Abstract

The electrochemistry (EC) method was used to synthesize graphene oxide-nickel (GO-Ni) metal organic framework (MOF) that has the thickness of μm-level. The MOF’s thermal stability and hydrogen adsorption and desorption capacity were measured by using an optical fiber Mach-Zehnder interferometer (MZI) sensor. This MZI was fabricated by core-offset fusion splicing one section of single mode fiber (SMF) between two SMFs. Experimental results showed that the GO-Ni MOF could be stabilized, even as the environmental temperature reached 125 °C. The MOF showed good hydrogen adsorption ability for the the MOF and hydrogen molecules’s interactions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hydrogen sulfide gas sensor based on copper/graphene oxide coated multi-node thin-core fiber interferometer

Shaodian Liu, Xiaozhan Yang, and Wenlin Feng
Appl. Opt. 58(9) 2152-2157 (2019)

Graphene oxide-film-coated splitting ratio-adjustable Mach-Zehnder interferometer for relative humidity sensing

S. Deng, H. Meng, X. Wang, X. Fan, Q. Wang, M. Zhou, X. Guo, Z. Wei, F. Wang, C. Tan, and X. Huang
Opt. Express 27(6) 9232-9240 (2019)

Highly sensitive temperature sensor based on an ultra-compact Mach–Zehnder interferometer with side-opened channels

Ming Deng, Leiguang Liu, Yong Zhao, Guolu Yin, and Tao Zhu
Opt. Lett. 42(18) 3549-3552 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Lim, J. W. Yoon, K. Y. Ryu, and M. P. Suh, “Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption,” Angew. Chem. Int. Ed. Engl. 51(39), 9814–9817 (2012).
    [Crossref] [PubMed]
  2. I. Cabria, M. J. Lopez, and J. A. Alonso, “Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity,” Phys. Rev. B Condens. Matter Mater. Phys. 78(20), 205432 (2008).
    [Crossref]
  3. J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, “Hydrogen sorption in functionalized metal-organic frameworks,” J. Am. Chem. Soc. 126(18), 5666–5667 (2004).
    [Crossref] [PubMed]
  4. A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, “Exceptional H2 saturation uptake in microporous metal-organic frameworks,” J. Am. Chem. Soc. 128(11), 3494–3495 (2006).
    [Crossref] [PubMed]
  5. L. J. Murray, M. Dincă, and J. R. Long, “Hydrogen storage in metal-organic frameworks,” Chem. Soc. Rev. 38(5), 1294–1314 (2009).
    [Crossref] [PubMed]
  6. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
    [Crossref] [PubMed]
  7. D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
    [Crossref] [PubMed]
  8. H. Liang, W. Zhang, H. Wang, P. Geng, S. Zhang, S. Gao, C. Yang, and J. Li, “Fiber in-line Mach-Zehnder interferometer based on near-elliptical core photonic crystal fiber for temperature and strain sensing,” Opt. Lett. 38(20), 4019–4022 (2013).
    [Crossref] [PubMed]
  9. B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
    [Crossref] [PubMed]
  10. T. J. Bandosz and C. Petit, “MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts,” Adsorption 17(1), 5–16 (2011).
    [Crossref]
  11. P. Schäfer, M. A. van der Veen, and K. F. Domke, “Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis,” Chem. Commun. (Camb.) 52(25), 4722–4725 (2016).
    [Crossref] [PubMed]
  12. N. Stock and S. Biswas, “Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites,” Chem. Rev. 112(2), 933–969 (2012).
    [Crossref] [PubMed]
  13. M. Jahan, Z. Liu, and K. P. Loh, “A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR,” Adv. Funct. Mater. 23(43), 5363–5372 (2013).
    [Crossref]
  14. C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29(5), 1136–1140 (2012).
    [Crossref]
  15. C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
    [Crossref] [PubMed]
  16. Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).
  17. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
    [Crossref]
  18. A. Demessence, D. M. D’Alessandro, M. L. Foo, and J. R. Long, “Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine,” J. Am. Chem. Soc. 131(25), 8784–8786 (2009).
    [Crossref] [PubMed]

2016 (3)

P. Schäfer, M. A. van der Veen, and K. F. Domke, “Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis,” Chem. Commun. (Camb.) 52(25), 4722–4725 (2016).
[Crossref] [PubMed]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

2014 (1)

2013 (2)

