Abstract

A novel fiber optic sensing configuration for simultaneously measuring ammonia vapor (NH3) concentration and relative humidity (RH) in air is proposed and experimentally demonstrated. The system comprised two silica whispering gallery mode (WGM) microsphere resonators coated with different polymer layers. One of the microspheres was dip-coated with sol gel silica polymer and another with a 0.5 % wt./vol. agarose hydrogel. WGMs in both microspheres were excited simultaneously by evanescent coupling using a single adiabatic fiber taper. The optical properties of both coating layers change due to their exposure to ammonia and water molecules in the surrounding atmosphere, resulting in the spectral shifts of the WGM resonances relevant to each of the microspheres. By measuring the relevant WGMs' spectral shifts, the NH3 concentration in air and the RH can be determined simultaneously. The experimentally demonstrated sensitivity of the proposed sensor array to ammonia was estimated as 19.07 pm/ppm (NH3 molecules in air) and its sensitivity to relative humidity as 1.07 pm/% RH. Detailed studies of the coatings' cross-sensitivity and temperature dependence are also presented. The proposed sensor array is compact, highly sensitive and potentially low cost.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Agarose coated spherical micro resonator for humidity measurements

Arun Kumar Mallik, Dejun Liu, Vishnu Kavungal, Qiang Wu, Gerald Farrell, and Yuliya Semenova
Opt. Express 24(19) 21216-21227 (2016)

Study of the influence of the agarose hydrogel layer thickness on sensitivity of the coated silica microsphere resonator to humidity

Arun Kumar Mallik, Gerald Farrell, Qiang Wu, and Yuliya Semenova
Appl. Opt. 56(14) 4065-4069 (2017)

Liquid whispering-gallery-mode resonator as a humidity sensor

Lucía Labrador-Páez, Kevin Soler-Carracedo, Miguel Hernández-Rodríguez, Inocencio R. Martín, Tal Carmon, and Leopoldo L. Martin
Opt. Express 25(2) 1165-1172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 1–3 (2005).
    [Crossref]
  2. Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 129501 (2010).
    [Crossref]
  3. T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, M. V. Ötügen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
    [Crossref] [PubMed]
  4. T. Ioppolo, U. Ayaz, and M. V. Otugen, “Tuning of whispering gallery modes of spherical resonators using an external electric field,” Opt. Express 17, 16465–16479 (2009).
    [Crossref] [PubMed]
  5. V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
    [Crossref]
  6. N. Lin, L. Jiang, S. Wang, Q. Chen, H. Xiao, Y. Lu, and H. Tsai, “Simulation and optimization of polymer-coated microsphere resonators in chemical vapor sensing,” Appl. Opt. 50, 5465 (2011).
    [Crossref] [PubMed]
  7. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [Crossref]
  8. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
    [Crossref] [PubMed]
  9. H. Liu, H. Liang, M. Sun, K. Ni, and Y. Jin, “Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror,” IEEE Sensors J. 14, 893–896 (2014).
    [Crossref]
  10. F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating,” IEEE Sensors J. 2, 482–487 (2002).
    [Crossref]
  11. J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors J. 13, 1632–1636 (2013).
    [Crossref]
  12. A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators B: Chem. 227, 135–141 (2016).
    [Crossref]
  13. I. M. Raimundo and R. Narayanaswamy, “Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network,” Sensors Actuators B: Chem.,  74, 60–68 (2001).
    [Crossref]
  14. E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
    [Crossref]
  15. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453 (1996).
    [Crossref] [PubMed]
  16. A. K. Mallik, D. Liu, V. Kavungal, Q. Wu, G. Farrell, and Y. Semenova, “Agarose coated spherical micro resonator for humidity measurements,” Opt. Express 24, 21216–21227 (2016).
    [Crossref] [PubMed]
  17. A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air,” Sci. Rep. 8, 1620 (2018).
    [Crossref] [PubMed]
  18. D. Liu, W. Han, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity sol-gel silica coated optical fiber sensor for detection of ammonia in water,” Opt. Express 24, 24179 (2016).
    [Crossref] [PubMed]
  19. C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
    [Crossref]
  20. B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications - A review,” (2005).
  21. F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
    [Crossref] [PubMed]
  22. A. Buckley and M. Greenblatt, “The sol-gel preparation of silica gels,” J. Chem. education 71, 599–602 (1994).
    [Crossref]
  23. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258 (2004).
    [Crossref] [PubMed]
  24. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020 (2008).
    [Crossref] [PubMed]

