therm. Fluid Sci. 95, 52–59 (2018).
[Crossref]

Cao, Z.

C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
[Crossref]

Carangelo, R. M.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[Crossref]

Carlsson, H.

A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, “Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame,” Proc. Combust. Inst. 34, 3629–3636 (2013).
[Crossref]

Caswell, A. W.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2d imaging of temperature and H2o concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).
[Crossref] [PubMed]

Chen, G.-H.

Chien, P. L.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[Crossref]

Chterev, I.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Danchak, M.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[Crossref]

Dasch, C. J.

Daun, K. J.

Dem, C.

C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
[Crossref]

Driscoll, J. F.

V. Tangirala and J. F. Driscoll, “Temperatures within Non-premixed Flames: Effects of Rapid Mixing Due to Swirl,” Combust. Sci. Technol. 60, 143–162 (1988).
[Crossref]

Duan, X. R.

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[Crossref]

Durox, D.

S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck, “Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech. 46, 147–173 (2014).
[Crossref]

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

P. Palies, D. Durox, T. Schuller, and S. Candel, “The combined dynamics of swirler and turbulent premixed swirling flames,” Combust. Flame 157, 1698–1717 (2010).
[Crossref]

Eckel, G.

Egolfopoulos, F. N.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2d thermochemistry measurements in premixed jet flames,” Appl. Phys. B 124, 123 (2018).
[Crossref]

Elbaz, A. M.

A. M. Elbaz and W. L. Roberts, “Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions,” Fuel 169, 120–134 (2016).
[Crossref]

Eshaghi, A.

A. V. Singh, A. Eshaghi, M. Yu, A. K. Gupta, and K. M. Bryden, “Simultaneous time-resolved fluctuating temperature and acoustic pressure field measurements in a premixed swirl flame,” Appl. Energy 115, 116–127 (2014).
[Crossref]

Fleck, S.

Foley, C. W.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Forte, A.

B. D. Bellows, M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen, “Flame transfer function saturation mechanisms in a swirl-stabilized combustor,” Proc. Combust. Inst. 31, 3181–3188 (2007).
[Crossref]

Foti, D.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Geigle, K. P.

K. P. Geigle, M. Köhler, W. O’Loughlin, and W. Meier, “Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations,” Proc. Combust. Inst. 35, 3373–3380 (2015).
[Crossref]

Girard, J. J.

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2μm,” Combust. Flame 178, 158–167 (2017).
[Crossref]

Goldenstein, C. S.

C. Wei, D. I. Pineda, C. S. Goldenstein, and R. M. Spearrin, “Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared,” Opt. Express 26, 20944–20951 (2018).
[Crossref] [PubMed]

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2μm,” Combust. Flame 178, 158–167 (2017).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

Gord, J. R.

Gouldin, F. C.

R. N. Halthore and F. C. Gouldin, “Laser scattering measurements for gas densities in a swirling flow combustor,” AIAA J. 24, 1129–1136 (1986).
[Crossref]

Grohmann, J.

L. M. L. Cantu, J. Grohmann, W. Meier, and M. Aigner, “Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy,” Exp. Therm. Fluid Sci. 95, 52–59 (2018).
[Crossref]

Gülder, O. L.

Gupta, A. K.

A. V. Singh, A. Eshaghi, M. Yu, A. K. Gupta, and K. M. Bryden, “Simultaneous time-resolved fluctuating temperature and acoustic pressure field measurements in a premixed swirl flame,” Appl. Energy 115, 116–127 (2014).
[Crossref]

Halls, B. R.

Halthore, R. N.

R. N. Halthore and F. C. Gouldin, “Laser scattering measurements for gas densities in a swirling flow combustor,” AIAA J. 24, 1129–1136 (1986).
[Crossref]

Hanson, R. K.

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2μm,” Combust. Flame 178, 158–167 (2017).
[Crossref]

R. M. Spearrin, W. Ren, J. B. Jeffries, and R. K. Hanson, “Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases,” Appl. Phys. B 116, 855–865 (2014).
[Crossref]

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption,” AIAA J. 45, 390–398 (2007).
[Crossref]

Hotz, C.

