Abstract

A noise-like pulse (NLP) with broadband emission spectrum and superior beam quality from a dispersion managed mode-locked Yb-doped fiber laser has been demonstrated based on stimulated Raman scattering. After insertion of a 150 m long single mode fiber into the laser cavity, the second order stoke wave from 1.3 MHz repetition rate of NLP can be excited. With a 320 mW pump power, the highest pulse energy of NLP was about 35.1 nJ and the emission spectrum was extended from 1000 to 1160 nm. Through a multi-mode fiber laser, the broad bandwidth NLP can produce relatively low speckle noise imaging with contrast below 0.04. The generated NLPs can be used as a superior light source for the biomedical diagnosis and laser projection in the near future.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

Daojing Li, Deyuan Shen, Lei Li, Hao Chen, Dingyuan Tang, and Luming Zhao
Opt. Express 23(20) 25889-25895 (2015)

Compact noise-like pulse fiber laser and its application for supercontinuum generation in highly nonlinear fiber

Handing Xia, Heping Li, Guanglei Deng, Jianfeng Li, Shangjian Zhang, and Yong Liu
Appl. Opt. 54(32) 9379-9384 (2015)

High energy noise-like pulsing in a double-clad Er/Yb figure-of-eight fiber laser

J. P. Lauterio-Cruz, J. C. Hernandez-Garcia, O. Pottiez, J. M. Estudillo-Ayala, E. A. Kuzin, R. Rojas-Laguna, H. Santiago-Hernandez, and D. Jauregui-Vazquez
Opt. Express 24(13) 13778-13787 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).
  2. K. Toda, K. Isobe, K. Namiki, H. Kawano, A. Miyawaki, and K. Midorikawa, ”Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier,” Biomed. Opt. Express 8, 2796–2806 (2017).
    [Crossref] [PubMed]
  3. Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
    [Crossref]
  4. P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Opt. Express 12, 3532–3542(2004).
    [Crossref] [PubMed]
  5. W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).
  6. J. H. Lin, Y. W. Lee, T. C. Lin, B. C. Lai, M. Pal, S. Das, A. Dhar, and M. C. Paul, “Near-infrared supercontinnum generation in single-mode nonlinear Yb3+-doped fiber amplifier,” Opt. Express 22, 16130–16138 (2014).
    [Crossref] [PubMed]
  7. X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
    [Crossref] [PubMed]
  8. X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
    [Crossref] [PubMed]
  9. J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).
  10. K. Tamura, E. Ippen, H. Haus, and L. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [Crossref] [PubMed]
  11. L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
    [Crossref] [PubMed]
  12. J. H. Lin, J. L. Jhu, S. S. Jyu, T.C. Lin, and Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23, 025103 (2012).
    [Crossref]
  13. F. Ilday, F. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27, 1531–1533 (2002).
    [Crossref]
  14. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16, 21936–21941 (2008).
    [Crossref] [PubMed]
  15. J. H. Lin, D. Wang, and K. H. Lin, “High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity,” Laser Phys. Lett. 8, 66–70 (2011).
    [Crossref]
  16. X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22, 6699–6706 (2014).
    [Crossref] [PubMed]
  17. J. H. Lin, C. W. Chan, H. Y. Lee, and Y. H. Chen, “Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion,” IEEE Photonics J. 7, 1–9 (2015).
  18. S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17, 11776–11781 (2009).
    [Crossref] [PubMed]
  19. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997).
    [Crossref] [PubMed]
  20. D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13, 2289–2294 (2005).
    [Crossref] [PubMed]
  21. A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
    [Crossref]
  22. J. H. Lin, C. L. Chen, C. W. Chan, W. C. Chang, and Y. H. Chen, “Investigation of noise-like pulses from a net normal Yb-doped fiber laser based on a nonlinear polarization rotation mechanism,” Opt. Lett. 41, 5310–5313 (2016).
    [Crossref] [PubMed]
  23. D. Li, D. Shen, L. Li, H. Chen, D. Tang, and L. Zhao, “Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers,” Opt. Express 23, 25889–25895 (2015).
    [Crossref] [PubMed]
  24. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated raman and brillouin scattering,” Appl. Optics 11, 2489–2494 (1972).
    [Crossref]
  25. M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–33 (1991).
    [Crossref]
  26. J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
    [Crossref]
  27. B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40, 4607–4610 (2015).
    [Crossref] [PubMed]

2018 (1)

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

2017 (3)

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

K. Toda, K. Isobe, K. Namiki, H. Kawano, A. Miyawaki, and K. Midorikawa, ”Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier,” Biomed. Opt. Express 8, 2796–2806 (2017).
[Crossref] [PubMed]

2016 (2)

J. H. Lin, C. L. Chen, C. W. Chan, W. C. Chang, and Y. H. Chen, “Investigation of noise-like pulses from a net normal Yb-doped fiber laser based on a nonlinear polarization rotation mechanism,” Opt. Lett. 41, 5310–5313 (2016).
[Crossref] [PubMed]

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

2015 (4)

J. H. Lin, C. W. Chan, H. Y. Lee, and Y. H. Chen, “Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion,” IEEE Photonics J. 7, 1–9 (2015).

