Abstract

We demonstrate the stimulated Raman nanoscopy of a small number of molecules in a plasmonic gap, excited without resonant electronic enhancement, measured using near-field photon-induced forces, eliminating the need for far-field optical detection. We imaged 30 nm diameter gold nanoparticles functionalized with a self-assembled monolayer (SAM) of 4-nitrobenzenethiol (4-NBT) molecules. The maximum number of molecules detected by the gold-coated nano-probe at the position of maximum field enhancement could be fewer than about 42 molecules. The molecules were imaged by vibrating an Atomic Force Microscope (AFM) cantilever on its second flexural eigenmode enabling the tip to be controlled much closer to the sample, thereby improving the detected signal-to-noise ratio when compared to vibrating the cantilever on its first flexural eigenmode. We also demonstrate the implementation of stimulated Raman nanoscopy measured using photon-induced force with non-collinear pump and stimulating beams which could have applications in polarization dependent Raman nanoscopy and spectroscopy and pump-probe nano-spectroscopy particularly involving infrared beam/s. We also discuss using photon induced forces as a technique to sort and select best performing metal coated tips for further use in tip-enhanced experiments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-field nanoprobing using Si tip-Au nanoparticle photoinduced force microscopy with 120:1 signal-to-noise ratio, sub-6-nm resolution

Mohsen Rajaei, Mohammad Ali Almajhadi, Jinwei Zeng, and H. Kumar Wickramasinghe
Opt. Express 26(20) 26365-26376 (2018)

Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration

Lingyan Meng, Tengxiang Huang, Xiang Wang, Shu Chen, Zhilin Yang, and Bin Ren
Opt. Express 23(11) 13804-13813 (2015)

Contrast and imaging performance in photo induced force microscopy

Mohammad Almajhadi and H. Kumar Wickramasinghe
Opt. Express 25(22) 26923-26938 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis using tip-enhanced Raman spectroscopy,” Chem. Rev. Lett. 318, 131–136 (2000).
  2. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
    [Crossref] [PubMed]
  3. V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(10), 1336–1337 (2009).
    [Crossref]
  4. B. Pettinger, P. Schambach, C. J. Villagómez, and N. Scott, “Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules,” Annu. Rev. Phys. Chem. 63(1), 379–399 (2012).
    [Crossref] [PubMed]
  5. M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
    [Crossref] [PubMed]
  6. M. Richard-Lacroix, Y. Zhang, Z. Dong, and V. Deckert, “Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception,” Chem. Soc. Rev. 46(13), 3922–3944 (2017).
    [Crossref] [PubMed]
  7. P. Verma, “Tip-enhanced Raman spectroscopy: technique and recent advances,” Chem. Rev. 117(9), 6447–6466 (2017).
    [Crossref] [PubMed]
  8. X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
    [Crossref] [PubMed]
  9. V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
    [Crossref]
  10. J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
    [Crossref] [PubMed]
  11. I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: a microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
    [Crossref] [PubMed]
  12. J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
    [Crossref]
  13. D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
    [Crossref] [PubMed]
  14. I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
    [Crossref] [PubMed]
  15. F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
    [Crossref] [PubMed]
  16. J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
    [Crossref] [PubMed]
  17. W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
    [Crossref] [PubMed]
  18. C.-Y. Chung, J. Hsu, S. Mukamel, and E. O. Potma, “Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase,” Phys. Rev. A 87(3), 033833 (2013).
    [Crossref]
  19. M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008).
    [Crossref] [PubMed]
  20. E. O. Potma and S. Mukamel, “Theory of coherent Raman scattering” in Coherent Raman Scattering Microscopy, J. X. Cheng and X. S. Xie, ed. (CRC, 2013).
  21. J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, “4-Nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS,” Langmuir 17(11), 3454–3459 (2001).
    [Crossref]
  22. T. Reda, “Biomimetische molekulare schaltsysteme auf der basis redoxaktiver substanze,” Ph.D. Dissertation, (Technical University Münich, 1999), 92.
  23. J.-W. Park and J. S. Shumaker-Parry, “Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization,” ACS Nano 9(2), 1665–1682 (2015).
    [Crossref] [PubMed]
  24. J.-W. Park and J. S. Shumaker-Parry, “Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles,” J. Am. Chem. Soc. 136(5), 1907–1921 (2014).
    [Crossref] [PubMed]
  25. F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
    [Crossref]
  26. L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
    [Crossref] [PubMed]
  27. M. O. McAnally, J. M. McMahon, R. P. Van Duyne, and G. C. Schatz, “Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering,” J. Chem. Phys. 145(9), 094106 (2016).
    [Crossref] [PubMed]
  28. R. R. Frontiera, N. L. Gruenke, and R. P. Van Duyne, “Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas,” Nano Lett. 12(11), 5989–5994 (2012).
    [Crossref] [PubMed]
  29. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).
  30. S. A. Jadhav, “Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles,” J. Mater. Chem. 22(13), 5894–5899 (2012).
    [Crossref]
  31. P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
    [Crossref] [PubMed]
  32. C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, “Molecular self-Assembly of aliphatic thiols on gold colloids,” Langmuir 12(16), 3763–3772 (1996).
    [Crossref]
  33. Y. Xue, X. Li, H. Li, and W. Zhang, “Quantifying thiol-gold interactions towards the efficient strength control,” Nat. Commun. 5(1), 4348 (2014).
    [Crossref] [PubMed]
  34. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1998).

