Abstract

Plasmon in two-dimensional electron gas (2DEG) has long been considered as a promising active medium for terahertz emitters and detectors. However, the efficiency of terahertz plasmonic devices is severely limited by the high damping rate of plasma wave in solid state. In addition to the enhancement of plasmon lifetime by using 2DEGs with higher carrier mobility, engineering on the boundary condition and electromagnetic environment of plasmon cavity helps to preserve the plasmon states. Here we report on terahertz reflection spectroscopy of plasmon states in a grating-coupled AlGaN/GaN-2DEG plasmonic device at 7 K in equilibrium with ambient blackbody irradiation. Localized plasmon states and plasmon-polariton states were observed when the core plasmonic device is integrated with a silicon lens and when it is embedded in a terahertz Fabry-Pérot cavity, respectively. Simulation results including the reflection spectra and total reflection power agree well with the measured results. The Rabi splitting is found to be inversely proportional to the resonance frequency, and follows a linear relation with the square root of the sheet electron density. A normalized coupling ratio, ΩRω00.13, is achieved between the Rabi splitting ΩR and the resonance frequency ω0. The coupling ratio could be further increased to allow for ultrastrong coupling between terahertz photons and plasmons.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
The absorption tunability and enhanced electromagnetic coupling of terahertz-plasmons in grating-gate AlN/GaN plasmonic device

Lin Wang, Xiaoshuang Chen, Weida Hu, Anqi Yu, Shaowei Wang, and Wei Lu
Opt. Express 21(9) 10821-10830 (2013)

Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes

Weihang Zhou, Xinhan Zhang, Yingjun Zhang, Chuan Tian, and Chunyan Xu
Opt. Express 25(25) 32142-32149 (2017)

Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in graphene-integrated structures

Feng Liu, Tianrong Zhan, Alexander Y. Zhu, Fei Yi, and Wangzhou Shi
Opt. Express 24(2) 1480-1494 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Miles, P. Harrison, and D. Lippens, eds., Terahertz Sources and Systems (Kluwer Academic Publishers, 2001).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. G. Chattopadhyay, “Technology, capabilities, and performance of low power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 33–53 (2011).
    [Crossref]
  4. E. Gornik and D. C. Tsui, “Voltage-tunable far-infrared emission from Si inversion layers,” Phys. Rev. Lett. 37(21), 1425–1428 (1976).
    [Crossref]
  5. S. J. Allen, D. C. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett. 38(17) 980–983 (1977).
    [Crossref]
  6. D. C. Tsui, E. Gornik, and R. A. Logan, “Far infrared emission from plasma oscillations of Si inversion layers,” Solid State Commun. 35(11), 875–877 (1980).
    [Crossref]
  7. R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49(22), 1667–1671 (1982).
    [Crossref]
  8. K. Hirakawa, M. Grayson, D. C. Tsui, and Ç. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651–16654 (1993).
    [Crossref]
  9. K. D. Maranowski, A. C. Gossard, K. Unterrainer, and E. Gornik, “Far-infrared emission from parabolically graded quantum wells,” Appl. Phys. Lett. 69(23), 3522–3524 (1996).
    [Crossref]
  10. P. Bakshi and K. Kempa, “Current driven plasma instabilities in lower dimensional systems,” Superlattices Microstruct. 17(4), 363–372 (1995).
    [Crossref]
  11. U. Mackens, D. Heitmann, L. Prager, J. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett. 53(15), 1485–1488 (1984).
    [Crossref]
  12. J. Alsmeier, E. Batke, and J. P. Kotthaus, “Dimensional excitations in narrow electron inversion channels on Si,” Phys. Rev. B 40(18), 12574–12577 (1989).
    [Crossref]
  13. R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
    [Crossref]
  14. V. V. Popov, D. V. Fateev, O. V. Polischuk, and M. S. Shur, “Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate,” Opt. Express 18(16), 16771–16776 (2010).
    [Crossref] [PubMed]
  15. T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
    [Crossref]
  16. A. G. Chynoweth and S. J. Buchsbaum, “Solid-state plasma,” Phys. Today 18(11), 26 (1965).
    [Crossref]
  17. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
    [Crossref] [PubMed]
  18. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
    [Crossref]
  19. N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
    [Crossref]
  20. I. E. Tralle and V. A. Sizjuk, “Beam instability and space-charge wave amplification caused by the electron injection out of QW into 2DEG,” Phys. Status Solidi B 196(1), 85–94 (1996).
    [Crossref]
  21. R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
    [Crossref]
  22. S. A. Mikhailov, “Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems,” Phys. Rev. B 58(3), 1517–1532 (1998).
    [Crossref]
  23. Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
    [Crossref]
  24. J. Cen, K. Kempa, and P. Bakshi, “Amplification of a new surface plasma mode in the type-I semiconductor superlattice,” Phys. Rev. B 38(14), 10051–10054 (1988).
    [Crossref]
  25. K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, “Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions,” Appl. Phys. Lett. 67(16), 2326–2328 (1995).
    [Crossref]
  26. A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
    [Crossref]
  27. Z. X. Zheng, J. D. Sun, Y. Zhou, Z. P. Zhang, and H. Qin, “Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure,” J. Semicond. 36(10), 104002 (2015).
    [Crossref]
  28. O. Sydoruk, R. R. A. Syms, and L. Solymar, “Distributed gain in plasmonic reflectors and its use for terahertz generation,” Opt. Express 20(18), 19618–19627 (2012).
    [Crossref] [PubMed]
  29. A. S. Petrov, D. Svintsov, V. Ryzhii, and M. S. Shur, “Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals,” Phys. Rev. B 95(4), 045405 (2017).
    [Crossref]
  30. A. Satou and S. A. Mikhailov, “Excitation of two-dimensional plasmon polaritons by an incident electromagnetic wave at a contact,” Phys. Rev. B 75(4), 045328 (2007).
    [Crossref]
  31. M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
    [Crossref] [PubMed]
  32. M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012).
    [Crossref]
  33. Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
    [Crossref]
  34. Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
    [Crossref]
  35. Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
    [Crossref]
  36. G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
    [Crossref] [PubMed]
  37. Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
    [Crossref]
  38. T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
    [Crossref] [PubMed]
  39. V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
    [Crossref]
  40. See our preprint submitted to arXiv ( https://arxiv.org/abs/1702.01303v1 ).
  41. A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett. 108(12), 127401 (2012).
    [Crossref] [PubMed]
  42. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2011).
  43. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: A review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  44. L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60(19), 13276–13279 (1999).
    [Crossref]
  45. Y. Todorov, “Dipolar quantum electrodynamics of the two-dimensional electron gas,” Phys. Rev. B 91(12), 125409 (2015).
    [Crossref]