2018 (1)

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air,” Sci. Rep. 8, 1620 (2018).
[Crossref] [PubMed]

2016 (3)

2015 (1)

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

2014 (1)

H. Liu, H. Liang, M. Sun, K. Ni, and Y. Jin, “Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror,” IEEE Sensors J. 14, 893–896 (2014).
[Crossref]

2013 (1)

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors J. 13, 1632–1636 (2013).
[Crossref]

2011 (1)

2010 (1)

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 129501 (2010).
[Crossref]

2009 (1)

2008 (2)

2005 (1)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

2004 (1)

2003 (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[Crossref] [PubMed]

2002 (3)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
[Crossref]

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating,” IEEE Sensors J. 2, 482–487 (2002).
[Crossref]

2001 (1)

I. M. Raimundo and R. Narayanaswamy, “Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network,” Sensors Actuators B: Chem.,  74, 60–68 (2001).
[Crossref]

1999 (1)

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

1998 (1)

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

1996 (1)

1994 (1)

A. Buckley and M. Greenblatt, “The sol-gel preparation of silica gels,” J. Chem. education 71, 599–602 (1994).
[Crossref]

Arnold, S.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Arregui, F. J.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators B: Chem. 227, 135–141 (2016).
[Crossref]

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating,” IEEE Sensors J. 2, 482–487 (2002).
[Crossref]

Ayaz, U.

Babusík, I.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Barrera, D.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators B: Chem. 227, 135–141 (2016).
[Crossref]

Brambilla, G.

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Buckley, A.

A. Buckley and M. Greenblatt, “The sol-gel preparation of silica gels,” J. Chem. education 71, 599–602 (1994).
[Crossref]

Chen, Q.

Claus, R. O.

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating,” IEEE Sensors J. 2, 482–487 (2002).
[Crossref]

Cooper, K. L.

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating,” IEEE Sensors J. 2, 482–487 (2002).
[Crossref]

Dickey, E. C.

E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
[Crossref]

Doyle, A.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Fan, X.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020 (2008).
[Crossref] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Farrell, G.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air,” Sci. Rep. 8, 1620 (2018).
[Crossref] [PubMed]

A. K. Mallik, D. Liu, V. Kavungal, Q. Wu, G. Farrell, and Y. Semenova, “Agarose coated spherical micro resonator for humidity measurements,” Opt. Express 24, 21216–21227 (2016).
[Crossref] [PubMed]

D. Liu, W. Han, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity sol-gel silica coated optical fiber sensor for detection of ammonia in water,” Opt. Express 24, 24179 (2016).
[Crossref] [PubMed]

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors J. 13, 1632–1636 (2013).
[Crossref]

Finazzi, V.

Goicoechea, J.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators B: Chem. 227, 135–141 (2016).
[Crossref]

Gong, D.

E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
[Crossref]

Gorodetsky, M. L.

Greenblatt, M.

A. Buckley and M. Greenblatt, “The sol-gel preparation of silica gels,” J. Chem. education 71, 599–602 (1994).
[Crossref]

Grimes, C. A.

E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
[Crossref]

Guo, Z.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 129501 (2010).
[Crossref]

Han, W.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Haroche, S.

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Hu, X. F.

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

Ilchenko, V.

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Ilchenko, V. S.

Ioppolo, T.

Jiang, L.

Jin, Y.