Hsu, P. S.

Huang, Y.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm,” Appl. Phys. B 124, 61 (2018).
[Crossref]

Y. Huang and V. Yang, “Dynamics and stability of lean-premixed swirl-stabilized combustion,” Prog. Energy Combust. Sci. 35, 293–364 (2009).
[Crossref]

Ilovici, I.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[Crossref]

Jeffries, J. B.

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

R. M. Spearrin, W. Ren, J. B. Jeffries, and R. K. Hanson, “Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases,” Appl. Phys. B 116, 855–865 (2014).
[Crossref]

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption,” AIAA J. 45, 390–398 (2007).
[Crossref]

Jiang, N.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Johnson, S.

S. Johnson, “Faddeeva W function implementation,”.

Kampmann, S.

Keck, O.

O. Keck, W. Meier, W. Stricker, and M. Aigner, “Establishment of a Confined Swirling Natural Gas/Air Flame as a Standard Flame: Temperature and Species Distributions from Laser Raman Measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[Crossref]

Kliewer, C. J.

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2d-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” The J. Chem. Phys. 138, 221101 (2013).
[Crossref] [PubMed]

Köhler, M.

K. P. Geigle, M. Köhler, W. O’Loughlin, and W. Meier, “Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations,” Proc. Combust. Inst. 35, 3373–3380 (2015).
[Crossref]

Kostka, S.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Kraetschmer, T.

Kulatilaka, W. D.

Kutne, P.

Lau, L. Y.

L. H. Ma, L. Y. Lau, and W. Ren, “Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy,” Appl. Phys. B 123, 83 (2017).
[Crossref]

Lauzier, P. T.

Law, C.

H. Wang, C. Law, and T. Lieuwen, “Linear response of stretch-affected premixed flames to flow oscillations,” Combust. Flame 156, 889–895 (2009).
[Crossref]

Leipertz, A.

Leonov, I.

X. Liu, Y. Xu, Z. Su, W. S. Tam, and I. Leonov, “Jet-cooled infrared spectra of molecules and complexes with a cw mode-hop-free external-cavity QCL and a distributed-feedback QCL,” Appl. Phys. B 102, 629–639 (2010).
[Crossref]

Li, D.

X. Zhu, R. Li, D. Li, P. Zhang, and R. Qian, “Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection,” Int. J. Heat Mass Transf. 89, 964–976 (2015).
[Crossref]

Li, F.

C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
[Crossref]

Li, H.

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption,” AIAA J. 45, 390–398 (2007).
[Crossref]

Li, R.

X. Zhu, R. Li, D. Li, P. Zhang, and R. Qian, “Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection,” Int. J. Heat Mass Transf. 89, 964–976 (2015).
[Crossref]

Li, X.

Li, Y.

G. Wang, B. Mei, X. Liu, G. Zhang, Y. Li, and F. Qi, “Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy,” Proc. Combust. Inst. (2018).

Lieuwen, T.

P. Preetham, S. K. Thumuluru, T. Lieuwen, and H. Santosh, “Linear Response of Laminar Premixed Flames to Flow Oscillations: Unsteady Stretch Effects,” J. Propuls. Power 26, 524–532 (2010).
[Crossref]

H. Wang, C. Law, and T. Lieuwen, “Linear response of stretch-affected premixed flames to flow oscillations,” Combust. Flame 156, 889–895 (2009).
[Crossref]

B. D. Bellows, M. K. Bobba, J. M. Seitzman, and T. Lieuwen, “Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor,” J. Eng. for Gas Turbines Power 129, 954 (2007).
[Crossref]

B. D. Bellows, M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen, “Flame transfer function saturation mechanisms in a swirl-stabilized combustor,” Proc. Combust. Inst. 31, 3181–3188 (2007).
[Crossref]

Lieuwen, T. C.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

T. C. Lieuwen and V. Yang, Combustion Instabilities In Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, 2006).
[Crossref]

Liu, C.

C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
[Crossref]

C. Liu and L. Xu, “Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review,” Appl. Spectrosc. Rev. pp. 1–44 (2018).
[Crossref]

Liu, F.