H. Liang, W. Zhang, H. Wang, P. Geng, S. Zhang, S. Gao, C. Yang, and J. Li, “Fiber in-line Mach-Zehnder interferometer based on near-elliptical core photonic crystal fiber for temperature and strain sensing,” Opt. Lett. 38(20), 4019–4022 (2013).
[Crossref] [PubMed]

M. Jahan, Z. Liu, and K. P. Loh, “A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR,” Adv. Funct. Mater. 23(43), 5363–5372 (2013).
[Crossref]

2012 (5)

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29(5), 1136–1140 (2012).
[Crossref]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
[Crossref] [PubMed]

N. Stock and S. Biswas, “Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites,” Chem. Rev. 112(2), 933–969 (2012).
[Crossref] [PubMed]

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

D. W. Lim, J. W. Yoon, K. Y. Ryu, and M. P. Suh, “Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption,” Angew. Chem. Int. Ed. Engl. 51(39), 9814–9817 (2012).
[Crossref] [PubMed]

2011 (1)

T. J. Bandosz and C. Petit, “MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts,” Adsorption 17(1), 5–16 (2011).
[Crossref]

2010 (1)

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

2009 (2)

L. J. Murray, M. Dincă, and J. R. Long, “Hydrogen storage in metal-organic frameworks,” Chem. Soc. Rev. 38(5), 1294–1314 (2009).
[Crossref] [PubMed]

A. Demessence, D. M. D’Alessandro, M. L. Foo, and J. R. Long, “Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine,” J. Am. Chem. Soc. 131(25), 8784–8786 (2009).
[Crossref] [PubMed]

2008 (1)

I. Cabria, M. J. Lopez, and J. A. Alonso, “Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity,” Phys. Rev. B Condens. Matter Mater. Phys. 78(20), 205432 (2008).
[Crossref]

2006 (1)

A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, “Exceptional H2 saturation uptake in microporous metal-organic frameworks,” J. Am. Chem. Soc. 128(11), 3494–3495 (2006).
[Crossref] [PubMed]

2004 (1)

J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, “Hydrogen sorption in functionalized metal-organic frameworks,” J. Am. Chem. Soc. 126(18), 5666–5667 (2004).
[Crossref] [PubMed]

Alonso, J. A.

I. Cabria, M. J. Lopez, and J. A. Alonso, “Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity,” Phys. Rev. B Condens. Matter Mater. Phys. 78(20), 205432 (2008).
[Crossref]

Bandosz, T. J.

T. J. Bandosz and C. Petit, “MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts,” Adsorption 17(1), 5–16 (2011).
[Crossref]

Bielawski, C. W.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Biswas, S.

N. Stock and S. Biswas, “Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites,” Chem. Rev. 112(2), 933–969 (2012).
[Crossref] [PubMed]

Cabria, I.

I. Cabria, M. J. Lopez, and J. A. Alonso, “Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity,” Phys. Rev. B Condens. Matter Mater. Phys. 78(20), 205432 (2008).
[Crossref]

Chen, D.

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

Chen, Y. F.

Cheng, Y.

Chiang, K. S.

Chu, J.

D’Alessandro, D. M.

A. Demessence, D. M. D’Alessandro, M. L. Foo, and J. R. Long, “Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine,” J. Am. Chem. Soc. 131(25), 8784–8786 (2009).
[Crossref] [PubMed]

Demessence, A.

A. Demessence, D. M. D’Alessandro, M. L. Foo, and J. R. Long, “Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine,” J. Am. Chem. Soc. 131(25), 8784–8786 (2009).
[Crossref] [PubMed]

Dinca, M.

L. J. Murray, M. Dincă, and J. R. Long, “Hydrogen storage in metal-organic frameworks,” Chem. Soc. Rev. 38(5), 1294–1314 (2009).
[Crossref] [PubMed]

Domke, K. F.

P. Schäfer, M. A. van der Veen, and K. F. Domke, “Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis,” Chem. Commun. (Camb.) 52(25), 4722–4725 (2016).
[Crossref] [PubMed]

Dong, X.

Dreyer, D. R.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Farha, O. K.

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

Feng, H.

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

Foo, M. L.

A. Demessence, D. M. D’Alessandro, M. L. Foo, and J. R. Long, “Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine,” J. Am. Chem. Soc. 131(25), 8784–8786 (2009).
[Crossref] [PubMed]

Gao, S.

Geng, P.

Gong, H.

Gong, Y.

Howarth, A. J.

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

Hupp, J. T.

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

Jahan, M.

