Abstract

We propose a flexibly designed photonic system based on ultrathin corrugated metallic “H-bar” waveguide that supports spoof surface plasmon polariton (SPP) at microwave frequencies. Five designs were presented, in order to demonstrate flexibility according to varying height, period, core width, rotation, and shifting on the “H-bar” unit of the waveguide. The propagation constant between two hybrid designs of period and height structure was then shown in order to study the coupling effect. Next, we constructed a coupled waveguide array that followed the Su-Schrieffer-Heeger (SSH) model. This model was constructed by a hybrid design with the identical propagation constant of each waveguide, except it had dimerized spacing. The propagation feature of topological zero mode was then observed as theoretically expected in the dimerized array. Our proposed spoof SPP waveguide array has great flexibility to be used as a powerful experiment platform, particularly in photonic simulation of the quantum or topological phenomena described by Schrödinger equation in condensed matters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz spoof surface-plasmon-polariton subwavelength waveguide

Ying Zhang, Yuehong Xu, Chunxiu Tian, Quan Xu, Xueqian Zhang, Yanfeng Li, Xixiang Zhang, Jiaguang Han, and Weili Zhang
Photon. Res. 6(1) 18-23 (2018)

High-order modes of spoof surface plasmonic wave transmission on thin metal film structure

Xiaoyong Liu, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 21(25) 31155-31165 (2013)

Controlling rejections of spoof surface plasmon polaritons using metamaterial particles

Bai Cao Pan, Zhen Liao, Jie Zhao, and Tie Jun Cui
Opt. Express 22(11) 13940-13950 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [Crossref] [PubMed]
  4. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [Crossref] [PubMed]
  5. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [Crossref] [PubMed]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  7. Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39(13), 3900–3902 (2014).
    [Crossref] [PubMed]
  8. Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
    [Crossref]
  9. S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
    [Crossref] [PubMed]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  11. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  12. F. Garcia-Vidal, L. Martín-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  13. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  14. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  15. D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  16. A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
    [Crossref]
  17. Y. J. Zhou, Q. X. Xiao, and B. Jia Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
    [Crossref] [PubMed]
  18. X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
    [Crossref] [PubMed]
  19. J. J. Xu, J. Y. Yin, H. C. Zhang, and T. J. Cui, “Compact feeding network for array radiations of spoof surface plasmon polaritons,” Sci. Rep. 6(1), 22692 (2016).
    [Crossref] [PubMed]
  20. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  21. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  22. X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
    [Crossref]
  23. W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
    [Crossref] [PubMed]
  24. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
    [Crossref]
  25. X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  26. X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure,” Sci. Rep. 6(1), 20448 (2016).
    [Crossref] [PubMed]
  27. X. Gao, W. Che, and W. Feng, “Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter,” Sci. Rep. 8(1), 2456 (2018).
    [Crossref] [PubMed]
  28. Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
    [Crossref] [PubMed]
  29. Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface plasmon-polariton subwavelength waveguide,” Photon. Res. 6(1), 18–23 (2018).
  30. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction Management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
  31. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
    [Crossref] [PubMed]
  32. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
    [Crossref] [PubMed]
  33. E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
    [Crossref] [PubMed]
  34. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
    [Crossref] [PubMed]
  35. A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
    [Crossref] [PubMed]
  36. Q. Q. Cheng, Y. M. Pan, Q. J. Wang, T. Li, and S. N. Zhu, “Topologically protected interface mode in plasmonic waveguide arrays,” Laser Photonics Rev. 9(4), 392–398 (2015).
    [Crossref]
  37. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
    [Crossref]
  38. B. Xu, T. Li, and S. Zhu, “Simulation of massless Dirac dynamics in plasmonic waveguide arrays,” Opt. Express 26(10), 13416–13424 (2018).
    [Crossref] [PubMed]
  39. J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
    [Crossref] [PubMed]
  40. F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
    [Crossref] [PubMed]
  41. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
    [Crossref] [PubMed]
  42. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
    [Crossref]

2018 (3)

2016 (4)

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure,” Sci. Rep. 6(1), 20448 (2016).
[Crossref] [PubMed]

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

J. J. Xu, J. Y. Yin, H. C. Zhang, and T. J. Cui, “Compact feeding network for array radiations of spoof surface plasmon polaritons,” Sci. Rep. 6(1), 22692 (2016).
[Crossref] [PubMed]