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
[Crossref]

D. Li, D. Shen, L. Li, H. Chen, D. Tang, and L. Zhao, “Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers,” Opt. Express 23, 25889–25895 (2015).
[Crossref] [PubMed]

B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40, 4607–4610 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
[Crossref]

2012 (1)

J. H. Lin, J. L. Jhu, S. S. Jyu, T.C. Lin, and Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23, 025103 (2012).
[Crossref]

2011 (1)

J. H. Lin, D. Wang, and K. H. Lin, “High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity,” Laser Phys. Lett. 8, 66–70 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2005 (1)

2004 (1)

2002 (1)

1997 (1)

1993 (1)

1991 (1)

M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–33 (1991).
[Crossref]

1972 (1)

R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated raman and brillouin scattering,” Appl. Optics 11, 2489–2494 (1972).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

Aguirre, A. D.

Ahmadi, P.

Barad, Y.

Cao, H.

Chan, C. W.

J. H. Lin, C. L. Chen, C. W. Chan, W. C. Chang, and Y. H. Chen, “Investigation of noise-like pulses from a net normal Yb-doped fiber laser based on a nonlinear polarization rotation mechanism,” Opt. Lett. 41, 5310–5313 (2016).
[Crossref] [PubMed]

J. H. Lin, C. W. Chan, H. Y. Lee, and Y. H. Chen, “Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion,” IEEE Photonics J. 7, 1–9 (2015).

Chang, S. C.

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Chang, W. C.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

J. H. Lin, C. L. Chen, C. W. Chan, W. C. Chang, and Y. H. Chen, “Investigation of noise-like pulses from a net normal Yb-doped fiber laser based on a nonlinear polarization rotation mechanism,” Opt. Lett. 41, 5310–5313 (2016).
[Crossref] [PubMed]

Che, K.C.

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

Chen, C. H.

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Chen, C. L.

Chen, C.H.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

Chen, H.

Chen, Y.

Chen, Y. H.

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

J. H. Lin, C. L. Chen, C. W. Chan, W. C. Chang, and Y. H. Chen, “Investigation of noise-like pulses from a net normal Yb-doped fiber laser based on a nonlinear polarization rotation mechanism,” Opt. Lett. 41, 5310–5313 (2016).
[Crossref] [PubMed]

J. H. Lin, C. W. Chan, H. Y. Lee, and Y. H. Chen, “Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion,” IEEE Photonics J. 7, 1–9 (2015).

Chen, Y.H.

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Cheng, X.

Chien, C. Y.

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Choma, M. A.

Chouli, S.

Das, S.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

J. H. Lin, Y. W. Lee, T. C. Lin, B. C. Lai, M. Pal, S. Das, A. Dhar, and M. C. Paul, “Near-infrared supercontinnum generation in single-mode nonlinear Yb3+-doped fiber amplifier,” Opt. Express 22, 16130–16138 (2014).
[Crossref] [PubMed]

Dhar, A.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

J. H. Lin, Y. W. Lee, T. C. Lin, B. C. Lai, M. Pal, S. Das, A. Dhar, and M. C. Paul, “Near-infrared supercontinnum generation in single-mode nonlinear Yb3+-doped fiber amplifier,” Opt. Express 22, 16130–16138 (2014).
[Crossref] [PubMed]

Fedotov, Y.

Fujimoto, J. G.

Goodnow, J.

Grelu, P.

Hao, Y.

Haus, H.

Herz, P. R.

Horowitz, M.

Huang, G. H.

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

Ilday, F.

Ippen, E.

Isobe, K.

Jhu, J. L.

J. H. Lin, J. L. Jhu, S. S. Jyu, T.C. Lin, and Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23, 025103 (2012).
[Crossref]

Johnston, T. J.

M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–33 (1991).
[Crossref]

Jyu, S. S.

J. H. Lin, J. L. Jhu, S. S. Jyu, T.C. Lin, and Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23, 025103 (2012).
[Crossref]

Kawano, H.

Kobtsev, S.

Koski, A.

Kukarin, S.

Lai, B. C.

Lai, Y.

J. H. Lin, J. L. Jhu, S. S. Jyu, T.C. Lin, and Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23, 025103 (2012).
[Crossref]

Lee, H. Y.

