Abstract

Focusing light represents one of the fundamental optical functionalities that is used in a countless number of situations. Here we introduce the concept of nano-bore optical fiber mediated light focusing that allows to efficiently focus light at micrometer distance from the fiber end face. Since the focusing effect is provided by the fundamental fiber mode, device implementation is extremely straightforward since no post-processing or nano-structuring is necessary. Far-field measurements on implemented fibers, simulations, and a dual-Gaussian beam toy model confirm the validity of the concept. Due to its unique properties such as strong light localization, a close to 100% implementation success rate, extremely high reproducibility, and its compatibility with current fiber circuitry, the concept will find application in numerous areas that demand to focus at remote distances.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Bending losses and modal properties of nano-bore optical fibers

Kay Schaarschmidt, Stefan Weidlich, Daniel Reul, and Markus A. Schmidt
Opt. Lett. 43(17) 4192-4195 (2018)

Nanotrimer enhanced optical fiber tips implemented by electron beam lithography

Ning Wang, Matthias Zeisberger, Uwe Hübner, and Markus A. Schmidt
Opt. Mater. Express 8(8) 2246-2255 (2018)

The photonic lantern

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson
Adv. Opt. Photon. 7(2) 107-167 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  2. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref] [PubMed]
  3. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  4. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
    [Crossref] [PubMed]
  5. S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
    [Crossref]
  6. A. Tuniz and M. A. Schmidt, “Interfacing optical fibers with plasmonic nanoconcentrators,” Nanophotonics 7(7), 1279–1298 (2018).
    [Crossref]
  7. C. Weibin, H. Wei, C. A. Don, L. N. Robert, and Z. Qiwen, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J Opt. 13(1), 015003 (2011).
    [Crossref]
  8. G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
    [Crossref] [PubMed]
  9. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
    [Crossref] [PubMed]
  10. X. Yang, N. Ileri, C. C. Larson, T. C. Carlson, J. A. Britten, A. S. P. Chang, C. Gu, and T. C. Bond, “Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering,” Opt. Express 20(22), 24819–24826 (2012).
    [Crossref] [PubMed]
  11. M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(1), 4350–4355 (2002).
    [Crossref]
  12. A. Koshelev, G. Calafiore, C. Piña-Hernandez, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications,” Opt. Lett. 41(15), 3423–3426 (2016).
    [Crossref] [PubMed]
  13. V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
    [Crossref]
  14. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
    [Crossref] [PubMed]
  15. T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
    [Crossref]
  16. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  17. A. Kuchmizhak, S. Gurbatov, A. Nepomniaschii, O. Vitrik, and Y. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
    [Crossref] [PubMed]
  18. S. Yakunin and J. Heitz, “Microgrinding of lensed fibers by means of a scanning-probe microscope setup,” Appl. Opt. 48(32), 6172–6177 (2009).
    [Crossref] [PubMed]
  19. J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
    [Crossref] [PubMed]
  20. S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
    [Crossref] [PubMed]
  21. K. Schaarschmidt, S. Weidlich, D. Reul, and M. A. Schmidt, “Bending losses and modal properties of nano-bore optical fibers,” Opt. Lett. 43(17), 4192–4195 (2018).
    [Crossref] [PubMed]
  22. A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
    [Crossref] [PubMed]
  23. A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Lett. 17(2), 631–637 (2017).
    [Crossref] [PubMed]
  24. S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
    [Crossref] [PubMed]
  25. T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Fortsch, P. Banzer, A. Brenn, D. Elser, M. Scharrer, G. Leuchs, and P. S. Russell, “Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber,” J. Opt. Soc. Am. B 28(1), 193–198 (2011).
    [Crossref]
  26. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
    [Crossref]
  27. P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
    [Crossref]
  28. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  29. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 77(3), 033417 (2008).
    [Crossref]
  30. C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790–1799 (2016).
    [Crossref]
  31. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010).
    [Crossref] [PubMed]
  32. M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40(10), 2237–2240 (2015).
    [Crossref] [PubMed]
  33. W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
    [Crossref] [PubMed]
  34. I. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
    [Crossref] [PubMed]
  35. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
    [Crossref] [PubMed]
  36. J. Troles, P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, S. Cui, D. Mechin, and J.-L. Adam, “Exposed-core chalcogenide microstructured optical fibers for chemical sensing,” in SPIE Optics+Optoelectronics (SPIE, 2013), p. 5.
  37. A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
    [Crossref] [PubMed]
  38. L. Melnikov, I. Khromova, A. Scherbakov, and N. Nikishin, “Soft-glass hollow-core photonic crystal fibers,” in Congress on Optics and Optoelectronics (SPIE, 2005), p. 9.