2017 (1)

A. S. Petrov, D. Svintsov, V. Ryzhii, and M. S. Shur, “Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals,” Phys. Rev. B 95(4), 045405 (2017).
[Crossref]

2016 (2)

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

2015 (4)

Z. X. Zheng, J. D. Sun, Y. Zhou, Z. P. Zhang, and H. Qin, “Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure,” J. Semicond. 36(10), 104002 (2015).
[Crossref]

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: A review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Y. Todorov, “Dipolar quantum electrodynamics of the two-dimensional electron gas,” Phys. Rev. B 91(12), 125409 (2015).
[Crossref]

2013 (3)

Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

2012 (6)

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
[Crossref] [PubMed]

M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012).
[Crossref]

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

O. Sydoruk, R. R. A. Syms, and L. Solymar, “Distributed gain in plasmonic reflectors and its use for terahertz generation,” Opt. Express 20(18), 19618–19627 (2012).
[Crossref] [PubMed]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett. 108(12), 127401 (2012).
[Crossref] [PubMed]

2011 (1)

G. Chattopadhyay, “Technology, capabilities, and performance of low power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 33–53 (2011).
[Crossref]

2010 (2)

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

V. V. Popov, D. V. Fateev, O. V. Polischuk, and M. S. Shur, “Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate,” Opt. Express 18(16), 16771–16776 (2010).
[Crossref] [PubMed]

2007 (2)

A. Satou and S. A. Mikhailov, “Excitation of two-dimensional plasmon polaritons by an incident electromagnetic wave at a contact,” Phys. Rev. B 75(4), 045328 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

2004 (1)

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

1999 (1)

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60(19), 13276–13279 (1999).
[Crossref]

1998 (1)

S. A. Mikhailov, “Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems,” Phys. Rev. B 58(3), 1517–1532 (1998).
[Crossref]

1996 (2)

I. E. Tralle and V. A. Sizjuk, “Beam instability and space-charge wave amplification caused by the electron injection out of QW into 2DEG,” Phys. Status Solidi B 196(1), 85–94 (1996).
[Crossref]

K. D. Maranowski, A. C. Gossard, K. Unterrainer, and E. Gornik, “Far-infrared emission from parabolically graded quantum wells,” Appl. Phys. Lett. 69(23), 3522–3524 (1996).
[Crossref]