M. Jahan, Z. Liu, and K. P. Loh, “A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR,” Adv. Funct. Mater. 23(43), 5363–5372 (2013).
[Crossref]

Jin, Y.

Li, J.

Li, P.

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

Li, Z.

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

Liang, H.

Lim, D. W.

D. W. Lim, J. W. Yoon, K. Y. Ryu, and M. P. Suh, “Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption,” Angew. Chem. Int. Ed. Engl. 51(39), 9814–9817 (2012).
[Crossref] [PubMed]

Liu, Y.

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

Liu, Z.

M. Jahan, Z. Liu, and K. P. Loh, “A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR,” Adv. Funct. Mater. 23(43), 5363–5372 (2013).
[Crossref]

Loh, K. P.

M. Jahan, Z. Liu, and K. P. Loh, “A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR,” Adv. Funct. Mater. 23(43), 5363–5372 (2013).
[Crossref]

Long, J. R.

L. J. Murray, M. Dincă, and J. R. Long, “Hydrogen storage in metal-organic frameworks,” Chem. Soc. Rev. 38(5), 1294–1314 (2009).
[Crossref] [PubMed]

A. Demessence, D. M. D’Alessandro, M. L. Foo, and J. R. Long, “Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine,” J. Am. Chem. Soc. 131(25), 8784–8786 (2009).
[Crossref] [PubMed]

Lopez, M. J.

I. Cabria, M. J. Lopez, and J. A. Alonso, “Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity,” Phys. Rev. B Condens. Matter Mater. Phys. 78(20), 205432 (2008).
[Crossref]

Lou, W.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Matzger, A. J.

A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, “Exceptional H2 saturation uptake in microporous metal-organic frameworks,” J. Am. Chem. Soc. 128(11), 3494–3495 (2006).
[Crossref] [PubMed]

Millward, A. R.

J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, “Hydrogen sorption in functionalized metal-organic frameworks,” J. Am. Chem. Soc. 126(18), 5666–5667 (2004).
[Crossref] [PubMed]

Murray, L. J.

L. J. Murray, M. Dincă, and J. R. Long, “Hydrogen storage in metal-organic frameworks,” Chem. Soc. Rev. 38(5), 1294–1314 (2009).
[Crossref] [PubMed]

Park, K. S.

J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, “Hydrogen sorption in functionalized metal-organic frameworks,” J. Am. Chem. Soc. 126(18), 5666–5667 (2004).
[Crossref] [PubMed]

Park, S.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Petit, C.

T. J. Bandosz and C. Petit, “MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts,” Adsorption 17(1), 5–16 (2011).
[Crossref]

Rao, Y. J.

Rowsell, J. L. C.

J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, “Hydrogen sorption in functionalized metal-organic frameworks,” J. Am. Chem. Soc. 126(18), 5666–5667 (2004).
[Crossref] [PubMed]

Ruoff, R. S.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Ryu, K. Y.

D. W. Lim, J. W. Yoon, K. Y. Ryu, and M. P. Suh, “Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption,” Angew. Chem. Int. Ed. Engl. 51(39), 9814–9817 (2012).
[Crossref] [PubMed]

Schäfer, P.

P. Schäfer, M. A. van der Veen, and K. F. Domke, “Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis,” Chem. Commun. (Camb.) 52(25), 4722–4725 (2016).
[Crossref] [PubMed]

Shen, C.

Shentu, F.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Stock, N.

N. Stock and S. Biswas, “Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites,” Chem. Rev. 112(2), 933–969 (2012).
[Crossref] [PubMed]

Suh, M. P.

D. W. Lim, J. W. Yoon, K. Y. Ryu, and M. P. Suh, “Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption,” Angew. Chem. Int. Ed. Engl. 51(39), 9814–9817 (2012).
[Crossref] [PubMed]

van der Veen, M. A.

P. Schäfer, M. A. van der Veen, and K. F. Domke, “Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis,” Chem. Commun. (Camb.) 52(25), 4722–4725 (2016).
[Crossref] [PubMed]

Wang, H.

Wang, J.

Wang, T. C.

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

Wang, Y.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Wang, Z. G.

Wong-Foy, A. G.

A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, “Exceptional H2 saturation uptake in microporous metal-organic frameworks,” J. Am. Chem. Soc. 128(11), 3494–3495 (2006).
[Crossref] [PubMed]

Wu, Y.

Yaghi, O. M.