2017 (4)

M. Richard-Lacroix, Y. Zhang, Z. Dong, and V. Deckert, “Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception,” Chem. Soc. Rev. 46(13), 3922–3944 (2017).
[Crossref] [PubMed]

P. Verma, “Tip-enhanced Raman spectroscopy: technique and recent advances,” Chem. Rev. 117(9), 6447–6466 (2017).
[Crossref] [PubMed]

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

2016 (5)

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

M. O. McAnally, J. M. McMahon, R. P. Van Duyne, and G. C. Schatz, “Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering,” J. Chem. Phys. 145(9), 094106 (2016).
[Crossref] [PubMed]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

2015 (5)

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

J.-W. Park and J. S. Shumaker-Parry, “Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization,” ACS Nano 9(2), 1665–1682 (2015).
[Crossref] [PubMed]

2014 (3)

J.-W. Park and J. S. Shumaker-Parry, “Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles,” J. Am. Chem. Soc. 136(5), 1907–1921 (2014).
[Crossref] [PubMed]

Y. Xue, X. Li, H. Li, and W. Zhang, “Quantifying thiol-gold interactions towards the efficient strength control,” Nat. Commun. 5(1), 4348 (2014).
[Crossref] [PubMed]

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

2013 (1)

C.-Y. Chung, J. Hsu, S. Mukamel, and E. O. Potma, “Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase,” Phys. Rev. A 87(3), 033833 (2013).
[Crossref]

2012 (3)

B. Pettinger, P. Schambach, C. J. Villagómez, and N. Scott, “Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules,” Annu. Rev. Phys. Chem. 63(1), 379–399 (2012).
[Crossref] [PubMed]

S. A. Jadhav, “Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles,” J. Mater. Chem. 22(13), 5894–5899 (2012).
[Crossref]

R. R. Frontiera, N. L. Gruenke, and R. P. Van Duyne, “Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas,” Nano Lett. 12(11), 5989–5994 (2012).
[Crossref] [PubMed]

2011 (1)

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[Crossref] [PubMed]

2010 (1)

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: a microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

2009 (1)

V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(10), 1336–1337 (2009).
[Crossref]

2008 (1)

2007 (1)

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

2004 (1)

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

2001 (1)

J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, “4-Nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS,” Langmuir 17(11), 3454–3459 (2001).
[Crossref]

2000 (1)

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis using tip-enhanced Raman spectroscopy,” Chem. Rev. Lett. 318, 131–136 (2000).

1996 (1)

C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, “Molecular self-Assembly of aliphatic thiols on gold colloids,” Langmuir 12(16), 3763–3772 (1996).
[Crossref]

1973 (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

Albrecht, T. R.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Almajhadi, M.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

Ananth Tamma, V.

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Apkarian, V. A.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Brocious, J.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Buchanan, L. E.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

Burdett, J.

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Chen, Y.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Christman, K. L.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Chung, C.-Y.

C.-Y. Chung, J. Hsu, S. Mukamel, and E. O. Potma, “Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase,” Phys. Rev. A 87(3), 033833 (2013).
[Crossref]

Deckert, V.

M. Richard-Lacroix, Y. Zhang, Z. Dong, and V. Deckert, “Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception,” Chem. Soc. Rev. 46(13), 3922–3944 (2017).
[Crossref] [PubMed]

V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(10), 1336–1337 (2009).
[Crossref]

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis using tip-enhanced Raman spectroscopy,” Chem. Rev. Lett. 318, 131–136 (2000).