1995 (3)

P. Bakshi and K. Kempa, “Current driven plasma instabilities in lower dimensional systems,” Superlattices Microstruct. 17(4), 363–372 (1995).
[Crossref]

K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, “Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions,” Appl. Phys. Lett. 67(16), 2326–2328 (1995).
[Crossref]

A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
[Crossref]

1993 (2)

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
[Crossref] [PubMed]

K. Hirakawa, M. Grayson, D. C. Tsui, and Ç. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651–16654 (1993).
[Crossref]

1992 (2)

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

1989 (1)

J. Alsmeier, E. Batke, and J. P. Kotthaus, “Dimensional excitations in narrow electron inversion channels on Si,” Phys. Rev. B 40(18), 12574–12577 (1989).
[Crossref]

1988 (1)

J. Cen, K. Kempa, and P. Bakshi, “Amplification of a new surface plasma mode in the type-I semiconductor superlattice,” Phys. Rev. B 38(14), 10051–10054 (1988).
[Crossref]

1984 (1)

U. Mackens, D. Heitmann, L. Prager, J. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett. 53(15), 1485–1488 (1984).
[Crossref]

1982 (1)

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49(22), 1667–1671 (1982).
[Crossref]

1980 (1)

D. C. Tsui, E. Gornik, and R. A. Logan, “Far infrared emission from plasma oscillations of Si inversion layers,” Solid State Commun. 35(11), 875–877 (1980).
[Crossref]

1977 (1)

S. J. Allen, D. C. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett. 38(17) 980–983 (1977).
[Crossref]

1976 (1)

E. Gornik and D. C. Tsui, “Voltage-tunable far-infrared emission from Si inversion layers,” Phys. Rev. Lett. 37(21), 1425–1428 (1976).
[Crossref]

1965 (1)

A. G. Chynoweth and S. J. Buchsbaum, “Solid-state plasma,” Phys. Today 18(11), 26 (1965).
[Crossref]

Ager, C. D.

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Ahmed, H.

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Allen, S. J.

S. J. Allen, D. C. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett. 38(17) 980–983 (1977).
[Crossref]

Alsmeier, J.

J. Alsmeier, E. Batke, and J. P. Kotthaus, “Dimensional excitations in narrow electron inversion channels on Si,” Phys. Rev. B 40(18), 12574–12577 (1989).
[Crossref]

Andreani, L. C.

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60(19), 13276–13279 (1999).
[Crossref]

Andrews, A. M.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

Apsley, N.

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Bakshi, P.

P. Bakshi and K. Kempa, “Current driven plasma instabilities in lower dimensional systems,” Superlattices Microstruct. 17(4), 363–372 (1995).
[Crossref]

J. Cen, K. Kempa, and P. Bakshi, “Amplification of a new surface plasma mode in the type-I semiconductor superlattice,” Phys. Rev. B 38(14), 10051–10054 (1988).
[Crossref]

Bangert, D. E.

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: A review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Batke, E.

J. Alsmeier, E. Batke, and J. P. Kotthaus, “Dimensional excitations in narrow electron inversion channels on Si,” Phys. Rev. B 40(18), 12574–12577 (1989).
[Crossref]

Baumberg, J. J.

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2011).

Beaudoin, G.

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

Beck, M.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
[Crossref] [PubMed]

M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012).
[Crossref]

Beinvogl, W.

U. Mackens, D. Heitmann, L. Prager, J. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett. 53(15), 1485–1488 (1984).
[Crossref]

Bhatti, A. S.

A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
[Crossref]

Bollaert, S.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

Buchsbaum, S. J.

A. G. Chynoweth and S. J. Buchsbaum, “Solid-state plasma,” Phys. Today 18(11), 26 (1965).
[Crossref]

Cai, Y.

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Cappy, A.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

Castellano, F.

M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012).
[Crossref]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
[Crossref] [PubMed]

Cen, J.

J. Cen, K. Kempa, and P. Bakshi, “Amplification of a new surface plasma mode in the type-I semiconductor superlattice,” Phys. Rev. B 38(14), 10051–10054 (1988).
[Crossref]

Chattopadhyay, G.

G. Chattopadhyay, “Technology, capabilities, and performance of low power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 33–53 (2011).
[Crossref]

Chynoweth, A. G.

