Abstract

We propose and demonstrate an optoelectronic oscillator with a directly modulated AlGaInAs/InP integrated twin-square microlaser for generating wideband frequency-tunable microwave signals with low phase noise. Apart from the relaxation oscillation peak, the modulation response of the twin-square microlaser working at the mutual optical injection state exhibits a significant enhancement around the beating frequency of the lasing modes in the two square cavities owing to the photon-photon resonance. A self-sustaining oscillation can be generated around the modulation response peak with the lowest loop loss occurring at the relaxation oscillation frequency or the beating frequency, depending on the practical state of the twin-square microlaser. High-quality tunable microwave signals ranging from 2.22 to 19.52 GHz are generated with single sideband phase noises below −110 dBc/Hz at the 10 kHz offset frequency and side-mode suppression ratios of approximately 40 dB by tuning the injection currents of the twin-square microlaser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback

Xiu-Wen Ma, Yong-Zhen Huang, Ling-Xiu Zou, Bo-Wen Liu, Heng Long, Hai-Zhong Weng, Yue-De Yang, and Jin-Long Xiao
Opt. Express 23(16) 20321-20331 (2015)

Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection

Peng Wang, Jintian Xiong, Tingting Zhang, Dalei Chen, Peng Xiang, Jilin Zheng, Yunshan Zhang, Ruoming Li, Long Huang, Tao Pu, and Xiangfei Chen
Opt. Express 23(16) 20450-20458 (2015)

Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser

Xin Zhang, Jilin Zheng, Tao Pu, Yunshan Zhang, Yuechun Shi, Jin Li, Yuandong Li, Huatao Zhu, and Xiangfei Chen
Opt. Express 27(5) 7036-7046 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  4. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  5. A. Didier, J. Millo, S. Grop, B. Dubois, E. Bigler, E. Rubiola, C. Lacroûte, and Y. Kersalé, “Ultra-low phase noise all-optical microwave generation setup based on commercial devices,” Appl. Opt. 54(12), 3682–3686 (2015).
    [Crossref]
  6. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
    [Crossref]
  7. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17(2), 328–342 (1999).
    [Crossref]
  8. J. Huang, C. Sun, B. Xiong, and Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17(23), 20727–20734 (2009).
    [Crossref] [PubMed]
  9. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
    [Crossref]
  10. C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
    [Crossref] [PubMed]
  11. J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Opt. Lett. 41(24), 5764–5767 (2016).
    [Crossref] [PubMed]
  12. L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  13. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  14. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  15. H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
    [Crossref]
  16. J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
    [Crossref] [PubMed]
  17. S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
    [Crossref] [PubMed]
  18. P. Wang, J. Xiong, T. Zhang, D. Chen, P. Xiang, J. Zheng, Y. Zhang, R. Li, L. Huang, T. Pu, and X. Chen, “Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection,” Opt. Express 23(16), 20450–20458 (2015).
    [Crossref] [PubMed]
  19. H. Tang, Y. Yu, Z. Wang, L. Xu, and X. Zhang, “Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband,” Opt. Lett. 43(10), 2328–2331 (2018).
    [Crossref] [PubMed]
  20. Y. Chen, S. Liu, and S. Pan, “Multi-format signal generation using a frequency-tunable optoelectronic oscillator,” Opt. Express 26(3), 3404–3420 (2018).
    [Crossref] [PubMed]
  21. W. F. Zhang and J. P. Yao, “Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation,” J. Lightwave Technol. 36(19), 4655–4663 (2018).
    [Crossref]
  22. M. L. Liao, Y. Z. Huang, H. Z. Weng, J. Y. Han, Z. X. Xiao, J. L. Xiao, and Y. D. Yang, “Narrow-linewidth microwave generation by an optoelectronic oscillator with a directly modulated microsquare laser,” Opt. Lett. 42(21), 4251–4254 (2017).
    [Crossref] [PubMed]
  23. Y. D. Yang, M. L. Liao, J. Y. Han, H. Z. Weng, J. L. Xiao, and Y. Z. Huang, “Narrow-linewidth microwave generation by optoelectronic oscillators with AlGaInAs/InP microcavity lasers,” J. Lightwave Technol. 36(19), 4379–4385 (2018).
    [Crossref]
  24. X. W. Ma, Y. Z. Huang, L. X. Zou, B. W. Liu, H. Long, H. Z. Weng, Y. D. Yang, and J. L. Xiao, “Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback,” Opt. Express 23(16), 20321–20331 (2015).
    [Crossref] [PubMed]
  25. Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42(16), 3173–3176 (2017).
    [Crossref] [PubMed]
  26. L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
    [Crossref]
  27. X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109(7), 071102 (2016).
    [Crossref]
  28. Y. D. Yang and Y. Z. Huang, “Mode characteristics and directional emission for square microcavity lasers,” J. Phys. D Appl. Phys. 49(25), 253001 (2016).
    [Crossref]
  29. L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23(3), 2879–2888 (2015).
    [Crossref] [PubMed]
  30. B. Pan, D. Lu, Y. Sun, L. Yu, L. Zhang, and L. Zhao, “Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser,” Opt. Lett. 39(22), 6395–6398 (2014).
    [Crossref] [PubMed]
  31. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [Crossref]
  32. B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual mode laser,” IEEE Photonics J. 7(6), 1400707 (2015).
    [Crossref]
  33. H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photonics Technol. Lett. 29(22), 1931–1934 (2017).
    [Crossref]

