Abstract

Surface plasmon amplification by stimulated emission of radiation (SPASER) is discovered and used for realizing lasers at nanometer scale. The conventional gain media that are applied in SPASER are solid materials, such as organic dye or semiconductor, which limits the frequency range of SPASER. The free electrons could be considered as a kind of gain medium for emitting radiation. Here, we investigate theoretically the SPASER, which is excited by free electrons. We also demonstrate the tunable, deep-ultraviolet, and ultracompact laser numerically by having free electrons interact with surface plasmon polariton mode supported on metal surface. The output power density could reach about 30 W/μm2 and the wavelength in deep ultraviolet could be widely tuned by varying the electron energy. This work offers a way of realizing integrated free electron laser in the ultraviolet frequency region.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theory and technology of SPASERs

Malin Premaratne and Mark I. Stockman
Adv. Opt. Photon. 9(1) 79-128 (2017)

Terahertz plasmonic laser radiating in an ultra-narrow beam

Chongzhao Wu, Sudeep Khanal, John L. Reno, and Sushil Kumar
Optica 3(7) 734-740 (2016)

Design optimization of spasers considering the degeneracy of excited plasmon modes

Chanaka Rupasinghe, Ivan D. Rukhlenko, and Malin Premaratne
Opt. Express 21(13) 15335-15349 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  3. B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
    [Crossref]
  4. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  5. O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
    [Crossref]
  6. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  7. F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90(14), 141101 (2007).
    [Crossref]
  8. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  9. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  10. R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9(8), 600–604 (2014).
    [Crossref] [PubMed]
  11. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  12. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
    [Crossref]
  13. R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19(9), 8954–8961 (2011).
    [Crossref] [PubMed]
  14. J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
    [Crossref]
  15. D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
    [Crossref] [PubMed]
  16. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
    [Crossref] [PubMed]
  17. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
    [Crossref]
  18. P. A. Čerenkov, “Visible radiation produced by electrons moving in a medium with velocities exceeding that of light,” Phys. Rev. 52(4), 378–379 (1937).
    [Crossref]
  19. I. Frank and I. Tamm, Coherent visible radiation of fast electrons passing through matter (Springer, 1991).
  20. F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
    [Crossref]
  21. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
    [Crossref]
  22. R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
    [Crossref]
  23. P. E. Batson, “Damping of bulk plasmons in small aluminum spheres,” Solid State Commun. 34(6), 477–480 (1980).
    [Crossref]
  24. X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
    [Crossref] [PubMed]
  25. S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
    [Crossref] [PubMed]
  26. I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
    [Crossref]
  27. T. Shiozawa, Classical Relativistic Electrodynamics (Springer, 2004).
  28. D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
    [Crossref]
  29. E. Fisch, A. K. Henning, and J. Walsh, “A Cerenkov microlaser,” IEEE J. Quantum Electron. 27(3), 753–759 (1991).
    [Crossref]
  30. E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
    [Crossref]
  31. Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
    [Crossref]
  32. T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
    [Crossref]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  34. J. T. Donohue and J. Gardelle, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys. Rev. Spec. Top. Accel. Beams 8(6), 060702 (2005).
    [Crossref]
  35. K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B Condens. Matter Mater. Phys. 68(24), 245405 (2003).
    [Crossref]
  36. CST-computer simulation technology, https://www.cst.com .