A. G. Chynoweth and S. J. Buchsbaum, “Solid-state plasma,” Phys. Today 18(11), 26 (1965).
[Crossref]

Ciuti, C.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

Colombelli, R.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

Davoyan, A. R.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett. 108(12), 127401 (2012).
[Crossref] [PubMed]

De Liberato, S.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

Delteil, A.

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

Duffield, T.

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Dyakonov, M.

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
[Crossref] [PubMed]

Dyakonov, M. I.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

Dyakonova, N.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

El Fatimy, A.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

Faist, J.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012).
[Crossref]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
[Crossref] [PubMed]

Fateev, D. V.

Frost, J. E. F.

A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
[Crossref]

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Gaquiere, C.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

Geiser, M.

M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012).
[Crossref]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
[Crossref] [PubMed]

Gérard, J.-M.

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60(19), 13276–13279 (1999).
[Crossref]

Gornik, E.

K. D. Maranowski, A. C. Gossard, K. Unterrainer, and E. Gornik, “Far-infrared emission from parabolically graded quantum wells,” Appl. Phys. Lett. 69(23), 3522–3524 (1996).
[Crossref]

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49(22), 1667–1671 (1982).
[Crossref]

D. C. Tsui, E. Gornik, and R. A. Logan, “Far infrared emission from plasma oscillations of Si inversion layers,” Solid State Commun. 35(11), 875–877 (1980).
[Crossref]

E. Gornik and D. C. Tsui, “Voltage-tunable far-infrared emission from Si inversion layers,” Phys. Rev. Lett. 37(21), 1425–1428 (1976).
[Crossref]

Gossard, A. C.

K. D. Maranowski, A. C. Gossard, K. Unterrainer, and E. Gornik, “Far-infrared emission from parabolically graded quantum wells,” Appl. Phys. Lett. 69(23), 3522–3524 (1996).
[Crossref]

Grayson, M.

K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, “Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions,” Appl. Phys. Lett. 67(16), 2326–2328 (1995).
[Crossref]

K. Hirakawa, M. Grayson, D. C. Tsui, and Ç. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651–16654 (1993).
[Crossref]

Hagenmuller, D.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Hasko, D. G.

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Heitmann, D.

U. Mackens, D. Heitmann, L. Prager, J. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett. 53(15), 1485–1488 (1984).
[Crossref]

Hirakawa, K.

K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, “Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions,” Appl. Phys. Lett. 67(16), 2326–2328 (1995).
[Crossref]

K. Hirakawa, M. Grayson, D. C. Tsui, and Ç. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651–16654 (1993).
[Crossref]

Höpfel, R. A.

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49(22), 1667–1671 (1982).
[Crossref]

Huang, J. J.

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Huang, Y. D.

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Hughes, H. P.

A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
[Crossref]

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Jin, B. B.

Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Jones, G. A. C.

A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
[Crossref]

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Kavokin, A. V.

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2011).

Kempa, K.

P. Bakshi and K. Kempa, “Current driven plasma instabilities in lower dimensional systems,” Superlattices Microstruct. 17(4), 363–372 (1995).
[Crossref]

J. Cen, K. Kempa, and P. Bakshi, “Amplification of a new surface plasma mode in the type-I semiconductor superlattice,” Phys. Rev. B 38(14), 10051–10054 (1988).
[Crossref]

Klang, P.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

Knap, W.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

Knap, W. M.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

Kono, J.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Kotthaus, J.

U. Mackens, D. Heitmann, L. Prager, J. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett. 53(15), 1485–1488 (1984).
[Crossref]

Kotthaus, J. P.

J. Alsmeier, E. Batke, and J. P. Kotthaus, “Dimensional excitations in narrow electron inversion channels on Si,” Phys. Rev. B 40(18), 12574–12577 (1989).
[Crossref]

Kurdak, Ç.

K. Hirakawa, M. Grayson, D. C. Tsui, and Ç. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651–16654 (1993).
[Crossref]

Laurent, T.

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

Laussy, F. P.

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2011).

Li, X.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Li, X. X.

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Logan, R. A.

D. C. Tsui, E. Gornik, and R. A. Logan, “Far infrared emission from plasma oscillations of Si inversion layers,” Solid State Commun. 35(11), 875–877 (1980).
[Crossref]

S. J. Allen, D. C. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett. 38(17) 980–983 (1977).
[Crossref]

Lou, M.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Lou, S. T.

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Lusakowski, J.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

Mackens, U.

U. Mackens, D. Heitmann, L. Prager, J. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett. 53(15), 1485–1488 (1984).
[Crossref]

Maissen, C.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Malpuech, G.

