Abstract

Herein, we report the fabrication and characterization of a hierarchical TiO2 structure that exhibits reduced surface reflection. The hierarchical structure, which is a moth-eye-shaped array containing nanotubes, was fabricated by dry-etching a TiO2 nanotube layer, by using colloidal lithography. The fabricated structure shows a reduced reflectance, compared with that of non-patterned TiO2 nanotubes. This is because of the graded refractive index of the moth-eye pattern. Furthermore, we investigated the optical properties of gold-decorated moth-eye TiO2 nanotubes and found that the absorption, which was caused by the plasmonic resonance of gold nanostructures, was further enhanced by coupling with the light-trapping effect.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of hierarchical moth-eye structures with durable superhydrophobic property for ultra-broadband visual and mid-infrared applications

Litong Dong, Ziang Zhang, Lu Wang, Zhankun Weng, Mingzhao Ouyang, Yuegang Fu, Jiake Wang, Dayou Li, and Zuobin Wang
Appl. Opt. 58(24) 6706-6712 (2019)

Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials

Young Jin Yoo, Yeong Jae Kim, So-Young Kim, Jong Heon Lee, Kyujung Kim, Joo Hwan Ko, Ji Won Lee, Byoung Hun Lee, and Young Min Song
Opt. Mater. Express 9(11) 4178-4186 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
    [Crossref] [PubMed]
  2. N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
    [Crossref]
  3. H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
    [Crossref]
  4. H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sens. Actuators B Chem. 26(1–3), 71–75 (1995).
    [Crossref]
  5. H. Yang, S. Zhu, and N. Pan, “Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme,” J. Appl. Polym. Sci. 92(5), 3201–3210 (2004).
    [Crossref]
  6. K. Sridharan, E. Jang, Y. M. Park, and T. J. Park, “Superior photostability and photocatalytic activity of ZnO nanoparticles coated with ultrathin TiO2 layers through atomic-layer deposition,” Chemistry 21(52), 19136–19141 (2015).
    [Crossref] [PubMed]
  7. A. G. Scheuermann and P. C. McIntyre, “Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells,” J. Phys. Chem. Lett. 7(14), 2867–2878 (2016).
    [Crossref] [PubMed]
  8. X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
    [Crossref]
  9. W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
    [Crossref] [PubMed]
  10. Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
    [Crossref]
  11. S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
    [Crossref] [PubMed]
  12. S. Jang, S. M. Kang, and M. Choi, “Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering,” ACS Appl. Mater. Interfaces 9(50), 44038–44044 (2017).
    [Crossref] [PubMed]
  13. P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angew. Chem. Int. Ed. Engl. 50(13), 2904–2939 (2011).
    [Crossref] [PubMed]
  14. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
    [Crossref] [PubMed]
  15. X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
    [Crossref] [PubMed]
  16. N. S. Peighambardoust and F. Nasirpouri, “Electropolishing behaviour of pure titanium in perchloric acid–methanol–ethylene glycol mixed solution,” Trans. IMF 92(3), 132–139 (2014).
    [Crossref]
  17. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
    [Crossref] [PubMed]
  18. M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
    [Crossref]
  19. M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
    [Crossref]
  20. A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
    [Crossref]
  21. P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21(1), 1–11 (2013).
    [Crossref] [PubMed]
  22. L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
    [Crossref] [PubMed]
  23. G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
    [Crossref] [PubMed]
  24. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
    [Crossref] [PubMed]
  25. A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9(12), e454 (2017).
    [Crossref]
  26. C. L. Tan, S. J. Jang, and Y. T. Lee, “Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures,” Opt. Express 20(16), 17448–17455 (2012).
    [Crossref] [PubMed]

2018 (2)

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

2017 (4)

W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
[Crossref] [PubMed]

A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9(12), e454 (2017).
[Crossref]

S. Jang, S. M. Kang, and M. Choi, “Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering,” ACS Appl. Mater. Interfaces 9(50), 44038–44044 (2017).
[Crossref] [PubMed]

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

2016 (2)

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

A. G. Scheuermann and P. C. McIntyre, “Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells,” J. Phys. Chem. Lett. 7(14), 2867–2878 (2016).
[Crossref] [PubMed]

2015 (1)

K. Sridharan, E. Jang, Y. M. Park, and T. J. Park, “Superior photostability and photocatalytic activity of ZnO nanoparticles coated with ultrathin TiO2 layers through atomic-layer deposition,” Chemistry 21(52), 19136–19141 (2015).
[Crossref] [PubMed]