Dong, Z.

M. Richard-Lacroix, Y. Zhang, Z. Dong, and V. Deckert, “Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception,” Chem. Soc. Rev. 46(13), 3922–3944 (2017).
[Crossref] [PubMed]

Eng, L. M.

Ertl, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Esplandiu, M. J.

J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, “4-Nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS,” Langmuir 17(11), 3454–3459 (2001).
[Crossref]

Fishman, D. A.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

Frommer, J.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Frontiera, R. R.

R. R. Frontiera, N. L. Gruenke, and R. P. Van Duyne, “Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas,” Nano Lett. 12(11), 5989–5994 (2012).
[Crossref] [PubMed]

Grafström, S.

Gruenke, N. L.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

R. R. Frontiera, N. L. Gruenke, and R. P. Van Duyne, “Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas,” Nano Lett. 12(11), 5989–5994 (2012).
[Crossref] [PubMed]

Härtling, T.

Helm, M.

Hersam, M. C.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Hsu, J.

C.-Y. Chung, J. Hsu, S. Mukamel, and E. O. Potma, “Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase,” Phys. Rev. A 87(3), 033833 (2013).
[Crossref]

Huang, F.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Huang, S.-C.

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

Huang, T.-X.

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

Hwan Kim, Z.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Jadhav, S. A.

S. A. Jadhav, “Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles,” J. Mater. Chem. 22(13), 5894–5899 (2012).
[Crossref]

Jahng, J.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

Jiang, N.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Kehr, S. C.

Khan, R. M.

Kim, D.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Kim, N.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Kim, W.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Kolb, D. M.

J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, “4-Nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS,” Langmuir 17(11), 3454–3459 (2001).
[Crossref]

Kumar Wickramasinghe, H.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[Crossref] [PubMed]

Ladani, F. T.

Lee, E.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Lee, E. S.

Li, H.

Y. Xue, X. Li, H. Li, and W. Zhang, “Quantifying thiol-gold interactions towards the efficient strength control,” Nat. Commun. 5(1), 4348 (2014).
[Crossref] [PubMed]

Li, M.-H.

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

Li, X.

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

Y. Xue, X. Li, H. Li, and W. Zhang, “Quantifying thiol-gold interactions towards the efficient strength control,” Nat. Commun. 5(1), 4348 (2014).
[Crossref] [PubMed]

Mardy, Z.

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Mayhew, H. E.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

Maynard, H. D.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

McAnally, M. O.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

M. O. McAnally, J. M. McMahon, R. P. Van Duyne, and G. C. Schatz, “Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering,” J. Chem. Phys. 145(9), 094106 (2016).
[Crossref] [PubMed]

McMahon, J. M.

M. O. McAnally, J. M. McMahon, R. P. Van Duyne, and G. C. Schatz, “Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering,” J. Chem. Phys. 145(9), 094106 (2016).
[Crossref] [PubMed]

Mendes, P. M.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Merritt, M. V.

C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, “Molecular self-Assembly of aliphatic thiols on gold colloids,” Langmuir 12(16), 3763–3772 (1996).
[Crossref]

Morrison, W.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Morrison, W. A.

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

Mukamel, S.

C.-Y. Chung, J. Hsu, S. Mukamel, and E. O. Potma, “Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase,” Phys. Rev. A 87(3), 033833 (2013).
[Crossref]

Negru, B.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

Nielsen, J. U.

J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, “4-Nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS,” Langmuir 17(11), 3454–3459 (2001).
[Crossref]

Nowak, D.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Nowak, D. B.

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

Olk, P.

Ouyang, J.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Park, J.-W.

J.-W. Park and J. S. Shumaker-Parry, “Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization,” ACS Nano 9(2), 1665–1682 (2015).
[Crossref] [PubMed]

J.-W. Park and J. S. Shumaker-Parry, “Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles,” J. Am. Chem. Soc. 136(5), 1907–1921 (2014).
[Crossref] [PubMed]

Park, S.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

Parthasarathy, P.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Pettinger, B.