2015 (2)

Q. Q. Cheng, Y. M. Pan, Q. J. Wang, T. Li, and S. N. Zhu, “Topologically protected interface mode in plasmonic waveguide arrays,” Laser Photonics Rev. 9(4), 392–398 (2015).
[Crossref]

Y. J. Zhou, Q. X. Xiao, and B. Jia Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

2014 (7)

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39(13), 3900–3902 (2014).
[Crossref] [PubMed]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
[Crossref] [PubMed]

2013 (3)

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

2012 (3)

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
[Crossref]

2011 (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

2010 (4)

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (2)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (2)

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2006 (3)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

2005 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

F. Garcia-Vidal, L. Martín-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (2)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction Management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).

1998 (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1979 (1)

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

Aitchison, J. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction Management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartal, G.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bleckmann, F.

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

Block, A.

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Chan, C. T.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Che, W.

X. Gao, W. Che, and W. Feng, “Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter,” Sci. Rep. 8(1), 2456 (2018).
[Crossref] [PubMed]

Chen, K.

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Cheng, Q. Q.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Q. Q. Cheng, Y. M. Pan, Q. J. Wang, T. Li, and S. N. Zhu, “Topologically protected interface mode in plasmonic waveguide arrays,” Laser Photonics Rev. 9(4), 392–398 (2015).
[Crossref]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39(13), 3900–3902 (2014).
[Crossref] [PubMed]

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
[Crossref]

Christodoulides, D. N.

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

Cianci, E.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

Cui, T. J.

J. J. Xu, J. Y. Yin, H. C. Zhang, and T. J. Cui, “Compact feeding network for array radiations of spoof surface plasmon polaritons,” Sci. Rep. 6(1), 22692 (2016).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

de Waele, R.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Dreisow, F.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Efremidis, N. K.

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

Eisenberg, H. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction Management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).

Etrich, C.

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

Fan, X.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Feng, W.

X. Gao, W. Che, and W. Feng, “Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter,” Sci. Rep. 8(1), 2456 (2018).
[Crossref] [PubMed]

Feng, Y.

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure,” Sci. Rep. 6(1), 20448 (2016).
[Crossref] [PubMed]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

Feng Ma, H.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Foglietti, V.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

Gao, X.

X. Gao, W. Che, and W. Feng, “Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter,” Sci. Rep. 8(1), 2456 (2018).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Garanovich, I. L.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Garcia-Vidal, F.

F. Garcia-Vidal, L. Martín-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Ghaemi, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gong, Y. X.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Guo, R. Y.

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
[Crossref]

Han, J.

He, Q.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

Heeger, A. J.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

Heinrich, M.

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

Hui Shi, J.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Jia Yang, B.

Y. J. Zhou, Q. X. Xiao, and B. Jia Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Jiang, T.

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure,” Sci. Rep. 6(1), 20448 (2016).
[Crossref] [PubMed]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Jun Cui, T.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Keil, R.

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

Kivshar, Y. S.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Kuipers, L.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

Laporta, P.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

Lee, J. C. W.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Lezec, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, L.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39(13), 3900–3902 (2014).
[Crossref] [PubMed]

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
[Crossref]

Li, T.

B. Xu, T. Li, and S. Zhu, “Simulation of massless Dirac dynamics in plasmonic waveguide arrays,” Opt. Express 26(10), 13416–13424 (2018).
[Crossref] [PubMed]

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Q. Q. Cheng, Y. M. Pan, Q. J. Wang, T. Li, and S. N. Zhu, “Topologically protected interface mode in plasmonic waveguide arrays,” Laser Photonics Rev. 9(4), 392–398 (2015).
[Crossref]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39(13), 3900–3902 (2014).
[Crossref] [PubMed]

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
[Crossref]

Li, Y.

Liao, Z.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Limboeck, T.

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

Linden, S.

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure,” Sci. Rep. 6(1), 20448 (2016).
[Crossref] [PubMed]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

Lobino, M.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

Longhi, S.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

Lumer, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Ma, H. F.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Marangoni, M.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Martín-Cano, D.

Martin-Moreno, L.

Martín-Moreno, L.

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

F. Garcia-Vidal, L. Martín-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Morandotti, R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction Management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).

Moreno, E.

Nesterov, M. L.

Nolte, S.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Pan, Y. M.