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2011).

Manfra, M. J.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Maranowski, K. D.

K. D. Maranowski, A. C. Gossard, K. Unterrainer, and E. Gornik, “Far-infrared emission from parabolically graded quantum wells,” Appl. Phys. Lett. 69(23), 3522–3524 (1996).
[Crossref]

Mikhailov, S. A.

A. Satou and S. A. Mikhailov, “Excitation of two-dimensional plasmon polaritons by an incident electromagnetic wave at a contact,” Phys. Rev. B 75(4), 045328 (2007).
[Crossref]

S. A. Mikhailov, “Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems,” Phys. Rev. B 58(3), 1517–1532 (1998).
[Crossref]

Morvan, E.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

Nevou, L.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
[Crossref] [PubMed]

Nikitov, S. A.

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett. 108(12), 127401 (2012).
[Crossref] [PubMed]

Otsuji, T.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

Pan, W.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Panzarini, G.

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60(19), 13276–13279 (1999).
[Crossref]

Parenty, T.

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

Peacock, D. C.

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Petrov, A. S.

A. S. Petrov, D. Svintsov, V. Ryzhii, and M. S. Shur, “Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals,” Phys. Rev. B 95(4), 045405 (2017).
[Crossref]

Poisson, M. A.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

Polischuk, O. V.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

V. V. Popov, D. V. Fateev, O. V. Polischuk, and M. S. Shur, “Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate,” Opt. Express 18(16), 16771–16776 (2010).
[Crossref] [PubMed]

Popov, V. V.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett. 108(12), 127401 (2012).
[Crossref] [PubMed]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

V. V. Popov, D. V. Fateev, O. V. Polischuk, and M. S. Shur, “Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate,” Opt. Express 18(16), 16771–16776 (2010).
[Crossref] [PubMed]

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

Prager, L.

U. Mackens, D. Heitmann, L. Prager, J. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett. 53(15), 1485–1488 (1984).
[Crossref]

Qin, H.

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Z. X. Zheng, J. D. Sun, Y. Zhou, Z. P. Zhang, and H. Qin, “Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure,” J. Semicond. 36(10), 104002 (2015).
[Crossref]

Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Reichl, C.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Reno, J. L.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Richards, D.

A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
[Crossref]

Ritchie, D. A.

A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
[Crossref]

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Roelens, Y.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

Ryzhii, M.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

Ryzhii, V.

A. S. Petrov, D. Svintsov, V. Ryzhii, and M. S. Shur, “Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals,” Phys. Rev. B 95(4), 045405 (2017).
[Crossref]

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

Sagnes, I.

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

Satou, A.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

A. Satou and S. A. Mikhailov, “Excitation of two-dimensional plasmon polaritons by an incident electromagnetic wave at a contact,” Phys. Rev. B 75(4), 045328 (2007).
[Crossref]

Scalari, G.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
[Crossref] [PubMed]

M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012).
[Crossref]

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Schuh, D.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Shchepetov, A.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

Shearwood, C.

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

Shur, M.

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
[Crossref] [PubMed]

Shur, M. S.

A. S. Petrov, D. Svintsov, V. Ryzhii, and M. S. Shur, “Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals,” Phys. Rev. B 95(4), 045405 (2017).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

V. V. Popov, D. V. Fateev, O. V. Polischuk, and M. S. Shur, “Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate,” Opt. Express 18(16), 16771–16776 (2010).
[Crossref] [PubMed]

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

Sirtori, C.

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

Sizjuk, V. A.

I. E. Tralle and V. A. Sizjuk, “Beam instability and space-charge wave amplification caused by the electron injection out of QW into 2DEG,” Phys. Status Solidi B 196(1), 85–94 (1996).
[Crossref]

Solymar, L.

Strasser, G.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

Stuart, R. J.

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

Sun, J. D.

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Z. X. Zheng, J. D. Sun, Y. Zhou, Z. P. Zhang, and H. Qin, “Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure,” J. Semicond. 36(10), 104002 (2015).
[Crossref]

Svintsov, D.

A. S. Petrov, D. Svintsov, V. Ryzhii, and M. S. Shur, “Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals,” Phys. Rev. B 95(4), 045405 (2017).
[Crossref]

Sydoruk, O.

Syms, R. R. A.

Tan, R. B.

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Theron, D.

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

Todorov, Y.