B. Pettinger, P. Schambach, C. J. Villagómez, and N. Scott, “Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules,” Annu. Rev. Phys. Chem. 63(1), 379–399 (2012).
[Crossref] [PubMed]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Picardi, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Potma, E.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Potma, E. O.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

J. Jahng, F. T. Ladani, R. M. Khan, X. Li, E. S. Lee, and E. O. Potma, “Visualizing surface plasmon polaritons by their gradient force,” Opt. Lett. 40(21), 5058–5061 (2015).
[Crossref] [PubMed]

C.-Y. Chung, J. Hsu, S. Mukamel, and E. O. Potma, “Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase,” Phys. Rev. A 87(3), 033833 (2013).
[Crossref]

Pozzi, E. A.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Preece, J. A.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Rajaei, M.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

Rajapaksa, I.

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[Crossref] [PubMed]

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: a microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

Ren, B.

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Richard-Lacroix, M.

M. Richard-Lacroix, Y. Zhang, Z. Dong, and V. Deckert, “Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception,” Chem. Soc. Rev. 46(13), 3922–3944 (2017).
[Crossref] [PubMed]

Ruiz, R.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Sanders, D. P.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Schambach, P.

B. Pettinger, P. Schambach, C. J. Villagómez, and N. Scott, “Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules,” Annu. Rev. Phys. Chem. 63(1), 379–399 (2012).
[Crossref] [PubMed]

Schatz, G. C.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

M. O. McAnally, J. M. McMahon, R. P. Van Duyne, and G. C. Schatz, “Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering,” J. Chem. Phys. 145(9), 094106 (2016).
[Crossref] [PubMed]

Schmidt, K.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Schopf, E.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Schuster, R.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Scott, N.

B. Pettinger, P. Schambach, C. J. Villagómez, and N. Scott, “Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules,” Annu. Rev. Phys. Chem. 63(1), 379–399 (2012).
[Crossref] [PubMed]

Shumaker-Parry, J. S.

J.-W. Park and J. S. Shumaker-Parry, “Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization,” ACS Nano 9(2), 1665–1682 (2015).
[Crossref] [PubMed]

J.-W. Park and J. S. Shumaker-Parry, “Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles,” J. Am. Chem. Soc. 136(5), 1907–1921 (2014).
[Crossref] [PubMed]

Sonntag, M. D.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Stöckle, R. M.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis using tip-enhanced Raman spectroscopy,” Chem. Rev. Lett. 318, 131–136 (2000).

Stoddart, J. F.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Su, H.-S.

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis using tip-enhanced Raman spectroscopy,” Chem. Rev. Lett. 318, 131–136 (2000).

Tamma, V. A.

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

Uenal, K.

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: a microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

Van Duyne, R. P.

M. O. McAnally, J. M. McMahon, R. P. Van Duyne, and G. C. Schatz, “Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering,” J. Chem. Phys. 145(9), 094106 (2016).
[Crossref] [PubMed]

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

R. R. Frontiera, N. L. Gruenke, and R. P. Van Duyne, “Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas,” Nano Lett. 12(11), 5989–5994 (2012).
[Crossref] [PubMed]

Verma, P.

P. Verma, “Tip-enhanced Raman spectroscopy: technique and recent advances,” Chem. Rev. 117(9), 6447–6466 (2017).
[Crossref] [PubMed]

Villagómez, C. J.

B. Pettinger, P. Schambach, C. J. Villagómez, and N. Scott, “Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules,” Annu. Rev. Phys. Chem. 63(1), 379–399 (2012).
[Crossref] [PubMed]

Wan, L.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Wang, X.

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

Weisbecker, C. S.

C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, “Molecular self-Assembly of aliphatic thiols on gold colloids,” Langmuir 12(16), 3763–3772 (1996).
[Crossref]

Wenzel, M. T.

Whitesides, G. M.

C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, “Molecular self-Assembly of aliphatic thiols on gold colloids,” Langmuir 12(16), 3763–3772 (1996).
[Crossref]

Wickramasinghe, H. K.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: a microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

Winnerl, S.

Won Park, J.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Xue, Y.

Y. Xue, X. Li, H. Li, and W. Zhang, “Quantifying thiol-gold interactions towards the efficient strength control,” Nat. Commun. 5(1), 4348 (2014).
[Crossref] [PubMed]

Yampolsky, S.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Yang, Y.

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Zeng, Z.-C.

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

Zenobi, R.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis using tip-enhanced Raman spectroscopy,” Chem. Rev. Lett. 318, 131–136 (2000).

Zhang, W.

Y. Xue, X. Li, H. Li, and W. Zhang, “Quantifying thiol-gold interactions towards the efficient strength control,” Nat. Commun. 5(1), 4348 (2014).
[Crossref] [PubMed]

Zhang, Y.