2017 (3)

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

2016 (1)

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

2015 (1)

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

2014 (3)

R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9(8), 600–604 (2014).
[Crossref] [PubMed]

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

2013 (2)

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

2012 (2)

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

2009 (3)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

2008 (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

2007 (1)

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90(14), 141101 (2007).
[Crossref]

2005 (2)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. T. Donohue and J. Gardelle, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys. Rev. Spec. Top. Accel. Beams 8(6), 060702 (2005).
[Crossref]

2003 (3)

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B Condens. Matter Mater. Phys. 68(24), 245405 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

1991 (1)

E. Fisch, A. K. Henning, and J. Walsh, “A Cerenkov microlaser,” IEEE J. Quantum Electron. 27(3), 753–759 (1991).
[Crossref]

1986 (1)

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

1980 (1)

P. E. Batson, “Damping of bulk plasmons in small aluminum spheres,” Solid State Commun. 34(6), 477–480 (1980).
[Crossref]

1975 (1)

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

1937 (1)

P. A. Čerenkov, “Visible radiation produced by electrons moving in a medium with velocities exceeding that of light,” Phys. Rev. 52(4), 378–379 (1937).
[Crossref]

Arie, A.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Asakawa, M. R.

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Balci, S.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Batson, P. E.

P. E. Batson, “Damping of bulk plasmons in small aluminum spheres,” Solid State Commun. 34(6), 477–480 (1980).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Boller, K.-J.

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

Bussmann, K.

Buzzi, J. M.

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

Carminati, R.

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B Condens. Matter Mater. Phys. 68(24), 245405 (2003).
[Crossref]

Cerenkov, P. A.

P. A. Čerenkov, “Visible radiation produced by electrons moving in a medium with velocities exceeding that of light,” Phys. Rev. 52(4), 378–379 (1937).
[Crossref]

Chen, L.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Cheng, L.

Choa, F.-S.

Cui, K.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Denis, T.

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Donohue, J. T.

J. T. Donohue and J. Gardelle, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys. Rev. Spec. Top. Accel. Beams 8(6), 060702 (2005).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fan, B.

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Feng, J.

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Feng, X.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Fisch, E.

E. Fisch, A. K. Henning, and J. Walsh, “A Cerenkov microlaser,” IEEE J. Quantum Electron. 27(3), 753–759 (1991).
[Crossref]

Flynn, R. A.

Fu, Q.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Garate, E. P.

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Gardelle, J.

J. T. Donohue and J. Gardelle, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys. Rev. Spec. Top. Accel. Beams 8(6), 060702 (2005).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gong, S.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Gong, Y.

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Greffet, J.-J.

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B Condens. Matter Mater. Phys. 68(24), 245405 (2003).
[Crossref]

Han, X. B.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Hashida, M.

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Henning, A. K.

E. Fisch, A. K. Henning, and J. Walsh, “A Cerenkov microlaser,” IEEE J. Quantum Electron. 27(3), 753–759 (1991).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hu, M.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Huang, Y.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90(14), 141101 (2007).
[Crossref]

Jiang, X.

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Joannopoulos, J. D.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Johnson, B.

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

Joulain, K.

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B Condens. Matter Mater. Phys. 68(24), 245405 (2003).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kaminer, I.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

Kim, C. S.

Kim, M.

Kocabas, C.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

Kooi, S. E.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Lamain, H.

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

Lee, J. H. H.

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

Li, D.

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

Li, G.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Li, Y.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9(8), 600–604 (2014).
[Crossref] [PubMed]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Liao, Z. M.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Lieber, C. M.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Liu, F.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90(14), 141101 (2007).
[Crossref]

Liu, S.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Liu, W.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Liu, X.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Long, J. P.

López, J. J.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Ma, R. M.

R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9(8), 600–604 (2014).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Ma, Y.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Mäkinen, A. J.

Meyer, J. R.

Miyamoto, S.

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Moustaizis, S.

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

Mulet, J.-P.

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B Condens. Matter Mater. Phys. 68(24), 245405 (2003).
[Crossref]

Nakajima, M.

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ota, S.

R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9(8), 600–604 (2014).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Peng, J.

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90(14), 141101 (2007).
[Crossref]

Pettit, R. B.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Qian, F.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Rao, Y.

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90(14), 141101 (2007).
[Crossref]

Remez, R.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Rouille, C.

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

Salihoglu, O.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Shen, Y.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Shi, X.

