Abstract

In this work we presented a compact femtosecond laser system based on Yb doped fiber seed laser and efficient Yb:YAG crystal rod power amplifier. Matched pair of chirped fiber Bragg grating stretcher and chirped volume Bragg grating compressor were used to obtain high fidelity - Strehl ratio 76%, pulses of 764 fs duration, 104 µJ energy at 200 kHz repetition rate at the output of the laser system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile

Tadas Bartulevicius, Saulius Frankinas, Andrejus Michailovas, Ruslan Vasilyeu, Vadim Smirnov, Francois Trepanier, and Nerijus Rusteika
Opt. Express 25(17) 19856-19862 (2017)

Large-aperture chirped volume Bragg grating based fiber CPA system

Kai-Hsiu Liao, Ming-Yuan Cheng, Emilie Flecher, Vadim I. Smirnov, Leonid B. Glebov, and Almantas Galvanauskas
Opt. Express 15(8) 4876-4882 (2007)

High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating

Ruoyu Sun, Dongchen Jin, Fangzhou Tan, Shouyu Wei, Chang Hong, Jia Xu, Jiang Liu, and Pu Wang
Opt. Express 24(20) 22806-22812 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50 W, 50 µJ, subpicosecond fiber laser system,” Opt. Express 14(25), 12546–12551 (2006).
    [Crossref] [PubMed]
  2. R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
    [Crossref] [PubMed]
  3. J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
    [Crossref]
  4. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
    [Crossref]
  5. J. V. Rudd, G. Korn, S. Kane, J. Squier, G. A. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 18(23), 2044–2046 (1993).
    [Crossref] [PubMed]
  6. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
    [Crossref] [PubMed]
  7. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011).
    [Crossref] [PubMed]
  8. J. Fischer, A. C. Heinrich, S. Maier, J. Jungwirth, D. Brida, and A. Leitenstorfer, “615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate,” Opt. Lett. 41(2), 246–249 (2016).
    [Crossref] [PubMed]
  9. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1(10), 1003–1006 (1984).
    [Crossref]
  10. K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
    [Crossref]
  11. G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings,” Opt. Lett. 34(19), 2952–2954 (2009).
    [Crossref] [PubMed]
  12. G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
    [Crossref]
  13. M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
    [Crossref]
  14. G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
    [Crossref]
  15. J. Li, P. Gao, L. Zheng, L. Su, J. Xu, and X. Liang, “Diode-pumped Yb:SSO chirped pulse amplifier with 1 ps pulse duration,” Chin. Opt. Lett. 13(1), 011403 (2015).
    [Crossref]
  16. C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
    [Crossref]
  17. A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
    [Crossref]
  18. S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
    [Crossref]
  19. T. Bartulevicius, S. Frankinas, A. Michailovas, R. Vasilyeu, V. Smirnov, F. Trepanier, and N. Rusteika, “Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile,” Opt. Express 25(17), 19856–19862 (2017).
    [Crossref] [PubMed]
  20. T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
    [Crossref]
  21. D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16(12), 8876–8886 (2008).
    [Crossref] [PubMed]
  22. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008).
    [Crossref] [PubMed]

2018 (1)

T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
[Crossref]

2017 (1)

2016 (5)

J. Fischer, A. C. Heinrich, S. Maier, J. Jungwirth, D. Brida, and A. Leitenstorfer, “615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate,” Opt. Lett. 41(2), 246–249 (2016).
[Crossref] [PubMed]

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

2015 (3)

C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
[Crossref]

M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
[Crossref]

J. Li, P. Gao, L. Zheng, L. Su, J. Xu, and X. Liang, “Diode-pumped Yb:SSO chirped pulse amplifier with 1 ps pulse duration,” Chin. Opt. Lett. 13(1), 011403 (2015).
[Crossref]

2011 (1)

2009 (3)

2008 (2)

2006 (1)

2004 (1)

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

2001 (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

1993 (1)

1988 (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

1984 (1)

Ahmad, I.

Bado, P.

J. V. Rudd, G. Korn, S. Kane, J. Squier, G. A. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 18(23), 2044–2046 (1993).
[Crossref] [PubMed]

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Bagnoud, V.

C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
[Crossref]

Bartulevicius, T.

T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
[Crossref]

T. Bartulevicius, S. Frankinas, A. Michailovas, R. Vasilyeu, V. Smirnov, F. Trepanier, and N. Rusteika, “Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile,” Opt. Express 25(17), 19856–19862 (2017).
[Crossref] [PubMed]

Barty, C. P. J.

Berera, R.

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

Bordenyuk, A.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Brida, D.

Chang, G.

Chyla, M.

M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
[Crossref]

Csatari, M.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Dawson, J. W.

Endo, A.

M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
[Crossref]

Fermann, M. E.

Fischer, J.

Fork, R. L.

Frankinas, S.

T. Bartulevicius, S. Frankinas, A. Michailovas, R. Vasilyeu, V. Smirnov, F. Trepanier, and N. Rusteika, “Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile,” Opt. Express 25(17), 19856–19862 (2017).
[Crossref] [PubMed]

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Galvanauskas, A.

Gao, P.

Gapontsev, V.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Glebov, A. L.

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Glebov, L.

Gordon, J. P.

Gottschall, T.

C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
[Crossref]

Hein, J.

C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
[Crossref]

Heiner, Z.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Heinrich, A. C.

Joao, C. P.

C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
[Crossref]

Jungwirth, J.

Kancharla, V.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Kane, S.

Karsch, S.

Kennis, J. T. M.

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

Kienberger, R.

Killi, A.

Klebniczki, J.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Klingebiel, S.