Liu, X.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm,” Appl. Phys. B 124, 61 (2018).
[Crossref]

X. Liu, Y. Xu, Z. Su, W. S. Tam, and I. Leonov, “Jet-cooled infrared spectra of molecules and complexes with a cw mode-hop-free external-cavity QCL and a distributed-feedback QCL,” Appl. Phys. B 102, 629–639 (2010).
[Crossref]

G. Wang, B. Mei, X. Liu, G. Zhang, Y. Li, and F. Qi, “Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy,” Proc. Combust. Inst. (2018).

Lynch, A.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Ma, L.

Ma, L. H.

L. H. Ma, L. Y. Lau, and W. Ren, “Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy,” Appl. Phys. B 123, 83 (2017).
[Crossref]

Mance, J. G.

McCann, H.

C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
[Crossref]

Mei, B.

G. Wang, B. Mei, X. Liu, G. Zhang, Y. Li, and F. Qi, “Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy,” Proc. Combust. Inst. (2018).

Meier, W.

L. M. L. Cantu, J. Grohmann, W. Meier, and M. Aigner, “Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy,” Exp. Therm. Fluid Sci. 95, 52–59 (2018).
[Crossref]

P. Nau, P. Kutne, G. Eckel, W. Meier, C. Hotz, and S. Fleck, “Infrared absorption spectrometer for the determination of temperature and species profiles in an entrained flow gasifier,” Appl. Opt. 56, 2982–2990 (2017).
[Crossref] [PubMed]

C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
[Crossref]

K. P. Geigle, M. Köhler, W. O’Loughlin, and W. Meier, “Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations,” Proc. Combust. Inst. 35, 3373–3380 (2015).
[Crossref]

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[Crossref]

O. Keck, W. Meier, W. Stricker, and M. Aigner, “Establishment of a Confined Swirling Natural Gas/Air Flame as a Standard Flame: Temperature and Species Distributions from Laser Raman Measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[Crossref]

Menon, S.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Meyer, T. R.

Miller, J. D.

Moeck, J. P.

S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck, “Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech. 46, 147–173 (2014).
[Crossref]

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

Morenton, P.

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

Nau, P.

Noble, D. R.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Nordström, E.

A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, “Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame,” Proc. Combust. Inst. 34, 3629–3636 (2013).
[Crossref]

O’Loughlin, W.

K. P. Geigle, M. Köhler, W. O’Loughlin, and W. Meier, “Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations,” Proc. Combust. Inst. 35, 3373–3380 (2015).
[Crossref]

Palies, P.

P. Palies, D. Durox, T. Schuller, and S. Candel, “The combined dynamics of swirler and turbulent premixed swirling flames,” Combust. Flame 157, 1698–1717 (2010).
[Crossref]

Paxton, L.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2d thermochemistry measurements in premixed jet flames,” Appl. Phys. B 124, 123 (2018).
[Crossref]

Pineda, D. I.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2d thermochemistry measurements in premixed jet flames,” Appl. Phys. B 124, 123 (2018).
[Crossref]

C. Wei, D. I. Pineda, C. S. Goldenstein, and R. M. Spearrin, “Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared,” Opt. Express 26, 20944–20951 (2018).
[Crossref] [PubMed]

Plemmons, D. H.

Poinsot, T.

T. Poinsot, “Prediction and control of combustion instabilities in real engines,” Proc. Combust. Inst. 36, 1–28 (2017).
[Crossref]

Preetham, P.

P. Preetham, S. K. Thumuluru, T. Lieuwen, and H. Santosh, “Linear Response of Laminar Premixed Flames to Flow Oscillations: Unsteady Stretch Effects,” J. Propuls. Power 26, 524–532 (2010).
[Crossref]

Qi, F.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm,” Appl. Phys. B 124, 61 (2018).
[Crossref]

G. Wang, B. Mei, X. Liu, G. Zhang, Y. Li, and F. Qi, “Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy,” Proc. Combust. Inst. (2018).

Qian, R.

X. Zhu, R. Li, D. Li, P. Zhang, and R. Qian, “Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection,” Int. J. Heat Mass Transf. 89, 964–976 (2015).
[Crossref]

Ren, W.