2014 (2)

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

N. S. Peighambardoust and F. Nasirpouri, “Electropolishing behaviour of pure titanium in perchloric acid–methanol–ethylene glycol mixed solution,” Trans. IMF 92(3), 132–139 (2014).
[Crossref]

2013 (3)

P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21(1), 1–11 (2013).
[Crossref] [PubMed]

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angew. Chem. Int. Ed. Engl. 50(13), 2904–2939 (2011).
[Crossref] [PubMed]

2009 (1)

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

2007 (2)

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[Crossref]

2006 (1)

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

2005 (1)

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

2004 (1)

H. Yang, S. Zhu, and N. Pan, “Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme,” J. Appl. Polym. Sci. 92(5), 3201–3210 (2004).
[Crossref]

2000 (1)

M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
[Crossref]

1999 (1)

N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
[Crossref]

1995 (1)

H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sens. Actuators B Chem. 26(1–3), 71–75 (1995).
[Crossref]

Anpo, M.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

Baek, S.

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Bagnall, D. M.

Bahnemann, D. W.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

Berger, S.

P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angew. Chem. Int. Ed. Engl. 50(13), 2904–2939 (2011).
[Crossref] [PubMed]

Boden, S. A.

Chan, L. W.

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

Chen, J.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

Chen, W.

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Cheong, H. M.

N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
[Crossref]

Choi, M.

S. Jang, S. M. Kang, and M. Choi, “Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering,” ACS Appl. Mater. Interfaces 9(50), 44038–44044 (2017).
[Crossref] [PubMed]

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

Ebisu, H.

M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
[Crossref]

Einaga, Y.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Frank, A. J.

N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
[Crossref]

Fujishima, A.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Furube, A.

A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9(12), e454 (2017).
[Crossref]

Gao, X.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Garahan, A.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[Crossref]

Geng, J.

Gollon, S.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Gordon, M. J.

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

Grimes, C. A.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Gu, J.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

Guan, D.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Guo, X.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Hashimoto, S.

A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9(12), e454 (2017).
[Crossref]

Hedhili, M. N.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Horiuchi, Y.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

Jang, E.

K. Sridharan, E. Jang, Y. M. Park, and T. J. Park, “Superior photostability and photocatalytic activity of ZnO nanoparticles coated with ultrathin TiO2 layers through atomic-layer deposition,” Chemistry 21(52), 19136–19141 (2015).
[Crossref] [PubMed]

Jang, S.

S. Jang, S. M. Kang, and M. Choi, “Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering,” ACS Appl. Mater. Interfaces 9(50), 44038–44044 (2017).
[Crossref] [PubMed]

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Jang, S. J.

Jimbo, T.

M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
[Crossref]

Jin, R.

Johnson, T.

Jonas, U.

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

Kang, G.

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Kang, S. M.

S. Jang, S. M. Kang, and M. Choi, “Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering,” ACS Appl. Mater. Interfaces 9(50), 44038–44044 (2017).
[Crossref] [PubMed]

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Kappl, M.

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

Kim, K.

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Kong, X.

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Lee, J.-K.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Lee, J.-W.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Lee, Y. T.

Lévy, F.

H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sens. Actuators B Chem. 26(1–3), 71–75 (1995).
[Crossref]

Li, J.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Li, Q.

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

Liang, X.

Liu, C.

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Liu, P.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

Liu, Y.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

Liu, Z.

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Mascarenhas, A.

N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
[Crossref]

Matsuoka, M.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

McIntyre, P. C.

A. G. Scheuermann and P. C. McIntyre, “Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells,” J. Phys. Chem. Lett. 7(14), 2867–2878 (2016).
[Crossref] [PubMed]

Mor, G. K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Morse, D. E.

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

Mosaddeq-ur-Rahman, M.

M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
[Crossref]

Murakami, T.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Nasirpouri, F.

N. S. Peighambardoust and F. Nasirpouri, “Electropolishing behaviour of pure titanium in perchloric acid–methanol–ethylene glycol mixed solution,” Trans. IMF 92(3), 132–139 (2014).
[Crossref]

Padilla, W. J.

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Pan, N.

H. Yang, S. Zhu, and N. Pan, “Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme,” J. Appl. Polym. Sci. 92(5), 3201–3210 (2004).
[Crossref]

Park, H.

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Park, N. G.