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

Y. Todorov, “Dipolar quantum electrodynamics of the two-dimensional electron gas,” Phys. Rev. B 91(12), 125409 (2015).
[Crossref]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

Tombet, S. A. B.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: A review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Tralle, I. E.

I. E. Tralle and V. A. Sizjuk, “Beam instability and space-charge wave amplification caused by the electron injection out of QW into 2DEG,” Phys. Status Solidi B 196(1), 85–94 (1996).
[Crossref]

Tsui, D. C.

K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, “Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions,” Appl. Phys. Lett. 67(16), 2326–2328 (1995).
[Crossref]

K. Hirakawa, M. Grayson, D. C. Tsui, and Ç. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651–16654 (1993).
[Crossref]

D. C. Tsui, E. Gornik, and R. A. Logan, “Far infrared emission from plasma oscillations of Si inversion layers,” Solid State Commun. 35(11), 875–877 (1980).
[Crossref]

S. J. Allen, D. C. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett. 38(17) 980–983 (1977).
[Crossref]

E. Gornik and D. C. Tsui, “Voltage-tunable far-infrared emission from Si inversion layers,” Phys. Rev. Lett. 37(21), 1425–1428 (1976).
[Crossref]

Turcinkova, D.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Tyson, R. E.

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

Unterrainer, K.

K. D. Maranowski, A. C. Gossard, K. Unterrainer, and E. Gornik, “Far-infrared emission from parabolically graded quantum wells,” Appl. Phys. Lett. 69(23), 3522–3524 (1996).
[Crossref]

Vasanelli, A.

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

Vass, E.

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49(22), 1667–1671 (1982).
[Crossref]

Watanabe, T.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

Watson, J. D.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Wegscheider, W.

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Whitehouse, C. R.

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

Wilkinson, R. J.

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

Wu, J. B.

Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Xue, W.

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Yamanaka, K.

K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, “Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions,” Appl. Phys. Lett. 67(16), 2326–2328 (1995).
[Crossref]

Yu, Y.

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Zhang, B. S.

Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Zhang, Q.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Zhang, Z. P.

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

Z. X. Zheng, J. D. Sun, Y. Zhou, Z. P. Zhang, and H. Qin, “Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure,” J. Semicond. 36(10), 104002 (2015).
[Crossref]

Zheng, Z. X.

Z. X. Zheng, J. D. Sun, Y. Zhou, Z. P. Zhang, and H. Qin, “Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure,” J. Semicond. 36(10), 104002 (2015).
[Crossref]

Zhou, G. C.

Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Zhou, Y.

Z. X. Zheng, J. D. Sun, Y. Zhou, Z. P. Zhang, and H. Qin, “Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure,” J. Semicond. 36(10), 104002 (2015).
[Crossref]

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Appl. Phys. Lett. (7)

K. D. Maranowski, A. C. Gossard, K. Unterrainer, and E. Gornik, “Far-infrared emission from parabolically graded quantum wells,” Appl. Phys. Lett. 69(23), 3522–3524 (1996).
[Crossref]

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84(13), 2331–2333 (2004).
[Crossref]

N. Dyakonova, A. El Fatimy, J. Łusakowski, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, “Room-temperature terahertz emission from nanometer field-effect transistors,” Appl. Phys. Lett. 84(14), 141906 (2006).
[Crossref]

K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, “Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions,” Appl. Phys. Lett. 67(16), 2326–2328 (1995).
[Crossref]

M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012).
[Crossref]

Y. D. Huang, H. Qin, B. S. Zhang, J. B. Wu, G. C. Zhou, and B. B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Y. D. Huang, Y. Yu, H. Qin, J. D. Sun, Z. P. Zhang, X. X. Li, J. J. Huang, and Y. Cai, “Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system,” Appl. Phys. Lett. 109(20), 201110 (2016).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene,” IEEE Trans. Terahertz Sci. Technol. 2(1), 63–71 (2013).
[Crossref]

G. Chattopadhyay, “Technology, capabilities, and performance of low power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 33–53 (2011).
[Crossref]

J. Appl. Phys. (1)

R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71(12), 6049–6061 (1992).
[Crossref]

J. Semicond. (2)

Z. X. Zheng, J. D. Sun, Y. Zhou, Z. P. Zhang, and H. Qin, “Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure,” J. Semicond. 36(10), 104002 (2015).
[Crossref]

Y. Zhou, X. X. Li, R. B. Tan, W. Xue, Y. D. Huang, S. T. Lou, B. S. Zhang, and H. Qin, “Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor,” J. Semicond. 34(2), 022002 (2013).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nat. Phys. (1)