Korn, G.

Korner, J.

C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
[Crossref]

Kovacs, A. P.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Krausz, F.

Krzempek, K.

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Kurdi, G.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Leitenstorfer, A.

Li, J.

Liang, X.

Limpert, J.

Madeikis, K.

T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
[Crossref]

Maier, S.

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Major, Z.

Martinez, O. E.

Metzger, T.

Michailovas, A.

T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
[Crossref]

T. Bartulevicius, S. Frankinas, A. Michailovas, R. Vasilyeu, V. Smirnov, F. Trepanier, and N. Rusteika, “Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile,” Opt. Express 25(17), 19856–19862 (2017).
[Crossref] [PubMed]

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Miura, T.

M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
[Crossref]

Mocek, T.

M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
[Crossref]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Mourou, G. A.

Müller, M.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

Myasnikov, D.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Novak, O.

M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
[Crossref]

Osvay, K.

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Platonov, N.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Rever, M.

Rudd, J. V.

Rusteika, N.

T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
[Crossref]

T. Bartulevicius, S. Frankinas, A. Michailovas, R. Vasilyeu, V. Smirnov, F. Trepanier, and N. Rusteika, “Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile,” Opt. Express 25(17), 19856–19862 (2017).
[Crossref] [PubMed]

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Samartsev, I.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Schimpf, D.

Schimpf, D. N.

Schwarz, A.

Seise, E.

Shah, L.

Shkurikhin, O.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Skrobol, C.

Smirnov, V.

Smrz, M.

M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
[Crossref]

Sobon, G.

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Sotor, J.

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Squier, J.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

J. V. Rudd, G. Korn, S. Kane, J. Squier, G. A. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 18(23), 2044–2046 (1993).
[Crossref] [PubMed]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

Su, L.

Sutter, D.

Tarka, J.

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Teisset, C. Y.

Trepanier, F.

Trushin, S. A.

Tünnermann, A.

van Grondelle, R.

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

Vasilyeu, R.

T. Bartulevicius, S. Frankinas, A. Michailovas, R. Vasilyeu, V. Smirnov, F. Trepanier, and N. Rusteika, “Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile,” Opt. Express 25(17), 19856–19862 (2017).
[Crossref] [PubMed]

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Veselis, L.

T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
[Crossref]

Wagner, F.

C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
[Crossref]

Wandt, C.

Xu, J.

Yusim, A.

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

Zheng, L.

Appl. Phys. B (1)

C. P. Joao, F. Wagner, J. Korner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping,” Appl. Phys. B 118(3), 401–407 (2015).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Phys. (2)

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

G. Sobon, K. Krzempek, J. Tarka, and J. Sotor, “Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating,” Laser Phys. 26(1), 015106 (2016).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
[Crossref]

Opt. Lett. (4)

Photosynth. Res. (1)

R. Berera, R. van Grondelle, and J. T. M. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101(2-3), 105–118 (2009).
[Crossref] [PubMed]

Proc. High-Power, High-Energy, and High-Intensity Laser Technology II (1)

M. Smrz, M. Chyla, O. Novak, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100W by an Yb:YAG thin-disk with CVBG compressor,” Proc. High-Power, High-Energy, and High-Intensity Laser Technology II 9513, 951304 (2015).
[Crossref]

Proc. SPIE (2)

A. Yusim, I. Samartsev, O. Shkurikhin, D. Myasnikov, A. Bordenyuk, N. Platonov, V. Kancharla, and V. Gapontsev, “New generation of high average power industry grade ultrafast ytterbium fiber lasers,” Proc. SPIE 9728, 972839 (2016).
[Crossref]

S. Frankinas, A. Michailovas, N. Rusteika, V. Smirnov, R. Vasilyeu, and A. L. Glebov, “Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration,” Proc. SPIE 9730, 973017 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Layout of the developed laser system consisted of all-in-fiber seed source, free-space Yb:YAG amplifier and pulse compressor. HWP1, HWP2 – half-wave phase retardation plates, FR – Faraday rotator, M1, M2 – mirrors, SP – pump/signal wavelength separator, LD – laser diode output beam collimator, P1, P2, P3 – polarizers, SM – spherical mirror, CFBG – chirped fiber Bragg grating, CVBG – chirped volume Bragg grating, QWP – quarter-wave phase retardation plate.
Fig. 2
Fig. 2 Average output power (black curve, left axis) and total amplifier gain (red curve, right axis) of double-pass Yb:YAG amplifier versus seed power. Pulse repetition rate was 200 kHz. Amplifier was pumped by 84 W power.
Fig. 3
Fig. 3 Spectrum of the chirped seed pulses (black line) and spectrum of the chirped pulses after double-pass Yb:YAG amplifier (red line). Inset: the same spectra in logarithmic scale.
Fig. 4
Fig. 4 Beam radius measurement along propagation direction of focused spatially filtered amplified beam (red and black dots). Beam quality parameter was estimated to be M2~1.0 from the fit (red and black curves). Images of the beam profile at several positions are shown as insets (beam size was normalized for clarity).
Fig. 5
Fig. 5 Envelope of the compressed pulses retrieved from SHG FROG measurement compared to transform-limited pulse shape calculated from the measured spectrum (left axis) and retrieved temporal phase (right axis). Inset: measured and retrieved FROG traces (0.15% retrieval error).
Fig. 6
Fig. 6 Beam radius measurement along propagation direction after CVBG compressor. Z-scan graph of amplified beam after CVBG compressor (red and black dots). Beam quality parameter M2<1.2 was estimated from the fit (red and black curves). Images of the beam profile at a few positions are shown as insets (beam size was normalized for clarity).