N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
[Crossref]

Park, N.-G.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Park, T. J.

K. Sridharan, E. Jang, Y. M. Park, and T. J. Park, “Superior photostability and photocatalytic activity of ZnO nanoparticles coated with ultrathin TiO2 layers through atomic-layer deposition,” Chemistry 21(52), 19136–19141 (2015).
[Crossref] [PubMed]

Park, Y. M.

K. Sridharan, E. Jang, Y. M. Park, and T. J. Park, “Superior photostability and photocatalytic activity of ZnO nanoparticles coated with ultrathin TiO2 layers through atomic-layer deposition,” Chemistry 21(52), 19136–19141 (2015).
[Crossref] [PubMed]

Paulose, M.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Peighambardoust, N. S.

N. S. Peighambardoust and F. Nasirpouri, “Electropolishing behaviour of pure titanium in perchloric acid–methanol–ethylene glycol mixed solution,” Trans. IMF 92(3), 132–139 (2014).
[Crossref]

Pilon, L.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[Crossref]

Prasad, K.

H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sens. Actuators B Chem. 26(1–3), 71–75 (1995).
[Crossref]

Premaratne, M.

Qiu, M.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Retsch, M.

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

Rivera, S.

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

Roy, P.

P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angew. Chem. Int. Ed. Engl. 50(13), 2904–2939 (2011).
[Crossref] [PubMed]

Ruan, S.

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Rukhlenko, I. D.

Sanjinés, R.

H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sens. Actuators B Chem. 26(1–3), 71–75 (1995).
[Crossref]

Sato, O.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Saxena, I.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[Crossref]

Scheuermann, A. G.

A. G. Scheuermann and P. C. McIntyre, “Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells,” J. Phys. Chem. Lett. 7(14), 2867–2878 (2016).
[Crossref] [PubMed]

Schlichthörl, G.

N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
[Crossref]

Schmuki, P.

P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angew. Chem. Int. Ed. Engl. 50(13), 2904–2939 (2011).
[Crossref] [PubMed]

Schneider, J.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

Shankar, K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Shin, D.

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Soga, T.

M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
[Crossref]

Sridharan, K.

K. Sridharan, E. Jang, Y. M. Park, and T. J. Park, “Superior photostability and photocatalytic activity of ZnO nanoparticles coated with ultrathin TiO2 layers through atomic-layer deposition,” Chemistry 21(52), 19136–19141 (2015).
[Crossref] [PubMed]

Stavroulakis, P. I.

Taguchi, M.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Takeuchi, M.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

Tan, C. L.

Tang, H.

H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sens. Actuators B Chem. 26(1–3), 71–75 (1995).
[Crossref]

Umeno, M.

M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
[Crossref]

van de Lagemaat, J.

N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
[Crossref]

Varghese, O. K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Wang, J.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

Wang, P.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Xiao, F.

Xie, J.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

Xu, Q.

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Xue, H.

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Yang, H.

H. Yang, S. Zhu, and N. Pan, “Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme,” J. Appl. Polym. Sci. 92(5), 3201–3210 (2004).
[Crossref]

Yin, J.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[Crossref]

Yoo, D.-E.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Yoon, J.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Yu, D. H.

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

Yu, G.

M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
[Crossref]

Yuan, C.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Zhang, H.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Zhang, J.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

Zhang, L.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Zhang, X.-T.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Zhang, Z.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

Zhao, X. S.

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

Zhou, J.

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Zhou, Z.

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

Zhu, S.

H. Yang, S. Zhu, and N. Pan, “Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme,” J. Appl. Polym. Sci. 92(5), 3201–3210 (2004).
[Crossref]

Zhu, W.

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Jang, S. M. Kang, and M. Choi, “Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering,” ACS Appl. Mater. Interfaces 9(50), 44038–44044 (2017).
[Crossref] [PubMed]

Adv. Mater. (2)

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

G. Kang, H. Park, D. Shin, S. Baek, M. Choi, D. H. Yu, K. Kim, and W. J. Padilla, “Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures,” Adv. Mater. 25(18), 2617–2623 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angew. Chem. Int. Ed. Engl. 50(13), 2904–2939 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Bioinspir. Biomim. (1)

L. W. Chan, D. E. Morse, and M. J. Gordon, “Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching,” Bioinspir. Biomim. 13(4), 041001 (2018).
[Crossref] [PubMed]

Chem. Mater. (1)