2018 (4)

2017 (3)

2016 (4)

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109(7), 071102 (2016).
[Crossref]

Y. D. Yang and Y. Z. Huang, “Mode characteristics and directional emission for square microcavity lasers,” J. Phys. D Appl. Phys. 49(25), 253001 (2016).
[Crossref]

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Opt. Lett. 41(24), 5764–5767 (2016).
[Crossref] [PubMed]

2015 (6)

2014 (1)

2013 (3)

J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
[Crossref] [PubMed]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

2011 (2)

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

2010 (1)

2009 (3)

J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

J. Huang, C. Sun, B. Xiong, and Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17(23), 20727–20734 (2009).
[Crossref] [PubMed]

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2000 (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

1999 (1)

1996 (2)

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

1992 (1)

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Bigler, E.

Bordonalli, A. C.

Broberg, B.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Bruun, M.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chan, S. C.

Chang-Hasnain, C. J.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Chen, D.

Chen, X.

Chen, Y.

Christensen, E. L.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Didier, A.

Du, Y.

Dubois, B.

Fang, T.

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Gliese, U.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Grillot, F.

Grop, S.

Han, J. Y.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Huang, J.

Huang, L.

Huang, Y. Z.

Y. D. Yang, M. L. Liao, J. Y. Han, H. Z. Weng, J. L. Xiao, and Y. Z. Huang, “Narrow-linewidth microwave generation by optoelectronic oscillators with AlGaInAs/InP microcavity lasers,” J. Lightwave Technol. 36(19), 4379–4385 (2018).
[Crossref]

M. L. Liao, Y. Z. Huang, H. Z. Weng, J. Y. Han, Z. X. Xiao, J. L. Xiao, and Y. D. Yang, “Narrow-linewidth microwave generation by an optoelectronic oscillator with a directly modulated microsquare laser,” Opt. Lett. 42(21), 4251–4254 (2017).
[Crossref] [PubMed]

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42(16), 3173–3176 (2017).
[Crossref] [PubMed]

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photonics Technol. Lett. 29(22), 1931–1934 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109(7), 071102 (2016).
[Crossref]

Y. D. Yang and Y. Z. Huang, “Mode characteristics and directional emission for square microcavity lasers,” J. Phys. D Appl. Phys. 49(25), 253001 (2016).
[Crossref]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

X. W. Ma, Y. Z. Huang, L. X. Zou, B. W. Liu, H. Long, H. Z. Weng, Y. D. Yang, and J. L. Xiao, “Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback,” Opt. Express 23(16), 20321–20331 (2015).
[Crossref] [PubMed]

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23(3), 2879–2888 (2015).
[Crossref] [PubMed]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Kersalé, Y.

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Lacroûte, C.

Lau, E. K.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Lester, L. F.

Li, R.

Li, S. S.

Li, X. Z.

Liao, M. L.

Lindgren, S.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Liu, B. W.

Liu, S.

Long, H.

Lu, D.

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual mode laser,” IEEE Photonics J. 7(6), 1400707 (2015).
[Crossref]

B. Pan, D. Lu, Y. Sun, L. Yu, L. Zhang, and L. Zhao, “Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser,” Opt. Lett. 39(22), 6395–6398 (2014).
[Crossref] [PubMed]

Lu, L.

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Luo, Y.

Lv, X. M.

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23(3), 2879–2888 (2015).
[Crossref] [PubMed]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

Ma, X. W.

