Abstract

Spectral-temporal shaping of quantum light has important applications in quantum communications and photonic quantum information processing. Electro-optic temporal lenses have recently been recognized as a tool for noise-free, efficient spectral bandwidth manipulation of single-photon wavepackets. However, standard electro-optic time lenses based on single-tone modulation exhibit, limited bandwidth modification factors due to material limitations on phase modulation amplitude. Here we numerically investigate the use of complex electro-optic temporal phase modulation patterns for bandwidth compression of light over multiple orders of magnitude and show the feasibility of their use in photonic interfaces for quantum network applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials

Christoffer J. Renner, Randy R. Reibel, Mingzhen Tian, Tiejun Chang, and W. Randall Babbitt
J. Opt. Soc. Am. B 24(12) 2979-2987 (2007)

CW-to-pulse conversion using temporal Talbot array illuminators

Carlos R. Fernández-Pousa, Reza Maram, and José Azaña
Opt. Lett. 42(13) 2427-2430 (2017)

Linear optical pulse compression based on temporal zone plates

Bo Li, Ming Li, Shuqin Lou, and José Azaña
Opt. Express 21(14) 16814-16830 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref] [PubMed]
  2. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
    [Crossref]
  3. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
    [Crossref]
  4. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706–714 (2009).
    [Crossref]
  5. D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
    [Crossref]
  6. A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
    [Crossref] [PubMed]
  7. G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
    [Crossref] [PubMed]
  8. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref] [PubMed]
  9. S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
    [Crossref]
  10. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
    [Crossref] [PubMed]
  11. M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
    [Crossref] [PubMed]
  12. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [Crossref] [PubMed]
  13. L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
    [Crossref] [PubMed]
  14. S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
    [Crossref] [PubMed]
  15. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
    [Crossref]
  16. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
    [Crossref] [PubMed]
  17. M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photon. 11, 53–57 (2017).
    [Crossref]
  18. I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 39, 5677–5680 (2014).
    [Crossref] [PubMed]
  19. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
    [Crossref] [PubMed]
  20. L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
    [Crossref]
  21. S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
    [Crossref]
  22. H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
    [Crossref] [PubMed]
  23. H.-H. Lu, O. D. Odele, D. E. Leaird, and A. M. Weiner, “Arbitrary shaping of biphoton correlations using near-field frequency-to-time mapping,” Opt. Lett. 43, 743–746 (2018).
    [Crossref] [PubMed]
  24. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
    [Crossref]
  25. V. Torres-Company, J. Lancis, and P. Andrés, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
    [Crossref]
  26. R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
    [Crossref]
  27. B. Li, M. Li, S. Lou, and J. Azaña, “Linear optical pulse compression based on temporal zone plates,” Opt. Express 21, 16814–16830 (2013).
    [Crossref] [PubMed]
  28. C. Rapp, “Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal”, in Proc. 2nd European Conf. Satellite Communications, (1991), pp. 179–184.
  29. D. M. Pozar, Microwave electronics (Wiley, 2012).
  30. R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett. 27, 312–314 (2002).
    [Crossref]

2018 (2)

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

H.-H. Lu, O. D. Odele, D. E. Leaird, and A. M. Weiner, “Arbitrary shaping of biphoton correlations using near-field frequency-to-time mapping,” Opt. Lett. 43, 743–746 (2018).
[Crossref] [PubMed]

2017 (5)

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photon. 11, 53–57 (2017).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

2016 (3)

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

2014 (2)

G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
[Crossref] [PubMed]

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 39, 5677–5680 (2014).
[Crossref] [PubMed]

2013 (3)

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

B. Li, M. Li, S. Lou, and J. Azaña, “Linear optical pulse compression based on temporal zone plates,” Opt. Express 21, 16814–16830 (2013).
[Crossref] [PubMed]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

2012 (2)

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

2011 (4)

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
[Crossref] [PubMed]

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref] [PubMed]

V. Torres-Company, J. Lancis, and P. Andrés, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

2010 (2)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

2009 (1)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706–714 (2009).
[Crossref]

2008 (1)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

2002 (1)

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

Agha, I.

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Allgaier, M.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Andrés, P.

V. Torres-Company, J. Lancis, and P. Andrés, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

Ansari, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Ates, S.

Azaña, J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

B. Li, M. Li, S. Lou, and J. Azaña, “Linear optical pulse compression based on temporal zone plates,” Opt. Express 21, 16814–16830 (2013).
[Crossref] [PubMed]

Becher, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Brecht, B.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref] [PubMed]

Buchler, B. C.