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1011 (2016).
[Crossref]

Opt. Express (2)

Phys. Rev. B (10)

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60(19), 13276–13279 (1999).
[Crossref]

Y. Todorov, “Dipolar quantum electrodynamics of the two-dimensional electron gas,” Phys. Rev. B 91(12), 125409 (2015).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

S. A. Mikhailov, “Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems,” Phys. Rev. B 58(3), 1517–1532 (1998).
[Crossref]

A. S. Petrov, D. Svintsov, V. Ryzhii, and M. S. Shur, “Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals,” Phys. Rev. B 95(4), 045405 (2017).
[Crossref]

A. Satou and S. A. Mikhailov, “Excitation of two-dimensional plasmon polaritons by an incident electromagnetic wave at a contact,” Phys. Rev. B 75(4), 045328 (2007).
[Crossref]

J. Cen, K. Kempa, and P. Bakshi, “Amplification of a new surface plasma mode in the type-I semiconductor superlattice,” Phys. Rev. B 38(14), 10051–10054 (1988).
[Crossref]

A. S. Bhatti, D. Richards, H. P. Hughes, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, “Plasmon dispersion and electron heating in a drifting two-dimensional electron gas,” Phys. Rev. B 51(4), 2252–2258 (1995).
[Crossref]

K. Hirakawa, M. Grayson, D. C. Tsui, and Ç. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651–16654 (1993).
[Crossref]

J. Alsmeier, E. Batke, and J. P. Kotthaus, “Dimensional excitations in narrow electron inversion channels on Si,” Phys. Rev. B 40(18), 12574–12577 (1989).
[Crossref]

Phys. Rev. Lett. (9)

U. Mackens, D. Heitmann, L. Prager, J. Kotthaus, and W. Beinvogl, “Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density,” Phys. Rev. Lett. 53(15), 1485–1488 (1984).
[Crossref]

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71(15), 2465–2468 (1993).
[Crossref] [PubMed]

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49(22), 1667–1671 (1982).
[Crossref]

E. Gornik and D. C. Tsui, “Voltage-tunable far-infrared emission from Si inversion layers,” Phys. Rev. Lett. 37(21), 1425–1428 (1976).
[Crossref]

S. J. Allen, D. C. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett. 38(17) 980–983 (1977).
[Crossref]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012).
[Crossref] [PubMed]

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett. 108(12), 127401 (2012).
[Crossref] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref]

T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, I. Sagnes, and G. Beaudoin, “Superradiant emission from a collective excitation in a semiconductor,” Phys. Rev. Lett. 115(18), 187402 (2015).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

I. E. Tralle and V. A. Sizjuk, “Beam instability and space-charge wave amplification caused by the electron injection out of QW into 2DEG,” Phys. Status Solidi B 196(1), 85–94 (1996).
[Crossref]

Phys. Today (1)

A. G. Chynoweth and S. J. Buchsbaum, “Solid-state plasma,” Phys. Today 18(11), 26 (1965).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: A review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Science (1)

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Solid State Commun. (1)

D. C. Tsui, E. Gornik, and R. A. Logan, “Far infrared emission from plasma oscillations of Si inversion layers,” Solid State Commun. 35(11), 875–877 (1980).
[Crossref]

Superlattices Microstruct. (2)

P. Bakshi and K. Kempa, “Current driven plasma instabilities in lower dimensional systems,” Superlattices Microstruct. 17(4), 363–372 (1995).
[Crossref]

R. E. Tyson, R. J. Stuart, D. E. Bangert, R. J. Wilkinson, C. D. Ager, H. P. Hughes, C. Shearwood, D. G. Hasko, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Far-infrared studies of the plasmon resonance of a drifting 2DEG,” Superlattices Microstruct. 12(3), 371–374 (1992).
[Crossref]

Other (3)

R. E. Miles, P. Harrison, and D. Lippens, eds., Terahertz Sources and Systems (Kluwer Academic Publishers, 2001).
[Crossref]

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2011).