2018 (3)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

A. Tuniz and M. A. Schmidt, “Interfacing optical fibers with plasmonic nanoconcentrators,” Nanophotonics 7(7), 1279–1298 (2018).
[Crossref]

K. Schaarschmidt, S. Weidlich, D. Reul, and M. A. Schmidt, “Bending losses and modal properties of nano-bore optical fibers,” Opt. Lett. 43(17), 4192–4195 (2018).
[Crossref] [PubMed]

2017 (2)

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Lett. 17(2), 631–637 (2017).
[Crossref] [PubMed]

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

2016 (7)

S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
[Crossref] [PubMed]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790–1799 (2016).
[Crossref]

A. Koshelev, G. Calafiore, C. Piña-Hernandez, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications,” Opt. Lett. 41(15), 3423–3426 (2016).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

2015 (2)

M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40(10), 2237–2240 (2015).
[Crossref] [PubMed]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

2014 (3)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschii, O. Vitrik, and Y. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
[Crossref] [PubMed]

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

2011 (5)

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[Crossref]

C. Weibin, H. Wei, C. A. Don, L. N. Robert, and Z. Qiwen, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J Opt. 13(1), 015003 (2011).
[Crossref]

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Fortsch, P. Banzer, A. Brenn, D. Elser, M. Scharrer, G. Leuchs, and P. S. Russell, “Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber,” J. Opt. Soc. Am. B 28(1), 193–198 (2011).
[Crossref]

2010 (1)

2009 (4)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

S. Yakunin and J. Heitz, “Microgrinding of lensed fibers by means of a scanning-probe microscope setup,” Appl. Opt. 48(32), 6172–6177 (2009).
[Crossref] [PubMed]

J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
[Crossref] [PubMed]

2008 (2)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 77(3), 033417 (2008).
[Crossref]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[Crossref] [PubMed]

2007 (1)

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

2002 (1)

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(1), 4350–4355 (2002).
[Crossref]

Adam, J.-L.

Afshar, S.

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Allen, F. I.

Ando, T.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(1), 4350–4355 (2002).
[Crossref]

Baasanjav, D.

S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
[Crossref] [PubMed]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Banzer, P.

Bao, J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Belal, M.

Benabid, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Bond, T. C.

Bony, P. Y.

Brenn, A.

Brilland, L.

Britten, J. A.

Bronnimann, R.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Cabrini, S.

Calafiore, G.

Callegari, V.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Carlson, T. C.

Chang, A. S. P.

Chemnitz, M.

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Lett. 17(2), 631–637 (2017).
[Crossref] [PubMed]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Cheng, T.

Cordeiro, C. M. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Coulombier, Q.

Couny, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Cruz, C. H. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Cubillas, A. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

Dellith, J.

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Lett. 17(2), 631–637 (2017).
[Crossref] [PubMed]

Deng, D.

Désévédavy, F.

Dhuey, S.

Dickey, M. D.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Don, C. A.

C. Weibin, H. Wei, C. A. Don, L. N. Robert, and Z. Qiwen, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J Opt. 13(1), 015003 (2011).
[Crossref]

Duan, Z.

Ebendorff-Heidepriem, H.

El Amraoui, M.

Elser, D.

Ettabib, M.