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photonics Technol. Lett. 29(22), 1931–1934 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109(7), 071102 (2016).
[Crossref]

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23(3), 2879–2888 (2015).
[Crossref] [PubMed]

X. W. Ma, Y. Z. Huang, L. X. Zou, B. W. Liu, H. Long, H. Z. Weng, Y. D. Yang, and J. L. Xiao, “Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback,” Opt. Express 23(16), 20321–20331 (2015).
[Crossref] [PubMed]

Maleki, L.

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Millo, J.

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Pan, B.

Pan, B. W.

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual mode laser,” IEEE Photonics J. 7(6), 1400707 (2015).
[Crossref]

Pan, S.

Parekh, D.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Prather, D. W.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Pu, T.

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Raghunathan, R.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Rubiola, E.

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Schires, K.

Schneider, G. J.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Seeds, A. J.

Shi, S. Y.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Stubkjzr, K. E.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Sun, C.

Sun, Y.

Sung, H. K.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Tang, H.

Tang, M.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Walton, C.

Wang, C.

Wang, F. L.

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photonics Technol. Lett. 29(22), 1931–1934 (2017).
[Crossref]

Wang, P.

Wang, R.

Wang, Z.

Weng, H. Z.

Wu, M. C.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Xiang, P.

Xiao, J. L.

Y. D. Yang, M. L. Liao, J. Y. Han, H. Z. Weng, J. L. Xiao, and Y. Z. Huang, “Narrow-linewidth microwave generation by optoelectronic oscillators with AlGaInAs/InP microcavity lasers,” J. Lightwave Technol. 36(19), 4379–4385 (2018).
[Crossref]

M. L. Liao, Y. Z. Huang, H. Z. Weng, J. Y. Han, Z. X. Xiao, J. L. Xiao, and Y. D. Yang, “Narrow-linewidth microwave generation by an optoelectronic oscillator with a directly modulated microsquare laser,” Opt. Lett. 42(21), 4251–4254 (2017).
[Crossref] [PubMed]

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42(16), 3173–3176 (2017).
[Crossref] [PubMed]

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photonics Technol. Lett. 29(22), 1931–1934 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109(7), 071102 (2016).
[Crossref]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

X. W. Ma, Y. Z. Huang, L. X. Zou, B. W. Liu, H. Long, H. Z. Weng, Y. D. Yang, and J. L. Xiao, “Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback,” Opt. Express 23(16), 20321–20331 (2015).
[Crossref] [PubMed]

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23(3), 2879–2888 (2015).
[Crossref] [PubMed]

Xiao, Z. X.

Xiong, B.

Xiong, J.

Xu, L.

Yang, Y. D.

Y. D. Yang, M. L. Liao, J. Y. Han, H. Z. Weng, J. L. Xiao, and Y. Z. Huang, “Narrow-linewidth microwave generation by optoelectronic oscillators with AlGaInAs/InP microcavity lasers,” J. Lightwave Technol. 36(19), 4379–4385 (2018).
[Crossref]

M. L. Liao, Y. Z. Huang, H. Z. Weng, J. Y. Han, Z. X. Xiao, J. L. Xiao, and Y. D. Yang, “Narrow-linewidth microwave generation by an optoelectronic oscillator with a directly modulated microsquare laser,” Opt. Lett. 42(21), 4251–4254 (2017).
[Crossref] [PubMed]

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42(16), 3173–3176 (2017).
[Crossref] [PubMed]

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photonics Technol. Lett. 29(22), 1931–1934 (2017).
[Crossref]

Y. D. Yang and Y. Z. Huang, “Mode characteristics and directional emission for square microcavity lasers,” J. Phys. D Appl. Phys. 49(25), 253001 (2016).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109(7), 071102 (2016).
[Crossref]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

X. W. Ma, Y. Z. Huang, L. X. Zou, B. W. Liu, H. Long, H. Z. Weng, Y. D. Yang, and J. L. Xiao, “Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback,” Opt. Express 23(16), 20321–20331 (2015).
[Crossref] [PubMed]

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, X. W. Ma, Y. D. Yang, J. L. Xiao, and Y. Du, “Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers,” Opt. Express 23(3), 2879–2888 (2015).
[Crossref] [PubMed]

Yao, J.

Yao, J. P.

Yao, X. S.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Yu, L.

Yu, Y.

Zhang, L.

Zhang, L. M.

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual mode laser,” IEEE Photonics J. 7(6), 1400707 (2015).
[Crossref]

Zhang, T.

Zhang, W. F.

Zhang, X.

Zhang, Y.