See our preprint submitted to arXiv ( https://arxiv.org/abs/1702.01303v1 ).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the core terahertz plasmonic device and the simulated terahertz field distribution of the k = 6th cavity mode. Schematics of (b) the cavity device and (c) the lens device. (d) Schematic setup for measuring the modulated reflection signal and the reflection spectra. The incident terahertz power on the device at 7 K comes from the ambient blackbody radiation.
Fig. 2
Fig. 2 The measured reflection spectra of (a) the lens device and (b) the cavity device, are compared with the simulated reflection spectra of (c) the lens device and (d) the cavity device at different gate voltages. The parasitic modes (p2, p3, p4, p5) represent the plasmon modes from reflection spectra at VG = 0 V. The parabolic dashed curves are plasmon modes (j = 1, 2, · · · , 9) tuned by the gate voltage. The horizontal dashed lines are F-P cavity modes (k = 1, 2, · · · , 11) and the red solid curves are calculated plasmon-polariton modes.
Fig. 3
Fig. 3 (a) Zoom-in view of the plasmon-polariton modes formed by the k = 6th cavity mode and the j = 3, 4, 5, 6th plasmon modes. The solid curves are the corresponding LPP ( ω k j ) / UPP ( ω k j + ) modes. (b) Quality factors of the discrete cavity modes and the continuous plasmon modes at different frequencies. (c) Mode splitting at strong coupling regime with the k = 6th cavity mode and the j = 3rd plasmon mode at VG = −0.85 V. (d) Extracted Rabi splitting ΩR/2π plotted as bubbles, with its diameter proportional to the splitting, and the splitting values (in GHz) are labelled below the bubbles. (e) Rabi splitting ΩR,k=m/2π, m = 4, 5, 6, 7 are plotted as linear functions of the square root of sheet electron densities. The Rabi splitting at the k = 6th cavity mode can be expressed as Ω R , k = 6 ( n s ) / 2 π = 9.55 × 10 6 n s + 38.31 in GHz, fitted by the least square methods. The other linear functions at k = 4, 5, 7th modes are calculated by ΩR,k=m(ns) = ωC6ωC m × ΩR,k=6(ns), m = 4, 5, 7.
Fig. 4
Fig. 4 The reflection spectrum of (a) lens device at VG = −2.0 V and (b) cavity device at VG = −3.15 V at different temperatures. The water absorption peaks are marked with gray triangular symbols. The total reflection power of the (c) lens device and (d) cavity device varied with gate voltages are measured at different temperatures, to compare with the simulated total reflection power of (e) lens device and (f) cavity device. (g) The normalized total reflection power of both devices (symbols) under various gate voltages and the lifetime of channel electrons (solid line) at different temperatures.
Fig. 5
Fig. 5 The measured reflection spectra of (a) the lens device and (b) the cavity device, in comparison with the simulated reflection spectra for (c) the lens device and (d) the cavity device.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ω P j = n s e 2 2 m * ε 0 ε ¯ q j ,
ω C k = ( 2 k 1 ) π c 2 n ¯ D ,
ω k j ± = ω C k + ω P j 2 i 2 ( γ C + γ P ) ± 1 2 ( δ ω ) 2 + 4 V k j 2 ( γ C + γ P ) 2 2 i ( γ C + γ P ) δ ω ,
I ( x ) = 2 RT I 0 ( ν ) [ 1 + cos ( 2 π ν x ) ]
I ( x ) = 1 2 I 0 ( ν ) [ 1 + cos ( 2 π ν x ) ]
I ( x 0 , t ) = 1 2 I 0 ( ν ) [ 1 + cos ( 2 π ν x 0 ) ] H ( 2 π f M t )
H ( 2 π f M t ) = 1 2 + 2 π [ sin ( 2 π f M t ) + 1 3 sin ( 2 π 3 f M t ) + ]
I ( x ) = 1 π I 0 ( ν ) [ 1 + cos ( 2 π ν x ) ]
I ( x ) = 0 1 2 B ( ν ) [ 1 + cos ( 2 π ν x ) ] d ν
I ( x ) = H ( 2 π f M t ) 0 1 2 R H B ( ν ) [ 1 + cos ( 2 π ν x ) ] d ν + H ( 2 π f M t + π ) 0 1 2 R L B ( ν ) [ 1 + cos ( 2 π ν x ) ] d ν
I ( x ) = 1 π | 0 R H ( ν ) B ( ν ) [ 1 + cos ( 2 π ν x ) ] d ν 0 R L ( ν ) B ( ν ) [ 1 + cos ( 2 π ν x ) ] d ν | = 1 π | 0 [ R H ( ν ) R L ( ν ) ] B ( ν ) [ 1 + cos ( 2 π ν x ) ] d ν |
I ( x = ) = 1 2 I ( x = 0 ) = 1 π | 0 [ R H ( ν ) R L ( ν ) ] B ( ν ) d ν |
I ( ν ) = | R H ( ν ) R L ( ν ) | B ( ν )

Metrics