M. Richard-Lacroix, Y. Zhang, Z. Dong, and V. Deckert, “Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception,” Chem. Soc. Rev. 46(13), 3922–3944 (2017).
[Crossref] [PubMed]

Zhong, J.-H.

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. Jahng, D. A. Fishman, S. Park, D. B. Nowak, W. A. Morrison, H. K. Wickramasinghe, and E. O. Potma, “Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy,” Acc. Chem. Res. 48(10), 2671–2679 (2015).
[Crossref] [PubMed]

ACS Nano (1)

J.-W. Park and J. S. Shumaker-Parry, “Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization,” ACS Nano 9(2), 1665–1682 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (1)

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

B. Pettinger, P. Schambach, C. J. Villagómez, and N. Scott, “Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules,” Annu. Rev. Phys. Chem. 63(1), 379–399 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy of molecular resonance: a microscope principle,” Appl. Phys. Lett. 97(7), 073121 (2010).
[Crossref] [PubMed]

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

I. Rajapaksa and H. Kumar Wickramasinghe, “Raman spectroscopy and microscopy based on mechanical force detection,” Appl. Phys. Lett. 99(16), 161103 (2011).
[Crossref] [PubMed]

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar Wickramasinghe, “Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain,” Appl. Phys. Lett. 108(23), 233107 (2016).
[Crossref]

F. Huang, V. A. Tamma, M. Rajaei, M. Almajhadi, and H. Kumar Wickramasinghe, “Measurement of laterally induced optical forces at the nanoscale,” Appl. Phys. Lett. 110(6), 063103 (2017).
[Crossref]

Bioconjug. Chem. (1)

P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem. 18(6), 1919–1923 (2007).
[Crossref] [PubMed]

Chem. Rev. (1)

P. Verma, “Tip-enhanced Raman spectroscopy: technique and recent advances,” Chem. Rev. 117(9), 6447–6466 (2017).
[Crossref] [PubMed]

Chem. Rev. Lett. (1)

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis using tip-enhanced Raman spectroscopy,” Chem. Rev. Lett. 318, 131–136 (2000).

Chem. Soc. Rev. (2)

X. Wang, S.-C. Huang, T.-X. Huang, H.-S. Su, J.-H. Zhong, Z.-C. Zeng, M.-H. Li, and B. Ren, “Tip-enhanced Raman spectroscopy for surfaces and interfaces,” Chem. Soc. Rev. 46(13), 4020–4041 (2017).
[Crossref] [PubMed]

M. Richard-Lacroix, Y. Zhang, Z. Dong, and V. Deckert, “Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception,” Chem. Soc. Rev. 46(13), 3922–3944 (2017).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

J.-W. Park and J. S. Shumaker-Parry, “Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles,” J. Am. Chem. Soc. 136(5), 1907–1921 (2014).
[Crossref] [PubMed]

J. Chem. Phys. (1)

M. O. McAnally, J. M. McMahon, R. P. Van Duyne, and G. C. Schatz, “Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering,” J. Chem. Phys. 145(9), 094106 (2016).
[Crossref] [PubMed]

J. Mater. Chem. (1)

S. A. Jadhav, “Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles,” J. Mater. Chem. 22(13), 5894–5899 (2012).
[Crossref]

J. Phys. Chem. Lett. (2)

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

V. Deckert, “Tip-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(10), 1336–1337 (2009).
[Crossref]

Langmuir (2)

C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, “Molecular self-Assembly of aliphatic thiols on gold colloids,” Langmuir 12(16), 3763–3772 (1996).
[Crossref]

J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, “4-Nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS,” Langmuir 17(11), 3454–3459 (2001).
[Crossref]

Nano Lett. (1)

R. R. Frontiera, N. L. Gruenke, and R. P. Van Duyne, “Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas,” Nano Lett. 12(11), 5989–5994 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Xue, X. Li, H. Li, and W. Zhang, “Quantifying thiol-gold interactions towards the efficient strength control,” Nat. Commun. 5(1), 4348 (2014).
[Crossref] [PubMed]

Nature (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

C.-Y. Chung, J. Hsu, S. Mukamel, and E. O. Potma, “Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase,” Phys. Rev. A 87(3), 033833 (2013).
[Crossref]

Phys. Rev. Lett. (1)

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Sci. Adv. (1)

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), 1501571 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Huang, V. Ananth Tamma, Z. Mardy, J. Burdett, and H. Kumar Wickramasinghe, “Imaging nanoscale electromagnetic near-field distributions using optical forces,” Sci. Rep. 5(1), 10610 (2015).
[Crossref] [PubMed]

Other (3)

E. O. Potma and S. Mukamel, “Theory of coherent Raman scattering” in Coherent Raman Scattering Microscopy, J. X. Cheng and X. S. Xie, ed. (CRC, 2013).