H. Liu, H. Liang, M. Sun, K. Ni, and Y. Jin, “Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror,” IEEE Sensors J. 14, 893–896 (2014).
[Crossref]

Kalvoda, L.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Kavungal, V.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air,” Sci. Rep. 8, 1620 (2018).
[Crossref] [PubMed]

A. K. Mallik, D. Liu, V. Kavungal, Q. Wu, G. Farrell, and Y. Semenova, “Agarose coated spherical micro resonator for humidity measurements,” Opt. Express 24, 21216–21227 (2016).
[Crossref] [PubMed]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Kozhevnikov, M.

Kvasnik, F.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Landl, M.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Lefèvre-Seguin, V.

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Li, S. Y.

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

Liang, H.

H. Liu, H. Liang, M. Sun, K. Ni, and Y. Jin, “Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror,” IEEE Sensors J. 14, 893–896 (2014).
[Crossref]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Lin, N.

Lin, P.

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

Liu, D.

Liu, H.

H. Liu, H. Liang, M. Sun, K. Ni, and Y. Jin, “Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror,” IEEE Sensors J. 14, 893–896 (2014).
[Crossref]

Lu, Y.

Lukas, R.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Ma, Q.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 129501 (2010).
[Crossref]

MacCraith, B. D.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Malins, C.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Mallik, A. K.

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors J. 13, 1632–1636 (2013).
[Crossref]

Matías, I. R.

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating,” IEEE Sensors J. 2, 482–487 (2002).
[Crossref]

Narayanaswamy, R.

I. M. Raimundo and R. Narayanaswamy, “Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network,” Sensors Actuators B: Chem.,  74, 60–68 (2001).
[Crossref]

Ni, K.

H. Liu, H. Liang, M. Sun, K. Ni, and Y. Jin, “Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror,” IEEE Sensors J. 14, 893–896 (2014).
[Crossref]

Olthuis, W.

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications - A review,” (2005).

Ong, K. G.

E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
[Crossref]

Otugen, M. V.

Ötügen, M. V.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Paulose, M.

E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
[Crossref]

Pufler, K.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Raimond, J.-M.

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Raimundo, I. M.

I. M. Raimundo and R. Narayanaswamy, “Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network,” Sensors Actuators B: Chem.,  74, 60–68 (2001).
[Crossref]

Ricchiuti, A. L.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators B: Chem. 227, 135–141 (2016).
[Crossref]

Richardson, D. J.

Rossmann, T.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 129501 (2010).
[Crossref]

Sales, S.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators B: Chem. 227, 135–141 (2016).
[Crossref]

Savchenkov, A. A.

Semenova, Y.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air,” Sci. Rep. 8, 1620 (2018).
[Crossref] [PubMed]

A. K. Mallik, D. Liu, V. Kavungal, Q. Wu, G. Farrell, and Y. Semenova, “Agarose coated spherical micro resonator for humidity measurements,” Opt. Express 24, 21216–21227 (2016).
[Crossref] [PubMed]

D. Liu, W. Han, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity sol-gel silica coated optical fiber sensor for detection of ammonia in water,” Opt. Express 24, 24179 (2016).
[Crossref] [PubMed]

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors J. 13, 1632–1636 (2013).
[Crossref]

Sheverev, V.

Simon, P.

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Stepaniuk, V.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Sun, M.

H. Liu, H. Liang, M. Sun, K. Ni, and Y. Jin, “Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror,” IEEE Sensors J. 14, 893–896 (2014).
[Crossref]

Sun, Q. Y.

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

Teraoka, I.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Timmer, B.

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications - A review,” (2005).

Treussart, F.

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Tsai, H.

Urrutia, A.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators B: Chem. 227, 135–141 (2016).
[Crossref]

Van Den Berg, A.

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications - A review,” (2005).

Varghese, O. K.

E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
[Crossref]

Velichansky, V.

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Volikov, P.

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Vollmer, F.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Wang, S.

Wei, F. X.

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

White, I. M.

Wu, Q.

Xiao, H.

Xu, B.

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

Yu, C.

Yuan, J.

Zhang, M. H.