L. H. Ma, L. Y. Lau, and W. Ren, “Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy,” Appl. Phys. B 123, 83 (2017).
[Crossref]

R. M. Spearrin, W. Ren, J. B. Jeffries, and R. K. Hanson, “Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases,” Appl. Phys. B 116, 855–865 (2014).
[Crossref]

Roberts, W. L.

A. M. Elbaz and W. L. Roberts, “Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions,” Fuel 169, 120–134 (2016).
[Crossref]

Roy, S.

Sanders, S. T.

Santosh, H.

P. Preetham, S. K. Thumuluru, T. Lieuwen, and H. Santosh, “Linear Response of Laminar Premixed Flames to Flow Oscillations: Unsteady Stretch Effects,” J. Propuls. Power 26, 524–532 (2010).
[Crossref]

Schuller, T.

S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck, “Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech. 46, 147–173 (2014).
[Crossref]

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

P. Palies, D. Durox, T. Schuller, and S. Candel, “The combined dynamics of swirler and turbulent premixed swirling flames,” Combust. Flame 157, 1698–1717 (2010).
[Crossref]

Schulz, C.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[Crossref]

Seeger, T.

Seitzman, J. M.

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

B. D. Bellows, M. K. Bobba, J. M. Seitzman, and T. Lieuwen, “Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor,” J. Eng. for Gas Turbines Power 129, 954 (2007).
[Crossref]

B. D. Bellows, M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen, “Flame transfer function saturation mechanisms in a swirl-stabilized combustor,” Proc. Combust. Inst. 31, 3181–3188 (2007).
[Crossref]

Severin, M.

C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
[Crossref]

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[Crossref]

Singh, A. V.

A. V. Singh, A. Eshaghi, M. Yu, A. K. Gupta, and K. M. Bryden, “Simultaneous time-resolved fluctuating temperature and acoustic pressure field measurements in a premixed swirl flame,” Appl. Energy 115, 116–127 (2014).
[Crossref]

Slipchenko, M. N.

Smallwood, G. J.

Snelling, D. R.

Solomon, P. R.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[Crossref]

Spearrin, R. M.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2d thermochemistry measurements in premixed jet flames,” Appl. Phys. B 124, 123 (2018).
[Crossref]

C. Wei, D. I. Pineda, C. S. Goldenstein, and R. M. Spearrin, “Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared,” Opt. Express 26, 20944–20951 (2018).
[Crossref] [PubMed]

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2μm,” Combust. Flame 178, 158–167 (2017).
[Crossref]

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

R. M. Spearrin, W. Ren, J. B. Jeffries, and R. K. Hanson, “Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases,” Appl. Phys. B 116, 855–865 (2014).
[Crossref]

Stauffer, H. U.

Steinberg, A. M.

C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
[Crossref]

Stöhr, M.

C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
[Crossref]

Stricker, W.

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[Crossref]

O. Keck, W. Meier, W. Stricker, and M. Aigner, “Establishment of a Confined Swirling Natural Gas/Air Flame as a Standard Flame: Temperature and Species Distributions from Laser Raman Measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[Crossref]

Su, Z.

X. Liu, Y. Xu, Z. Su, W. S. Tam, and I. Leonov, “Jet-cooled infrared spectra of molecules and complexes with a cw mode-hop-free external-cavity QCL and a distributed-feedback QCL,” Appl. Phys. B 102, 629–639 (2010).
[Crossref]

Takami, K.

Tam, W. S.

X. Liu, Y. Xu, Z. Su, W. S. Tam, and I. Leonov, “Jet-cooled infrared spectra of molecules and complexes with a cw mode-hop-free external-cavity QCL and a distributed-feedback QCL,” Appl. Phys. B 102, 629–639 (2010).
[Crossref]

Tangirala, V.

V. Tangirala and J. F. Driscoll, “Temperatures within Non-premixed Flames: Effects of Rapid Mixing Due to Swirl,” Combust. Sci. Technol. 60, 143–162 (1988).
[Crossref]

Thomson, K. A.

Thumuluru, S. K.