Etzold, B. J. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

Euser, T. G.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Fortsch, P. Banzer, A. Brenn, D. Elser, M. Scharrer, G. Leuchs, and P. S. Russell, “Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber,” J. Opt. Soc. Am. B 28(1), 193–198 (2011).
[Crossref]

Faez, S.

S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
[Crossref] [PubMed]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Fatome, J.

Feng, X.

Fortsch, M.

Fragnito, H. L.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Gabriel, C.

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Gadret, G.

Gao, W.

Garmann, R. F.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

Gu, C.

Gurbatov, S.

Ha, W.

Hane, K.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(1), 4350–4355 (2002).
[Crossref]

Heitz, J.

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Horak, P.

Houizot, P.

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Ileri, N.

Iwaniuk, D.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Jain, C.

Jeong, Y.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[Crossref]

Jeong, Y. S.

Jiang, X.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Joe, H.-E.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[Crossref]

Joly, N. Y.

Jules, J. C.

Jung, Y.

Kang, S.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Kawashima, H.

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Kibler, B.

Kim, J.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[Crossref]

J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
[Crossref] [PubMed]

Kim, J. K.

Knight, J. C.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Kohoutek, T.

Koshelev, A.

Kostovski, G.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Kuchmizhak, A.

Kulchin, Y.

Lahini, Y.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Larson, C. C.

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Lee, H. W.

Lee, S.

Leuchs, G.

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Liao, M.

Lum, P.

Maier, S. A.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Manoharan, V. N.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Marquardt, C.

Messaddeq, Y.

Min, B.-K.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[Crossref]

Mitchell, A.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Monro, T. M.

Mosk, A. P.

S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
[Crossref] [PubMed]

Mouawad, O.

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Munechika, K.

Nepomniaschii, A.

Nogawa, S.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(1), 4350–4355 (2002).
[Crossref]

Oh, K.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[Crossref]

J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
[Crossref] [PubMed]

Ohishi, Y.

Orrit, M.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Petropoulos, P.

Piña-Hernandez, C.

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 77(3), 033417 (2008).
[Crossref]

Price, J. H. V.

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 77(3), 033417 (2008).
[Crossref]

Qiu, C.-W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Qiwen, Z.

C. Weibin, H. Wei, C. A. Don, L. N. Robert, and Z. Qiwen, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J Opt. 13(1), 015003 (2011).
[Crossref]

Renversez, G.

Rettenmayr, M.

Reul, D.

Reuther, K.

Richardson, D. J.

Robert, L. N.

C. Weibin, H. Wei, C. A. Don, L. N. Robert, and Z. Qiwen, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J Opt. 13(1), 015003 (2011).
[Crossref]

Ruan, Y.

Russell, P. S.

Russell, P. S. J.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 77(3), 033417 (2008).
[Crossref]

Russell, R. F.

Samin, S.

S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
[Crossref] [PubMed]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Sasaki, M.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(1), 4350–4355 (2002).
[Crossref]

Sassolini, S.

Savelli, I.

Schaarschmidt, K.

Scharrer, M.

Schmid, E.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Schmid, M.

Schmidt, M.

S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
[Crossref] [PubMed]

Schmidt, M. A.

A. Tuniz and M. A. Schmidt, “Interfacing optical fibers with plasmonic nanoconcentrators,” Nanophotonics 7(7), 1279–1298 (2018).
[Crossref]

K. Schaarschmidt, S. Weidlich, D. Reul, and M. A. Schmidt, “Bending losses and modal properties of nano-bore optical fibers,” Opt. Lett. 43(17), 4192–4195 (2018).
[Crossref] [PubMed]

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Lett. 17(2), 631–637 (2017).
[Crossref] [PubMed]

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790–1799 (2016).
[Crossref]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Fortsch, P. Banzer, A. Brenn, D. Elser, M. Scharrer, G. Leuchs, and P. S. Russell, “Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber,” J. Opt. Soc. Am. B 28(1), 193–198 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 77(3), 033417 (2008).
[Crossref]

Sennhauser, U.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Shen, L.