J. H. Lin, C. W. Chan, H. Y. Lee, and Y. H. Chen, “Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion,” IEEE Photonics J. 7, 1–9 (2015).

Lee, Y. W.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

J. H. Lin, Y. W. Lee, T. C. Lin, B. C. Lai, M. Pal, S. Das, A. Dhar, and M. C. Paul, “Near-infrared supercontinnum generation in single-mode nonlinear Yb3+-doped fiber amplifier,” Opt. Express 22, 16130–16138 (2014).
[Crossref] [PubMed]

Li, D.

Li, L.

Li, X.

Li, Y. H.

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Lin, C.

A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
[Crossref]

Lin, J. H.

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

J. H. Lin, C. L. Chen, C. W. Chan, W. C. Chang, and Y. H. Chen, “Investigation of noise-like pulses from a net normal Yb-doped fiber laser based on a nonlinear polarization rotation mechanism,” Opt. Lett. 41, 5310–5313 (2016).
[Crossref] [PubMed]

J. H. Lin, C. W. Chan, H. Y. Lee, and Y. H. Chen, “Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion,” IEEE Photonics J. 7, 1–9 (2015).

J. H. Lin, Y. W. Lee, T. C. Lin, B. C. Lai, M. Pal, S. Das, A. Dhar, and M. C. Paul, “Near-infrared supercontinnum generation in single-mode nonlinear Yb3+-doped fiber amplifier,” Opt. Express 22, 16130–16138 (2014).
[Crossref] [PubMed]

J. H. Lin, J. L. Jhu, S. S. Jyu, T.C. Lin, and Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23, 025103 (2012).
[Crossref]

J. H. Lin, D. Wang, and K. H. Lin, “High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity,” Laser Phys. Lett. 8, 66–70 (2011).
[Crossref]

Lin, J.H.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

Lin, K. H.

J. H. Lin, D. Wang, and K. H. Lin, “High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity,” Laser Phys. Lett. 8, 66–70 (2011).
[Crossref]

Lin, T. C.

Lin, T.C.

J. H. Lin, J. L. Jhu, S. S. Jyu, T.C. Lin, and Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23, 025103 (2012).
[Crossref]

Lin, Y. L.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
[Crossref]

Lin, Y. S.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

Lin, Y.C.

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Liu, W.R.

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

Mashimo, H.

Meng, B.

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

Midorikawa, K.

Miyawaki, A.

Mokan, V.

Namiki, K.

Nelson, L.

Ou, C.H.

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

Pal, M.

Pan, C.

A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
[Crossref]

Pan, C. L.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
[Crossref]

Paul, M. C.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

J. H. Lin, Y. W. Lee, T. C. Lin, B. C. Lai, M. Pal, S. Das, A. Dhar, and M. C. Paul, “Near-infrared supercontinnum generation in single-mode nonlinear Yb3+-doped fiber amplifier,” Opt. Express 22, 16130–16138 (2014).
[Crossref] [PubMed]

Petersen, C.

Redding, B.

Reddy, P. H.

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

Sasnett, M. W.

M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–33 (1991).
[Crossref]

Schmitt, J.

Seifert, M.

Shen, D.

Shum, P. P.

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

Silberberg, Y.

Smith, R. G.

R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated raman and brillouin scattering,” Appl. Optics 11, 2489–2494 (1972).
[Crossref]

Sosnowski, T.

Sun, Z.

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
[Crossref] [PubMed]

Tamura, K.

Tang, D.

Tasy, S.Y.

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

Toda, K.

Tsai, F.

A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
[Crossref]

Tsay, S.Y.

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Wang, C.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
[Crossref]

A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
[Crossref]

Wang, D.

J. H. Lin, D. Wang, and K. H. Lin, “High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity,” Laser Phys. Lett. 8, 66–70 (2011).
[Crossref]

Wang, Q. J.

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
[Crossref] [PubMed]

Wang, Y.

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
[Crossref] [PubMed]

Wise, F.

Wu, J. J.

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Wu, K.

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

Wu, X.

Xue, P.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
[Crossref]

Yang, Z.

You, Y.

A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
[Crossref]

You, Y. J.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
[Crossref]

Yu, X.

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
[Crossref] [PubMed]

Zaytsev, A.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
[Crossref]

A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
[Crossref]

Zhang, H.

Zhang, S.

Zhang, Y.

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
[Crossref] [PubMed]

Zhao, B.

Zhao, L.

Zhao, W.