P. Preetham, S. K. Thumuluru, T. Lieuwen, and H. Santosh, “Linear Response of Laminar Premixed Flames to Flow Oscillations: Unsteady Stretch Effects,” J. Propuls. Power 26, 524–532 (2010).
[Crossref]

Tsekenis, S. A.

C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
[Crossref]

Varghese, P. L.

Viallon, M.

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

Villarreal, R.

Wang, G.

G. Wang, B. Mei, X. Liu, G. Zhang, Y. Li, and F. Qi, “Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy,” Proc. Combust. Inst. (2018).

Wang, H.

H. Wang, C. Law, and T. Lieuwen, “Linear response of stretch-affected premixed flames to flow oscillations,” Combust. Flame 156, 889–895 (2009).
[Crossref]

Wang, Y.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm,” Appl. Phys. B 124, 61 (2018).
[Crossref]

Wei, C.

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2d thermochemistry measurements in premixed jet flames,” Appl. Phys. B 124, 123 (2018).
[Crossref]

C. Wei, D. I. Pineda, C. S. Goldenstein, and R. M. Spearrin, “Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared,” Opt. Express 26, 20944–20951 (2018).
[Crossref] [PubMed]

Weigand, P.

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[Crossref]

Xu, L.

C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
[Crossref]

C. Liu and L. Xu, “Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review,” Appl. Spectrosc. Rev. pp. 1–44 (2018).
[Crossref]

Xu, Y.

X. Liu, Y. Xu, Z. Su, W. S. Tam, and I. Leonov, “Jet-cooled infrared spectra of molecules and complexes with a cw mode-hop-free external-cavity QCL and a distributed-feedback QCL,” Appl. Phys. B 102, 629–639 (2010).
[Crossref]

Yang, V.

Y. Huang and V. Yang, “Dynamics and stability of lean-premixed swirl-stabilized combustion,” Prog. Energy Combust. Sci. 35, 293–364 (2009).
[Crossref]

T. C. Lieuwen and V. Yang, Combustion Instabilities In Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, 2006).
[Crossref]

Yu, M.

A. V. Singh, A. Eshaghi, M. Yu, A. K. Gupta, and K. M. Bryden, “Simultaneous time-resolved fluctuating temperature and acoustic pressure field measurements in a premixed swirl flame,” Appl. Energy 115, 116–127 (2014).
[Crossref]

Zhang, G.

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm,” Appl. Phys. B 124, 61 (2018).
[Crossref]

G. Wang, B. Mei, X. Liu, G. Zhang, Y. Li, and F. Qi, “Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy,” Proc. Combust. Inst. (2018).

Zhang, P.

X. Zhu, R. Li, D. Li, P. Zhang, and R. Qian, “Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection,” Int. J. Heat Mass Transf. 89, 964–976 (2015).
[Crossref]

Zhou, X.

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption,” AIAA J. 45, 390–398 (2007).
[Crossref]

Zhu, X.

X. Zhu, R. Li, D. Li, P. Zhang, and R. Qian, “Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection,” Int. J. Heat Mass Transf. 89, 964–976 (2015).
[Crossref]

AIAA J. (2)

R. N. Halthore and F. C. Gouldin, “Laser scattering measurements for gas densities in a swirling flow combustor,” AIAA J. 24, 1129–1136 (1986).
[Crossref]

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption,” AIAA J. 45, 390–398 (2007).
[Crossref]

Annu. Rev. Fluid Mech. (1)

S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck, “Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech. 46, 147–173 (2014).
[Crossref]

Appl. Energy (1)

A. V. Singh, A. Eshaghi, M. Yu, A. K. Gupta, and K. M. Bryden, “Simultaneous time-resolved fluctuating temperature and acoustic pressure field measurements in a premixed swirl flame,” Appl. Energy 115, 116–127 (2014).
[Crossref]

Appl. Opt. (8)

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H_2o absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29 (2011).
[Crossref] [PubMed]

X. An, M. S. Brittelle, P. T. Lauzier, J. R. Gord, S. Roy, G.-H. Chen, and S. T. Sanders, “Demonstration of temperature imaging by H2O absorption spectroscopy using compressed sensing tomography,” Appl. Opt. 54, 9190–9199 (2015).
[Crossref] [PubMed]