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Smektala, F.

Smythe, E. J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Stoddart, P. R.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Suzuki, T.

Taccardi, N.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Traynor, N.

Troles, J.

Tuniz, A.

A. Tuniz and M. A. Schmidt, “Interfacing optical fibers with plasmonic nanoconcentrators,” Nanophotonics 7(7), 1279–1298 (2018).
[Crossref]

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Lett. 17(2), 631–637 (2017).
[Crossref] [PubMed]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790–1799 (2016).
[Crossref]

Tünnermann, A.

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 77(3), 033417 (2008).
[Crossref]

Uebel, P.

Vitrik, O.

Wasserscheid, P.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

Wei, H.

C. Weibin, H. Wei, C. A. Don, L. N. Robert, and Z. Qiwen, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J Opt. 13(1), 015003 (2011).
[Crossref]

Weibin, C.

C. Weibin, H. Wei, C. A. Don, L. N. Robert, and Z. Qiwen, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J Opt. 13(1), 015003 (2011).
[Crossref]

Weidlich, S.

K. Schaarschmidt, S. Weidlich, D. Reul, and M. A. Schmidt, “Bending losses and modal properties of nano-bore optical fibers,” Opt. Lett. 43(17), 4192–4195 (2018).
[Crossref] [PubMed]

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Lett. 17(2), 631–637 (2017).
[Crossref] [PubMed]

S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
[Crossref] [PubMed]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Whitesides, G. M.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Wiederhecker, G. S.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

Wieduwilt, T.

Wondraczek, K.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Wong, E.

Xu, L.

Yakunin, S.

Yang, X.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Zang, L. Y.

Zeisberger, M.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Zentgraf, T.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Zhang, S.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

ACS Nano (1)

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Analyst (1)

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. S. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142(6), 925–929 (2017).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[Crossref]

Faraday Discuss. (1)

S. Faez, S. Samin, D. Baasanjav, S. Weidlich, M. Schmidt, and A. P. Mosk, “Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle,” Faraday Discuss. 193, 447–458 (2016).
[Crossref] [PubMed]

J Opt. (1)

C. Weibin, H. Wei, C. A. Don, L. N. Robert, and Z. Qiwen, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J Opt. 13(1), 015003 (2011).
[Crossref]

J. Micromech. Microeng. (1)

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(1), 4350–4355 (2002).
[Crossref]

Nano Lett. (3)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Lett. 17(2), 631–637 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

A. Tuniz and M. A. Schmidt, “Interfacing optical fibers with plasmonic nanoconcentrators,” Nanophotonics 7(7), 1279–1298 (2018).
[Crossref]

Nat. Commun. (2)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[Crossref]

New J. Phys. (1)

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 77(3), 033417 (2008).
[Crossref]

Other (2)

J. Troles, P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, S. Cui, D. Mechin, and J.-L. Adam, “Exposed-core chalcogenide microstructured optical fibers for chemical sensing,” in SPIE Optics+Optoelectronics (SPIE, 2013), p. 5.