Zhao, J.

Zhao, L.

Zhao, L. J.

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual mode laser,” IEEE Photonics J. 7(6), 1400707 (2015).
[Crossref]

Zhao, X. X.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Zheng, J.

Zhuang, J. P.

Zou, L. X.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109(7), 071102 (2016).
[Crossref]

IEEE J. Quantum Electron. (2)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

IEEE Photonics J. (1)

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual mode laser,” IEEE Photonics J. 7(6), 1400707 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photonics Technol. Lett. 29(22), 1931–1934 (2017).
[Crossref]

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Y. D. Yang and Y. Z. Huang, “Mode characteristics and directional emission for square microcavity lasers,” J. Phys. D Appl. Phys. 49(25), 253001 (2016).
[Crossref]

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Nat. Photonics (4)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Y. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42(16), 3173–3176 (2017).
[Crossref] [PubMed]

M. L. Liao, Y. Z. Huang, H. Z. Weng, J. Y. Han, Z. X. Xiao, J. L. Xiao, and Y. D. Yang, “Narrow-linewidth microwave generation by an optoelectronic oscillator with a directly modulated microsquare laser,” Opt. Lett. 42(21), 4251–4254 (2017).
[Crossref] [PubMed]

B. Pan, D. Lu, Y. Sun, L. Yu, L. Zhang, and L. Zhao, “Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser,” Opt. Lett. 39(22), 6395–6398 (2014).
[Crossref] [PubMed]

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Opt. Lett. 41(24), 5764–5767 (2016).
[Crossref] [PubMed]

H. Tang, Y. Yu, Z. Wang, L. Xu, and X. Zhang, “Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband,” Opt. Lett. 43(10), 2328–2331 (2018).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
[Crossref] [PubMed]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of an integrated twin-square microlaser. (b) Top-view microscope image of a fabricated AlGaInAs/InP integrated twin-square microlaser.
Fig. 2
Fig. 2 Small-signal modulation responses of the integrated twin-square microlaser working at (a) the free-running state with IA = 5, 7, 9, and 11 mA, and IB = 0, and (b) the mutual optical injection state with IB = 26.2, 26, 25.8, and 25.6 mA, and IA = 20 mA.
Fig. 3
Fig. 3 Schematic diagram of the proposed OEO. EDFA: erbium-doped fiber amplifier; PC: polarization controller; SMF: single mode fiber; OBPF: optical bandpass filter; VOA: variable optical attenuator; PD: photodetector; BC: blocking capacitor; EA: electrical amplifier; RF Attn.: RF attenuator; OSA: optical spectrum analyzer; ESA: electrical spectrum analyzer.
Fig. 4
Fig. 4 Experimental spectra of the OEO with the twin-square microlaser working at the free-running state (IB = 0). (a) Microwave spectra with IA increased from 5 to 12 mA (RBW = 100 kHz). (b) Microwave spectrum with IA = 9 mA (RBW = 100 kHz). Inset in (b): microwave spectrum around 6.78 GHz (RBW = 1 kHz, span = 4 MHz). (c) Phase noise spectrum of the generated first harmonic of 6.78 GHz. Inset in (c): microwave spectrum around 6.78 GHz (RBW = 10 Hz, span = 200 Hz). (d) Optical spectrum with IA = 9 mA.
Fig. 5
Fig. 5 (a) Optical spectrum and (b) corresponding microwave spectrum of the twin-square microlasers with IA = 20 mA and IB = 25.7 mA.
Fig. 6
Fig. 6 Experimental spectra of the OEO with the twin-square microlaser working at the mutual optical injection state. (a) Microwave spectra with IB decreased from 26 to 25.4 mA, and IA = 20 mA (RBW = 100 kHz). (b) Microwave spectrum with IA = 20 mA and IB = 25.7 mA (RBW = 100 kHz). Inset in (b): microwave spectrum around 16.78 GHz (RBW = 1 kHz, span = 4 MHz). (c) Phase noise spectrum of the first harmonic of 16.78 GHz. Inset in (c): Microwave spectrum around 16.78 GHz (RBW = 100 Hz, span = 200 Hz). (d) Optical spectrum with IA = 20 mA and IB = 25.7 mA.
Fig. 7
Fig. 7 (a) Microwave spectra of the microwave signals generated by the OEO showing wideband frequency tunability (RBW = 100 kHz). (b) RF threshold gain and the SSB phase noise at 10 kHz offset frequency versus the microwave frequency for the first harmonics.

Metrics