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Shiloh, R.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Silcox, J.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

Skirlo, S. A.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Soljacic, M.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Stockman, M. I.

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Strooisma, A.

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

Sum, T. C.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Sun, G.

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Takano, K.

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Tang, X.

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Tani, M.

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

van der Meer, R.

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

van der Slot, P. J. M.

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

van Dijk, M. W.

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

Vincent, R.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

Vos, W. L.

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

Vurgaftman, I.

Walsh, J.

E. Fisch, A. K. Henning, and J. Walsh, “A Cerenkov microlaser,” IEEE J. Quantum Electron. 27(3), 753–759 (1991).
[Crossref]

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

Wang, M.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

Wang, X.

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Wang, Y.

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Wei, Y.

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wu, X. F.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xiao, L.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

Xiong, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Xu, J.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Yang, S.

R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9(8), 600–604 (2014).
[Crossref] [PubMed]

Yang, Y.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Ye, Y.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

Yu, D. P.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, J. S.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Zhang, P.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Zhang, W.

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90(14), 141101 (2007).
[Crossref]

Zhang, X.

R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9(8), 600–604 (2014).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, Y.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Zhen, B.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Zhong, R.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Zhu, X. L.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90(14), 141101 (2007).
[Crossref]

D. Li, Y. Wang, M. Nakajima, M. Tani, M. Hashida, M. R. Asakawa, Y. Wei, and S. Miyamoto, “Coherent radiation at the fundamental frequency by a Smith-Purcell free-electron laser with dielectric substrate,” Appl. Phys. Lett. 110(15), 151108 (2017).
[Crossref]

E. P. Garate, S. Moustaizis, J. M. Buzzi, C. Rouille, H. Lamain, J. Walsh, and B. Johnson, “Cerenkov maser operation at 1–2 mm wavelengths,” Appl. Phys. Lett. 48(20), 1326–1328 (1986).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Fisch, A. K. Henning, and J. Walsh, “A Cerenkov microlaser,” IEEE J. Quantum Electron. 27(3), 753–759 (1991).
[Crossref]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Nat. Commun. (1)

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9(8), 600–604 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated Cherenkov radiation emitter eliminating the electron velocity threshold,” Nat. Photonics 11(5), 289–292 (2017).
[Crossref]

Nature (3)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Plasmas (1)

Y. Wang, Y. Wei, D. Li, K. Takano, M. Nakajima, X. Jiang, X. Tang, X. Shi, Y. Gong, J. Feng, and S. Miyamoto, “Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material,” Phys. Plasmas 22(8), 083111 (2015).
[Crossref]

Phys. Rev. (2)

P. A. Čerenkov, “Visible radiation produced by electrons moving in a medium with velocities exceeding that of light,” Phys. Rev. 52(4), 378–379 (1937).
[Crossref]

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

T. Denis, M. W. van Dijk, J. H. H. Lee, R. van der Meer, A. Strooisma, P. J. M. van der Slot, W. L. Vos, and K.-J. Boller, “Coherent Cherenkov radiation and laser oscillation in a photonic crystal,” Phys. Rev. A (Coll. Park) 94(5), 053852 (2016).
[Crossref]

Phys. Rev. B (1)

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B Condens. Matter Mater. Phys. 68(24), 245405 (2003).
[Crossref]

Phys. Rev. Lett. (4)

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

Phys. Rev. Spec. Top. Accel. Beams (1)

J. T. Donohue and J. Gardelle, “Simulation of Smith-Purcell radiation using a particle-in-cell code,” Phys. Rev. Spec. Top. Accel. Beams 8(6), 060702 (2005).
[Crossref]

Phys. Rev. X (1)

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljačić, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Solid State Commun. (1)

P. E. Batson, “Damping of bulk plasmons in small aluminum spheres,” Solid State Commun. 34(6), 477–480 (1980).
[Crossref]

Other (4)