Q. Q. Cheng, Y. M. Pan, Q. J. Wang, T. Li, and S. N. Zhu, “Topologically protected interface mode in plasmonic waveguide arrays,” Laser Photonics Rev. 9(4), 392–398 (2015).
[Crossref]

Pendry, J.

F. Garcia-Vidal, L. Martín-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Plotnik, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Podolsky, D.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

Ramponi, R.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

Rechtsman, M. C.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Rockstuhl, C.

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

Schrieffer, J. R.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

Segev, M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Shen, X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Shen, X. P.

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction Management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).

Soergel, E.

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Su, W. P.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

Sukhorukov, A. A.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Sun, C.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Sun, S.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

Sun, W.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

Szameit, A.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tian, C.

Tünnermann, A.

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Verhagen, E.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Wang, G. P.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Wang, Q. J.

Q. Q. Cheng, Y. M. Pan, Q. J. Wang, T. Li, and S. N. Zhu, “Topologically protected interface mode in plasmonic waveguide arrays,” Laser Photonics Rev. 9(4), 392–398 (2015).
[Crossref]

Wang, S. M.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39(13), 3900–3902 (2014).
[Crossref] [PubMed]

Wang, S. W.

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
[Crossref]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
[Crossref]

Wolff, P.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xiang Jiang, W.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Xiao, Q. X.

Y. J. Zhou, Q. X. Xiao, and B. Jia Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Xu, B.

Xu, J. J.

J. J. Xu, J. Y. Yin, H. C. Zhang, and T. J. Cui, “Compact feeding network for array radiations of spoof surface plasmon polaritons,” Sci. Rep. 6(1), 22692 (2016).
[Crossref] [PubMed]

Xu, P.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Xu, Q.

Xu, Y.

Yang, B. J.

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Yin, J. Y.

J. J. Xu, J. Y. Yin, H. C. Zhang, and T. J. Cui, “Compact feeding network for array radiations of spoof surface plasmon polaritons,” Sci. Rep. 6(1), 22692 (2016).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zeuner, J. M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

Zhang, H. C.

J. J. Xu, J. Y. Yin, H. C. Zhang, and T. J. Cui, “Compact feeding network for array radiations of spoof surface plasmon polaritons,” Sci. Rep. 6(1), 22692 (2016).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface plasmon-polariton subwavelength waveguide,” Photon. Res. 6(1), 18–23 (2018).

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface plasmon-polariton subwavelength waveguide,” Photon. Res. 6(1), 18–23 (2018).

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Zhang, Y.

Zhao, J.

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure,” Sci. Rep. 6(1), 20448 (2016).
[Crossref] [PubMed]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

Zhou, L.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Zhou, Y. J.

Y. J. Zhou, Q. X. Xiao, and B. Jia Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
[Crossref] [PubMed]

Zhu, B.

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure,” Sci. Rep. 6(1), 20448 (2016).
[Crossref] [PubMed]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

Zhu, S.

Zhu, S. N.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Q. Q. Cheng, Y. M. Pan, Q. J. Wang, T. Li, and S. N. Zhu, “Topologically protected interface mode in plasmonic waveguide arrays,” Laser Photonics Rev. 9(4), 392–398 (2015).
[Crossref]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39(13), 3900–3902 (2014).
[Crossref] [PubMed]

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
[Crossref]

Appl. Phys. Lett. (4)

Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. W. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101(17), 171116 (2012).
[Crossref]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93(14), 141109 (2008).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. Garcia-Vidal, L. Martín-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Laser Photonics Rev. (3)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

Q. Q. Cheng, Y. M. Pan, Q. J. Wang, T. Li, and S. N. Zhu, “Topologically protected interface mode in plasmonic waveguide arrays,” Laser Photonics Rev. 9(4), 392–398 (2015).
[Crossref]

Light Sci. Appl. (1)

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E. Soergel, C. Rockstuhl, and S. Linden, “Bloch oscillations in plasmonic waveguide arrays,” Nat. Commun. 5(1), 3843 (2014).
[Crossref] [PubMed]

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Nature (6)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rep. (1)

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Phys. Rev. Lett. (9)

J. M. Zeuner, N. K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension,” Phys. Rev. Lett. 109(2), 023602 (2012).
[Crossref] [PubMed]