Appl. Optics (1)

R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated raman and brillouin scattering,” Appl. Optics 11, 2489–2494 (1972).
[Crossref]

Appl. Phys. Express (1)

J. H. Lin, S. C. Chang, Y. H. Li, C. Y. Chien, C. H. Chen, Y.C. Lin, J. J. Wu, S.Y. Tsay, and Y.H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Biomed. Opt. Express (1)

IEEE Photonics J. (2)

J. H. Lin, G. H. Huang, C.H. Ou, K.C. Che, W.R. Liu, S.Y. Tasy, and Y. H. Chen, “Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3,” IEEE Photonics J. 10, 1–10 (2018).

J. H. Lin, C. W. Chan, H. Y. Lee, and Y. H. Chen, “Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion,” IEEE Photonics J. 7, 1–9 (2015).

IEEE. Photonics J. (1)

W. C. Chang, Y. S. Lin, Y. W. Lee, C.H. Chen, J.H. Lin, P. H. Reddy, S. Das, A. Dhar, and M. C. Paul, “Investigation of Q-switched and mode-locked pulses from a Yb3+-doped germano-zirconia silica glass based fiber laser,” IEEE. Photonics J. 9, 1–8 (2017).

Laser Phys. (1)

J. H. Lin, J. L. Jhu, S. S. Jyu, T.C. Lin, and Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23, 025103 (2012).
[Crossref]

Laser Phys. Lett. (3)

J. H. Lin, D. Wang, and K. H. Lin, “High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity,” Laser Phys. Lett. 8, 66–70 (2011).
[Crossref]

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 m central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13, 025101 (2015).
[Crossref]

A. Zaytsev, C. Lin, Y. You, F. Tsai, C. Wang, and C. Pan, “A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser,” Laser Phys. Lett. 10, 045104 (2013).
[Crossref]

Opt. Express (8)

D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13, 2289–2294 (2005).
[Crossref] [PubMed]

D. Li, D. Shen, L. Li, H. Chen, D. Tang, and L. Zhao, “Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers,” Opt. Express 23, 25889–25895 (2015).
[Crossref] [PubMed]

P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Opt. Express 12, 3532–3542(2004).
[Crossref] [PubMed]

J. H. Lin, Y. W. Lee, T. C. Lin, B. C. Lai, M. Pal, S. Das, A. Dhar, and M. C. Paul, “Near-infrared supercontinnum generation in single-mode nonlinear Yb3+-doped fiber amplifier,” Opt. Express 22, 16130–16138 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of swnt film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22, 17227–17235 (2014).
[Crossref] [PubMed]

X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22, 6699–6706 (2014).
[Crossref] [PubMed]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17, 11776–11781 (2009).
[Crossref] [PubMed]

S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16, 21936–21941 (2008).
[Crossref] [PubMed]

Opt. Lett. (6)

Proc. SPIE (1)

M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–33 (1991).
[Crossref]

Sci. Rep. (1)

X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, Y. Wang, X. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, “Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers,” Sci. Rep. 6, 25266 (2016).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic setup of the dispersion management PML-YDFL with various extra lengths of SMF (HI1060) inside the laser cavity, (b) the M-squared measurement in combination with the focus lens and beam profiler, and (c) speckle noise measurement in combination with the CCD and multi-mode fiber.
Fig. 2
Fig. 2 (a) Time trace of NLP-I state (inset: long term operation of pulse train), (b) evolution of optical spectrum (inset: corresponding IAC traces) of NLP-I state as pump power increases.
Fig. 3
Fig. 3 (a) Output power (Pout) and pulse energy (Eout) versus the pump power as well as (b) the FWHM of pedestal width (τp) and peak power (Ppeak) as a function of pump power.
Fig. 4
Fig. 4 Optical spectrum of the YDFL in operation in the (a) NLP-II state and (b) NLP-III state with a real filter inside the laser cavity (inset: corresponding IAC traces).
Fig. 5
Fig. 5 (a) Evolution of the optical spectrum from YDFL in operation in the NLP state with different lengths of SMF (Lext =25 m to 150 m), (b) the time trace of the pulse train in the NLP-IV state (Inset: the long-term operation of the pulse train), and (c) evolution of the optical spectrum as the pump power increases (Inset: the linear scale of the optical spectrum with Ppump= 325 mW), and (d) output power Pout and pulse energy Eout versus the pump power with additional SML Lext =150 m inside the cavity.
Fig. 6
Fig. 6 (a) Variation of beam radius Wx and Wy as a function of z in operation in the NLP-I state, and the speckle noise imaging in operation in the (b) CW, (c) NLP-I, and (d) NLP-IV states, as well as passing through the MMF in operation in the (e) CW, (f) NLP-I, and (g) NLP-IV states.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P th = 16 A eff g R L eff .
W ( Z ) = W 0 [ 1 + ( M 2 z λ π W 0 2 ) ] 1 2 ,

Metrics