T. Shiozawa, Classical Relativistic Electrodynamics (Springer, 2004).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

I. Frank and I. Tamm, Coherent visible radiation of fast electrons passing through matter (Springer, 1991).

CST-computer simulation technology, https://www.cst.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of free electrons excited SPASER. Electron beam flies above Al film along z direction with gap b. Two Al mirrors are located at the two ends of metal slab to form SPP cavity. The interaction of SPP mode in cavity and free electrons results in the stimulated emission of SPP.
Fig. 2
Fig. 2 (a) The two-dimensional model for calculating the mode coupling between evanescent wave around free electron and SPP on metal surface. An electron beam (purple dot line) and a semi-infinite metal are separated by a vacuum gap. (b) Dispersion relation of SPP on metal film (orange curve) and evanescent wave around electron beam (violet line). Around the red intersect point kz0, the SPP is excited by free electrons.
Fig. 3
Fig. 3 Net spatial growth rate g for different frequency (top horizontal axis is wavelength) and current density of 107 A/μm (magenta), 5 × 106 A/μm (blue), 106 A/μm (yellow), 5 × 105 A/μm (green) and 105 A/μm (red), the corresponding current densities for 3D model used in simulation are presented in parentheses. The inset shows frequency of SPP mode excited by electron beam with kinetic energy of electron E0. Here, the gap b = 50 nm and the metal is selected as Al.
Fig. 4
Fig. 4 The output spectra and EM distribution of SPP standing waves at (a) t = 200 fs and (b) t = 2900 fs. The spectrum width at t=200fs is much narrower than that at t=200fs and the intensity of SPP is more than four orders of magnitude higher. With stimulated effect, (main component of electric field, Ez). The SPP mode is excited by electron beam of 100 keV and 1A. The EM field and output spectra in (a) and (b) are normalized to the corresponding maximum value at t = 200 fs.
Fig. 5
Fig. 5 The distribution of electron density along z direction at (a) t = 200 fs and (b) t = 2900 fs. The electron density is normalized to its value at z = 0.
Fig. 6
Fig. 6 The evolution of output power of SPASER. The output power increases exponentially (250 fs-2500 fs) for the stimulated effect and is saturated at a power density around 30 W/μm2 after t = 2500 fs.
Fig. 7
Fig. 7 (a) Dispersion relation of SPP on Al (blue) surface and evanescent wave surrounding electron beam with energy of 500 keV (orange), 100 keV (cyan), 50 keV (red). (b) The simulation results of spectra of SPASER on Al surface generated by electron beam with energy of 500 keV (orange), 100keV (cyan) 50 keV (red) electron beam. The corresponding center wavelengths of SPASER are λ0 = 177 nm, 126 nm, 120 nm, respectively, and the 3 dB spectrum width is less than 0.5 nm.
Fig. 8
Fig. 8 (a) Dispersion relation of SPP on Al (blue), Mg (magenta), Ag (red), Au (orange) surface and evanescent wave surrounding electron beam with energy of 100 keV (cyan). (b) The output spectra of SPASER on Al (blue), Mg (magenta), Ag (red), Au (orange) surface generated by electron beam with energy of 100 keV (red). The center wavelengths of SPASER are λ0 = 126 nm, 155 nm, 351 nm, 443 nm respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε p ( p y k y + ε m h y k y tan h h y b ) + p y h y tanh h y b + ε m = 0 ,
e 2 h y b ( ε m + p y h y ) ( ω v 0 k z ) 2 = ε m ω p 2 γ 2 .
δ k = [ 2 ε m ( ω p γ v 0 ) 2 e 2 h y 0 b k z | p y h y | ] 1 3 e j 2 n π 3 ( n = 0 , 1 , 2 ) ,
α = Im ( δ k ) = 3 2 [ 2 ε m ( ω p γ v 0 ) 2 e 2 h y 0 b k z | p y h y | ] 1 3 .

Metrics