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices,” Phys. Rev. Lett. 105(14), 143902 (2010).
[Crossref] [PubMed]

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction Management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of Dynamic Localization in Periodically Curved Waveguide Arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[Crossref] [PubMed]

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sci. Rep. (4)

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure,” Sci. Rep. 6(1), 20448 (2016).
[Crossref] [PubMed]

X. Gao, W. Che, and W. Feng, “Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter,” Sci. Rep. 8(1), 2456 (2018).
[Crossref] [PubMed]

J. J. Xu, J. Y. Yin, H. C. Zhang, and T. J. Cui, “Compact feeding network for array radiations of spoof surface plasmon polaritons,” Sci. Rep. 6(1), 22692 (2016).
[Crossref] [PubMed]

Y. J. Zhou, Q. X. Xiao, and B. Jia Yang, “Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances,” Sci. Rep. 5(1), 14819 (2015).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The five flexible designs structure, height (h, HS), period (p, PS), width (w, WS), shifting (SS) and rotating (RS). The dashed line structures are the different parameters of each design. (b) The dispersion relation of height design (h = 5.0 mm to h = 1.5 mm), the light line is denoted by a black line. (c) The dispersion relation of period design (p = 0.5 mm to p = 4.0 mm). The blue dashes line is the operation frequency 17 GHz. (d) and (e) The propagation constant (β, mm−1) distribution in different parameters of height and period designs.
Fig. 2
Fig. 2 Illustration of spoof surface plasmon polaritons in the ultrathin corrugated metallic waveguide. (a) Top view of the sample, two inserts with different height, h1 = 3.5 mm and h2 = 4.5 mm. (b) Ez near-field test of similar propagation evolution for h1 and h2. (c) and (d) From the top to the bottom respectively are the simulation, experimental results and comparison of the electric field along the propagation direction for sample h1 and h2.
Fig. 3
Fig. 3 (a) The coupled waveguides with period structure (PS) and height structure (HS) design, the gap is 2.0 mm and the coupled length is 40 cm. The inserts give detailed experimental sample parameters with match and mismatch propagation constants. (b) The relation between the propagation constant and the height h (from h = 5.0 mm to h = 1.5 mm) for HS and the period p (from p = 0.5 mm to p = 4.0 mm) for PS. The dashed line frame represents the selected parameter in our simulations and experimental tests.
Fig. 4
Fig. 4 (a) The coupling coefficient (κ) of different mismatch value. (b) the transferred efficiency of different mismatch value. (c) and (d) The field and intensity distribution of mismatch value Δβ = 0.053 mm−1 and Δβ = 0.003 mm−1 designed by the PS and HS, respectively.
Fig. 5
Fig. 5 (a) The eigen-value of the 10 waveguides array. (b) The eigen-mode distributions of these two zero-modes. Most of the energy localized at the boundary site. (c) The sample and the result both in CST simulation and near-field measurement where the first waveguide was excited by input the microwave field with frequency 17 GHz. The scale bar is 10 cm.
Fig. 6
Fig. 6 The evolution of topological zero-mode field distribution in hybrid HS and PS-structured SSH configuration. (a) The fabricated sample following the SSH model. (b) The experimental result. The scale bar is 5 cm.
Fig. 7
Fig. 7 The dispersion relation for another three designs (a) width design (w = 0.5 mm to w = 4.0 mm, with step = 0.5 mm), (b) shifting design (s = 0.25 mm to s = 1.5 mm, with step = 0.25 mm), (c) rotating design (θ = 0 to θ = 12.5, with step = 2.5), and the light line is denoted by a black line.
Fig. 8
Fig. 8 Data from experiments and simulations were extracted and Fourier transformed to determine propagation constants. (a) Structural parameters with h = 3.5 mm and p = 2.0 mm, experimental and simulation propagation constant difference Δβ = 0.008 mm−1. (b) Structural parameters with h = 4.5 mm and p = 2.0 mm, the difference Δβ = 0.007 mm−1. (c) Structural parameters with h = 4.0 mm and p = 0.5 mm, the difference Δβ = 0.013 mm−1. (d) Structural parameters with h = 4.0 mm and p = 3.0 mm, the difference Δβ = 0.006 mm−1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| A( z ) | 2 / |A( 0 ) | 2 =1F sin 2 γz
| B( z ) | 2 / |A( 0 ) | 2 =F sin 2 γz

Metrics