L. Melnikov, I. Khromova, A. Scherbakov, and N. Nikishin, “Soft-glass hollow-core photonic crystal fibers,” in Congress on Optics and Optoelectronics (SPIE, 2005), p. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Illustration of the nano-bore optical fiber mediated focusing effect (red: focused output light, dark blue: doped core with the nano-hole, semitransparent gray: silica cladding). The extension of the output beam shown here is to scale with simulations. (b) Microscopic image of the fluorescence light of the beam that is emitted by the NBF in case the fiber is immersed in Rhodamine 6G doped water (the cyan dashed line indicates the boundary of the NBF). (c) Scanning electron micrograph of the core section of the NBF. The cyan dashed circle indicates the doped core region (diameter 2b = 4 µm) and the central two arrows the bore (diameter 2a = 400 nm). (d) Spatial distribution of the intensity (wavelength 650 nm) of the fundamental mode of the NBF shown in (b). The color ranges linearly from 1 (white) to 0 (black).
Fig. 2
Fig. 2 Qualitative comparison of the measured far-field distributions to simulations. (a) Spatial distribution of the intensity at λ0 = 650 nm at various heights above the end-face of the NBF shown in Fig. 1(c) with the distance to fiber surface indicated in each plot by the top right number (in µm). All plots have dimensions of (10 × 10) µm2. The color range spans linearly from 0 (black) to 1 (white), whereas all curves have been normalized to the maximum intensity value of the curve referring to z0 = 7 µm. (b) Corresponding simulations showing the intensity distribution (normalized to the maximum value, color range scales linearly from 0 (black) to 1 (white)) along the propagation direction across one arbitrary transverse direction (labeled as y). The vertical dashed gray lines indicate the distance to the NBF surface at which the measurements shown in Fig. 2(a) have been performed.
Fig. 3
Fig. 3 Quantitative comparison of (a) measured and (b) simulated spatial intensity distributions, both along one arbitrarily chosen transverse line through the center of the respective plot at various heights above the NBF end-face (each of the colored lines refers to a different distance (given in the top legend), 2a = 400 nm). The yellow backgrounds indicate the doped core regions, the light green the domains of the nano-hole. (c) Simulations of a fiber that includes no nano-hole (i.e., a regular step index geometry) while all other parameters are identical to the NBF are presented in Fig. 1(c). All plots refer to a wavelength of 650 nm.
Fig. 4
Fig. 4 Dependence of various lens-related parameters on the diameter of the nano-hole (simulation assume the NBF discussed in Fig. 3). (a) Sketch of a focused beam including the parameters discussed in the subsequent plots. The light red region indicates the domain of the focus. (b) On-axis surface-peak intensity contrast (r = 0) as function of bore diameter for three different bore and environment refractive indices at two different wavelengths (red: nh = 1 (air), blue: nh = 1.33 (water), light green: nh = 1.41 (high index liquid)). The circles and triangles refer to a wavelength of 532 nm and 650 nm, respectively (the lines are guide-to-the-eyes). The inset exemplarily shows the spatial on-axis intensity distribution for four different nano-bore diameters normalized to the maximum intensity of the respective curve (numbers in the legend refer to the bore diameter in units of µm, λ0 = 532 nm, nh = 1.33). (c) Focus depth (purple), focus position (green) and focus width (dark yellow) as function of bore diameter (λ0 = 650 nm, nh = 1). Within the gray region (bore diameter < 200 nm), determining the lens-related parameters was not possible due to weak focusing.
Fig. 5
Fig. 5 Dual-Gaussian beam based toy model resembling the NBF geometry along one transverse line of the fiber cross section. (a) Sketch of two Gaussian beams (GBs) that are emitted by two identical waveguides (WGs) spaced apart by a distance Δ, and interfere after a certain distance. The parameters are defined in the text. (b) On-axis intensity distribution (at r = 0) as function of longitudinal coordinate z for different WG separation distances Δ (defined in the legend; w0 = 2 µm). The grey dashed curve refers to the left-handed term of the right side of Eq. (2). (c) Dependence of on-axis intensity on axial coordinate for different values of beam waist parameter w0 (defined by the legend) assuming Δ = 0.4 µm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

c= I max I 0 I max + I 0 ,
I s (z)=4 ( w 0 w(z) ) 2 exp( d 2 2w (z) 2 ),
w(z)= w 0 1+ ( z z R ) 2 ,
I S 0 =4exp( 1 2 ( Δ w 0 +2 ) 2 ),
E G (r,z)= w 0 w(z) exp[ ( r w(z) ) 2 ]exp[ i( k 0 z+ k 0 r 2 2R(z) +ψ(z) ) ],
w(z)= w 0 1+ ( z z R ) 2 ,
I s (z)= | E G ( r= Δ 2 w 0 ,z )+ E G ( r= Δ 2 + w 0 ,z ) | 2 ,

Metrics