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Biophys. J. (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[Crossref] [PubMed]

Genet. Mol. Res. (1)

F. X. Wei, X. F. Hu, B. Xu, M. H. Zhang, S. Y. Li, Q. Y. Sun, and P. Lin, “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers,” Genet. Mol. Res. 14, 3160–3169 (2015).
[Crossref] [PubMed]

IEEE Sensors J. (3)

H. Liu, H. Liang, M. Sun, K. Ni, and Y. Jin, “Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror,” IEEE Sensors J. 14, 893–896 (2014).
[Crossref]

F. J. Arregui, I. R. Matías, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating,” IEEE Sensors J. 2, 482–487 (2002).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors J. 13, 1632–1636 (2013).
[Crossref]

J. Chem. education (1)

A. Buckley and M. Greenblatt, “The sol-gel preparation of silica gels,” J. Chem. education 71, 599–602 (1994).
[Crossref]

J. Environ. Monit. (1)

C. Malins, A. Doyle, B. D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusík, “Personal ammonia sensor for industrial environments,” J. Environ. Monit. 1, 417–422 (1999).
[Crossref]

Meas. Sci. Technol. (1)

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 129501 (2010).
[Crossref]

Opt. Commun. (1)

V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Sci. Rep. (1)

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air,” Sci. Rep. 8, 1620 (2018).
[Crossref] [PubMed]

Sens. Actuators B: Chem. (1)

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators B: Chem. 227, 135–141 (2016).
[Crossref]

Sensors (1)

E. C. Dickey, O. K. Varghese, K. G. Ong, D. Gong, M. Paulose, and C. A. Grimes, “Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films,” Sensors 2, 91–110 (2002).
[Crossref]

Sensors Actuators B: Chem. (1)

I. M. Raimundo and R. Narayanaswamy, “Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network,” Sensors Actuators B: Chem.,  74, 60–68 (2001).
[Crossref]

Other (1)

B. Timmer, W. Olthuis, and A. Van Den Berg, “Ammonia sensors and their applications - A review,” (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 SEM images of cross sections of singlemode fibers coated with (a) silica sol-gel; (b) 0.5% wt. vol. agarose hydrogel.
Fig. 2
Fig. 2 Experimental setup for multi parameter sensor characterization.
Fig. 3
Fig. 3 Transmission WGM spectra for both sensors separately and when both microspheres are coupled simultaneously.
Fig. 4
Fig. 4 Transmission spectrum for sensors A and B simultaneously at different humidity levels inside the chamber. The inset graphs are enlarged selected portions of the overall spectrum for sensors ‘A’ and ‘B’ at constant temperature of 25 ± 0.1 °C.
Fig. 5
Fig. 5 Linear fitted graph of the selected WGM wavelengths versus relative humidity for both the silica gel coated (sensor A) and agarose coated (sensor B) microspheres.
Fig. 6
Fig. 6 (a) Transmission spectrum for the sensor system recorded at different times after injection of ammonia vapor in concentration of 0.46 ppm inside the chamber at constant temperature of 25 ± 0.1 °C and humidity 40% RH. Insets represent the enlarged portions of the spectrum corresponding to sensors A and B; (b) A and B WGM spectral shifts in response to three different concentrations of ammonia (0.46 ppm, 1.46 ppm and 2.19 ppm) after injection of the vapors inside the chamber. Inset figure illustrates the response to 0.46 ppm concentration of ammonia only; (c) WGM spectral shifts for the sensors A and B as a function of ammonia concentration.
Fig. 7
Fig. 7 K12 as a function of RH at constant temperature of 25°C
Fig. 8
Fig. 8 Temperature dependence of the WGM spectral shift for sensors A and B at constant humidity of 40% RH.

Tables (1)

Tables Icon

Table 1 Individual detection limit estimates for sensors A and B at 40 %RH

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ Δ λ A Δ λ B ] = [ K 11 K 12 K 21 K 22 ] [ % R H % N H 3 ]
K 12 = 9.58 + 18.32 1 + ( % RH 41.6 ) 3.67
[ Δ λ A Δ λ B ] = [ K 11 9.58 + 18.32 1 + ( % R H 41.6 ) 3.67 K 21 K 22 ] [ % R H % N H 3 ]
R = 3 × σ N 2 + σ T 2 + σ S R 2

Metrics