T. Reda, “Biomimetische molekulare schaltsysteme auf der basis redoxaktiver substanze,” Ph.D. Dissertation, (Technical University Münich, 1999), 92.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the experimental setups used to measure SR-PIFM on gold nanoparticles functionalized with a SAM of 4-NBT molecules. (a) Setup with both the pump and the stimulating beam focused using a bottom objective in an inverted transmission geometry (b) SR-PIFM configuration with the pump focused using a bottom objective in an inverted transmission geometry but with the stimulating beam focusing from the side at a 30° angle using a parabolic mirror.
Fig. 2
Fig. 2 (a) Spontaneous Raman spectra showing the signal enhancement provided by the gold nanoparticles in detecting the 4-NBT. The spectra are for (black) AuNPs functionalized with 4-NBT and drop-cast on a silicon substrate; (blue) Citrate-capped AuNPs drop-cast on silicon substrate without any 4-NBT; (red) 4-NBT molecules drop-cast on a silicon substrate without gold nanoparticles. The Raman peak at 1343 cm−1 chosen for this experiment is highlighted. (b) TEM image of the gold nanoparticles. Inset shows the localized surface plasmon resonance (LSPR) response for the nanoparticles in solution.
Fig. 3
Fig. 3 Spatial distributions of (a) topography and (b) normalized SR-PIFM spectral information of gold nanoparticle functionalized with a SAM of 4-NBT molecules measured simultaneously on resonance at 1343 cm−1 Raman vibrational modes. Spatial distributions of (c) topography and (d) normalized SR-PIFM spectral information of gold nanoparticle functionalized with a SAM of 4-NBT molecules measured simultaneously off resonance at 1420 cm−1 (e) Line trace of topography (a-a’) from Fig. 3(a), (f) Line trace of SR-PIFM (b-b’) from Fig. 3(b).
Fig. 4
Fig. 4 Spatial distributions of (a) topography and (b) normalized SR-PIFM spectral information of AnNPs functionalized with a SAM of 4-NBT molecules measured simultaneously on resonance at 1343 cm−1 Raman vibrational modes. Spatial distributions of (c) topography and (d) normalized SR-PIFM spectral information of the same NBT-functionalized AuNPs measured simultaneously off resonance at 1420 cm−1.
Fig. 5
Fig. 5 Spatial distributions of (a) topography and (b) normalized SR-PIFM spectral information of an AuNP functionalized with a SAM of 4-NBT molecules measured simultaneously on resonance at 1343 cm−1 Raman vibrational modes. Spatial distributions of (c) topography and (d) normalized SR-PIFM spectral information of the NBT-functionalized AuNP measured simultaneously off resonance at 1420 cm−1.
Fig. 6
Fig. 6 Spatial distributions of normalized PIFM maps of focal fields of a linearly polarized, tightly focused optical beam using three different tips in (a)-(c) with peak PIFM ratios of 5, 15 and 50 respectively.
Fig. 7
Fig. 7 (a) Calculated maximum electric field enhancement between the tip and nanoparticle as a function of tip-sample gap, normalized to field intensity of incident excited wave, extracted from a plane 0.5 nm above the gold nanoparticle at the pump and stimulating wavelengths (b) Calculated maximum value of polarization P max (3) using P (3) | E z,PUMP | | E z,STIM | 2 as a function of tip-sample gap and (c) Number of molecules excited by the overlapping pump and stimulating beams, N M = A E ρ M , where the area was computed from COMSOL simulations using procedure outlined in Methods section.
Fig. 8
Fig. 8 (a) Spatial distributions of unity normalized intensity distribution between two gold nanoparticles of diameters 50 nm and 28 nm separated by a gap of 1 nm. (b) Plot of electric fields of the pump and stimulating beams extracted from COMSOL simulations. Also plotted is the product |Ez,PUMP||Ez,STIM|2 which gives diameter of hotspot ~3.7 nm.

Metrics