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Chem. Rev. (1)

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials,” Chem. Rev. 114(19), 9919–9986 (2014).
[Crossref] [PubMed]

Chemistry (1)

K. Sridharan, E. Jang, Y. M. Park, and T. J. Park, “Superior photostability and photocatalytic activity of ZnO nanoparticles coated with ultrathin TiO2 layers through atomic-layer deposition,” Chemistry 21(52), 19136–19141 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (2)

M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, and M. Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO[sub 2] thin films: Effects of substrate and annealing temperature,” J. Appl. Phys. 88(8), 4634 (2000).
[Crossref]

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[Crossref]

J. Appl. Polym. Sci. (1)

H. Yang, S. Zhu, and N. Pan, “Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme,” J. Appl. Polym. Sci. 92(5), 3201–3210 (2004).
[Crossref]

J. Phys. Chem. B (1)

N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” J. Phys. Chem. B 103(17), 3308–3314 (1999).
[Crossref]

J. Phys. Chem. Lett. (1)

A. G. Scheuermann and P. C. McIntyre, “Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells,” J. Phys. Chem. Lett. 7(14), 2867–2878 (2016).
[Crossref] [PubMed]

Macromol. Chem. Phys. (1)

M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface,” Macromol. Chem. Phys. 210(3–4), 230–241 (2009).
[Crossref]

Nano Lett. (2)

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13(1), 14–20 (2013).
[Crossref] [PubMed]

NPG Asia Mater. (1)

A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9(12), e454 (2017).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

Q. Chen, J. Gu, P. Liu, J. Xie, J. Wang, Y. Liu, and W. Zhu, “Nanowire-based ultra-wideband absorber for visible and ultraviolet light,” Opt. Laser Technol. 105(8), 102–105 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (1)

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, “TiO2 anatase thin films as gas sensors,” Sens. Actuators B Chem. 26(1–3), 71–75 (1995).
[Crossref]

Small (1)

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Trans. IMF (1)

N. S. Peighambardoust and F. Nasirpouri, “Electropolishing behaviour of pure titanium in perchloric acid–methanol–ethylene glycol mixed solution,” Trans. IMF 92(3), 132–139 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of the fabrication process of MPNT structure.
Fig. 2
Fig. 2 SEM image of (a) bare NT, (b) close-packed nanospheres on NT, and NT after RIE etching for (c, d) 30 s, (e, f) 60 s, and (g, h) 90 s. (a, b, c, e, and g): top view; (d, f, and h): 30°- -tilted view. The inset in (f) shows the cross-sectional image of the MPNT layer. Each scale bar represents 500 nm.
Fig. 3
Fig. 3 Material properties of NT and MPNT. (a) XRD patterns (A: Anatase; R: Rutile; Ti: Titanium) and (b) XPS spectrum.
Fig. 4
Fig. 4 (a) Binary SEM image of bare NT with a porosity of 0.25, (b) wavelength-dependent (350–800 nm) refractive index n and extinction coefficient k of bulk TiO2 and NT, and (c) refractive index profiles of bulk, NT, and MPNT structures at 350 nm wavelength in air.
Fig. 5
Fig. 5 (a) FDTD-simulated reflection spectra of bulk, NT, and MPNT structures on Ti substrate. E-field profiles of (b) bulk, (c) NT, and (d) MPNT, at 350 nm wavelength.
Fig. 6
Fig. 6 Reflectance of NT and MPNT on Ti substrate at UV-Vis-NIR wavelengths (300–800 nm).
Fig. 7
Fig. 7 (a) Schematic illustration of MPTNs with three different period. (b) Simulated reflectance of MPNTs on Ti substrate. Electric field profiled of MPTNs with a period of (c) 300 nm, (d) 500 nm, (e) 700 nm, under 350 nm illumination.
Fig. 8
Fig. 8 SEM images and optical photographs of (a) AuNP/MPNT and (b) Au thin film/MPNT. Each scale bar indicates 200 nm. (c) Reflectance spectrum of NT and MPNT with AuNP decoration, and (d) reflectance/absorptance spectrum of Au thin film/MPNT.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n eff 2 = 1 2 [A+ A 2 + B 2 ],
k eff 2 = 1 2 [A+ A 2 + B 2 ],
A=ϕ( n d 2 k d 2 )+(1ϕ)( n c 2 k c 2 ),
B=2 n d k d ϕ+2 n c k c ϕ(1ϕ)

Metrics