S. Kampmann, T. Seeger, and A. Leipertz, “Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical swirl combustor,” Appl. Opt. 34, 2780–2786 (1995).
[Crossref] [PubMed]

R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786–6795 (2005).
[Crossref] [PubMed]

P. Nau, P. Kutne, G. Eckel, W. Meier, C. Hotz, and S. Fleck, “Infrared absorption spectrometer for the determination of temperature and species profiles in an entrained flow gasifier,” Appl. Opt. 56, 2982–2990 (2017).
[Crossref] [PubMed]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and O. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[Crossref]

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146 (1992).
[Crossref] [PubMed]

K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, “Deconvolution of axisymmetric flame properties using Tikhonov regularization,” Appl. Opt. 45, 4638–4646 (2006).
[Crossref] [PubMed]

Appl. Phys. B (6)

L. H. Ma, L. Y. Lau, and W. Ren, “Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy,” Appl. Phys. B 123, 83 (2017).
[Crossref]

C. Wei, D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin, “Mid-infrared laser absorption tomography for quantitative 2d thermochemistry measurements in premixed jet flames,” Appl. Phys. B 124, 123 (2018).
[Crossref]

X. Liu, G. Zhang, Y. Huang, Y. Wang, and F. Qi, “Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm,” Appl. Phys. B 124, 61 (2018).
[Crossref]

X. Liu, Y. Xu, Z. Su, W. S. Tam, and I. Leonov, “Jet-cooled infrared spectra of molecules and complexes with a cw mode-hop-free external-cavity QCL and a distributed-feedback QCL,” Appl. Phys. B 102, 629–639 (2010).
[Crossref]

R. M. Spearrin, W. Ren, J. B. Jeffries, and R. K. Hanson, “Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases,” Appl. Phys. B 116, 855–865 (2014).
[Crossref]

C. Liu, L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann, “Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner,” Appl. Phys. B 120, 407–416 (2015).
[Crossref]

Combust. Flame (6)

P. Palies, D. Durox, T. Schuller, and S. Candel, “The combined dynamics of swirler and turbulent premixed swirling flames,” Combust. Flame 157, 1698–1717 (2010).
[Crossref]

D. Durox, J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel, “Flame dynamics of a variable swirl number system and instability control,” Combust. Flame 160, 1729–1742 (2013).
[Crossref]

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[Crossref]

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[Crossref]

H. Wang, C. Law, and T. Lieuwen, “Linear response of stretch-affected premixed flames to flow oscillations,” Combust. Flame 156, 889–895 (2009).
[Crossref]

J. J. Girard, R. M. Spearrin, C. S. Goldenstein, and R. K. Hanson, “Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2μm,” Combust. Flame 178, 158–167 (2017).
[Crossref]

Combust. Sci. Technol. (3)

O. Keck, W. Meier, W. Stricker, and M. Aigner, “Establishment of a Confined Swirling Natural Gas/Air Flame as a Standard Flame: Temperature and Species Distributions from Laser Raman Measurements,” Combust. Sci. Technol. 174, 117–151 (2002).
[Crossref]

V. Tangirala and J. F. Driscoll, “Temperatures within Non-premixed Flames: Effects of Rapid Mixing Due to Swirl,” Combust. Sci. Technol. 60, 143–162 (1988).
[Crossref]

I. Chterev, C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, and T. C. Lieuwen, “Flame and Flow Topologies in an Annular Swirling Flow,” Combust. Sci. Technol. 186, 1041–1074 (2014).
[Crossref]

Exp. Fluids (1)

C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, and W. Meier, “Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements,” Exp. Fluids 56, 1–23 (2015).
[Crossref]

Exp. Therm. Fluid Sci. (1)

L. M. L. Cantu, J. Grohmann, W. Meier, and M. Aigner, “Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy,” Exp. Therm. Fluid Sci. 95, 52–59 (2018).
[Crossref]

Fuel (1)

A. M. Elbaz and W. L. Roberts, “Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions,” Fuel 169, 120–134 (2016).
[Crossref]