A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, “Exceptional H2 saturation uptake in microporous metal-organic frameworks,” J. Am. Chem. Soc. 128(11), 3494–3495 (2006).
[Crossref] [PubMed]

J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, “Hydrogen sorption in functionalized metal-organic frameworks,” J. Am. Chem. Soc. 126(18), 5666–5667 (2004).
[Crossref] [PubMed]

Yang, C.

Yao, B. C.

Yoon, J. W.

D. W. Lim, J. W. Yoon, K. Y. Ryu, and M. P. Suh, “Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption,” Angew. Chem. Int. Ed. Engl. 51(39), 9814–9817 (2012).
[Crossref] [PubMed]

You, Y.

Zhang, A. Q.

Zhang, S.

Zhang, W.

Zhang, W. L.

Zhong, C.

Zou, X.

Adsorption (1)

T. J. Bandosz and C. Petit, “MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts,” Adsorption 17(1), 5–16 (2011).
[Crossref]

Adv. Funct. Mater. (1)

M. Jahan, Z. Liu, and K. P. Loh, “A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR,” Adv. Funct. Mater. 23(43), 5363–5372 (2013).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

D. W. Lim, J. W. Yoon, K. Y. Ryu, and M. P. Suh, “Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption,” Angew. Chem. Int. Ed. Engl. 51(39), 9814–9817 (2012).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

P. Schäfer, M. A. van der Veen, and K. F. Domke, “Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis,” Chem. Commun. (Camb.) 52(25), 4722–4725 (2016).
[Crossref] [PubMed]

Chem. Rev. (2)

N. Stock and S. Biswas, “Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites,” Chem. Rev. 112(2), 933–969 (2012).
[Crossref] [PubMed]

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

L. J. Murray, M. Dincă, and J. R. Long, “Hydrogen storage in metal-organic frameworks,” Chem. Soc. Rev. 38(5), 1294–1314 (2009).
[Crossref] [PubMed]

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, “Hydrogen sorption in functionalized metal-organic frameworks,” J. Am. Chem. Soc. 126(18), 5666–5667 (2004).
[Crossref] [PubMed]

A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, “Exceptional H2 saturation uptake in microporous metal-organic frameworks,” J. Am. Chem. Soc. 128(11), 3494–3495 (2006).
[Crossref] [PubMed]

A. Demessence, D. M. D’Alessandro, M. L. Foo, and J. R. Long, “Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine,” J. Am. Chem. Soc. 131(25), 8784–8786 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Rev. Mater. (1)

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mater. 1(3), 15018–15031 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

I. Cabria, M. J. Lopez, and J. A. Alonso, “Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity,” Phys. Rev. B Condens. Matter Mater. Phys. 78(20), 205432 (2008).
[Crossref]

Sensor. Actuat. Biol. Chem. (1)

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) GO coating on the fiber MZI surface, (b) XRD pattern of GO sheet.
Fig. 2
Fig. 2 (a) Electrocatalytic experimental setup, (b) GO-Ni MOF structure, (c) Fourier transform infrared spectroscopy (FTIR) of the GO and GO-Ni MOF.
Fig. 3
Fig. 3 SEM of (a) the GO coating and (b) GO-Ni MOF coating on the fiber surface.
Fig. 4
Fig. 4 (a) The mismatch SMF structure coated with GO-Ni MOF, (b) The experimental setup.
Fig. 5
Fig. 5 Transmission spectra variation of the MZI coated with GO-Ni MOF with the temperature (a) increasing from 25 °C to 125 °C, (b) decreasing from 125 °C to 25 °C and (c) decreasing from 155 °C to 25 °C.
Fig. 6
Fig. 6 Hydrogen absorption and desorption capacity of the GO-Ni MOF at atmospheric pressure (a) Interference spectra of hydrogen adsorption, hydrogen concentration rise from 0% to 1% interference spectrum near 1508 nm in 0.04% steps, every step keeps for 3 min. (b) Interference spectra of the desorption of hydrogen concentration under of 50 SCCM air condition. (c) Transmission intensity variations with the increase of hydrogen concentration (d) Transmission intensity variations in 200 minutes under 50 SCCM airflow circumstance after the GO-Ni MOF coating absorbed hydrogen.

Tables (1)

Tables Icon

Table 1 Chemical solution for MOF

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ m = 2 π Δ n e f f m L / λ
I = I 1 + I 2 + 2 I 1 I 2 cos ( Φ m )
λ r = 2 π ( n e f f c o r e n e f f c l a d ) L 2 K + 1

Metrics