Int. J. Heat Mass Transf. (1)

X. Zhu, R. Li, D. Li, P. Zhang, and R. Qian, “Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection,” Int. J. Heat Mass Transf. 89, 964–976 (2015).
[Crossref]

J. Eng. for Gas Turbines Power (1)

B. D. Bellows, M. K. Bobba, J. M. Seitzman, and T. Lieuwen, “Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor,” J. Eng. for Gas Turbines Power 129, 954 (2007).
[Crossref]

J. Propuls. Power (1)

P. Preetham, S. K. Thumuluru, T. Lieuwen, and H. Santosh, “Linear Response of Laminar Premixed Flames to Flow Oscillations: Unsteady Stretch Effects,” J. Propuls. Power 26, 524–532 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. Combust. Inst. (4)

T. Poinsot, “Prediction and control of combustion instabilities in real engines,” Proc. Combust. Inst. 36, 1–28 (2017).
[Crossref]

A. Bohlin, E. Nordström, H. Carlsson, X.-S. Bai, and P.-E. Bengtsson, “Pure rotational CARS measurements of temperature and relative O2-concentration in a low swirl turbulent premixed flame,” Proc. Combust. Inst. 34, 3629–3636 (2013).
[Crossref]

K. P. Geigle, M. Köhler, W. O’Loughlin, and W. Meier, “Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations,” Proc. Combust. Inst. 35, 3373–3380 (2015).
[Crossref]

B. D. Bellows, M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen, “Flame transfer function saturation mechanisms in a swirl-stabilized combustor,” Proc. Combust. Inst. 31, 3181–3188 (2007).
[Crossref]

Prog. Energy Combust. Sci. (3)

C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson, “Infrared laser-absorption sensing for combustion gases,” Prog. Energy Combust. Sci. 60, 132–176 (2017).
[Crossref]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[Crossref]

Y. Huang and V. Yang, “Dynamics and stability of lean-premixed swirl-stabilized combustion,” Prog. Energy Combust. Sci. 35, 293–364 (2009).
[Crossref]

The J. Chem. Phys. (1)

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2d-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” The J. Chem. Phys. 138, 221101 (2013).
[Crossref] [PubMed]

Other (4)

C. Liu and L. Xu, “Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review,” Appl. Spectrosc. Rev. pp. 1–44 (2018).
[Crossref]

T. C. Lieuwen and V. Yang, Combustion Instabilities In Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, 2006).
[Crossref]

G. Wang, B. Mei, X. Liu, G. Zhang, Y. Li, and F. Qi, “Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy,” Proc. Combust. Inst. (2018).

S. Johnson, “Faddeeva W function implementation,”.

Supplementary Material (4)

NameDescription
» Visualization 1       animation of the temperature field of the 12% perturbation swirling flame
» Visualization 2       animation of the concentration field of 12% perturbation swirling flame
» Visualization 3       animation of the temperature field of 24% perturbation swirling flame
» Visualization 4       animation of the concentration distribution of 24% perturbation swirling flame

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic drawing of (a) the swirling burner and (b) the experimental setup with the IC laser, MCT detectors, control and data acquisition system and the swirling burner
Fig. 2
Fig. 2 CTA measured flow velocity with different levels of perturbation amplitude
Fig. 3
Fig. 3 (a) An example Abel inversion of path integrated optical depth to local attenuation coefficients at HAB = 10 mm and (b) an example attenuation coefficient spectrum at HAB = 10 mm and r = 10 mm of the swirling flame.
Fig. 4
Fig. 4 Mean and standard deviation of temperature and CO2 mole fraction field measurement
Fig. 5
Fig. 5 Temporally resolved flame temperature field with acoustic perturbation amplitude u′/u = 12% and u′/u = 24% at different phases
Fig. 6
Fig. 6 Temporally resolved flame temperature variations at different heights above the burner and radial positions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I I 0 = e τ = e μ ( r ) d l = e k ( v , T , p ) [ X ] d l
τ = 2 0 R 2 z 2 μ ( r ) d x = 2 z R μ ( r ) r r 2 z 2 d r
A ATP | μ = | τ ; λ L | μ = 0

Metrics