G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
[Crossref] [PubMed]

Campbell, G. T.

G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
[Crossref] [PubMed]

Caspani, L.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Cheng, R.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

Chu, S. T.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Cino, A.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Clemmen, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Cortés, L. R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Davanço, M.

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
[Crossref] [PubMed]

Donohue, J. M.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Dürr, S.

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Eckstein, A.

Eigner, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Fan, L.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

Farsi, A.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Fedrizzi, A.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Fernholz, T.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Foreman, S. M.

Foster, M. A.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

Gaeta, A. L.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

Goldschmidt, E. A.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Guo, X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

Hafezi, M.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Hall, J. L.

Han, X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

Harder, G.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Hosseini, M.

G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
[Crossref] [PubMed]

Jachura, M.

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photon. 11, 53–57 (2017).
[Crossref]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

Jensen, K.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kapteyn, H. C.

Karpinski, M.

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photon. 11, 53–57 (2017).
[Crossref]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

Krauter, H.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Kues, M.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Lam, P. K.

G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
[Crossref] [PubMed]

Lancis, J.

V. Torres-Company, J. Lancis, and P. Andrés, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

Langford, N. K.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

Lavoie, J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Leaird, D. E.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

H.-H. Lu, O. D. Odele, D. E. Leaird, and A. M. Weiner, “Arbitrary shaping of biphoton correlations using near-field frequency-to-time mapping,” Opt. Lett. 43, 743–746 (2018).
[Crossref] [PubMed]

Lee, K. C.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Li, B.

Li, M.

Little, B. E.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

Lou, S.

Lougovski, P.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

Lu, H.-H.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

H.-H. Lu, O. D. Odele, D. E. Leaird, and A. M. Weiner, “Arbitrary shaping of biphoton correlations using near-field frequency-to-time mapping,” Opt. Lett. 43, 743–746 (2018).
[Crossref] [PubMed]

Lukens, J. M.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706–714 (2009).
[Crossref]

Ma, L.

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
[Crossref] [PubMed]

Ma, L.-S.

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

McKinstrie, C. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Mittal, S.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Morandotti, R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Moss, D. J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Murnane, M. M.

Nielsen, B. M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Notcutt, M.

Nunn, J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

Odele, O. D.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

H.-H. Lu, O. D. Odele, D. E. Leaird, and A. M. Weiner, “Arbitrary shaping of biphoton correlations using near-field frequency-to-time mapping,” Opt. Lett. 43, 743–746 (2018).
[Crossref] [PubMed]

Orre, V. V.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Owari, M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Peters, N. A.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

Pinel, O.

G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
[Crossref] [PubMed]

Plenio, M. B.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Polzik, E. S.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Poot, M.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

Poppe, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave electronics (Wiley, 2012).

Quiring, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Radic, S.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

Rakher, M. T.

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
[Crossref] [PubMed]

Ralph, T. C.

G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
[Crossref] [PubMed]

Ramelow, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Rapp, C.

C. Rapp, “Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal”, in Proc. 2nd European Conf. Satellite Communications, (1991), pp. 179–184.

Raymer, M. G.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

Reim, K. F.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

Reimer, C.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Rempe, G.

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Resch, K. J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Restelli, A.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

Ricken, R.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Roztocki, P.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Salem, R.

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706–714 (2009).
[Crossref]

Sansoni, L.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Sapienza, L.

Schmidt, S.

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Sciara, S.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Serafini, A.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Shelton, R. K.

Silberhorn, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref] [PubMed]

Slattery, O.

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
[Crossref] [PubMed]

Smith, B. J.

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photon. 11, 53–57 (2017).
[Crossref]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

Söller, C.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

Srinivasan, K.

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 39, 5677–5680 (2014).
[Crossref] [PubMed]

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
[Crossref] [PubMed]

Sussman, B. J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

Tang, H. X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

Tang, X.

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
[Crossref] [PubMed]

Tiarks, D.

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706–714 (2009).
[Crossref]

Torres-Company, V.

V. Torres-Company, J. Lancis, and P. Andrés, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

Walmsley, I. A.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

Wasilewski, W.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Weiner, A. M.

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

H.-H. Lu, O. D. Odele, D. E. Leaird, and A. M. Weiner, “Arbitrary shaping of biphoton correlations using near-field frequency-to-time mapping,” Opt. Lett. 43, 743–746 (2018).
[Crossref] [PubMed]

Wetzel, B.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Wolf, M. M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Wright, L. G.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Wright, L. J.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photon. 11, 53–57 (2017).
[Crossref]

Ye, J.

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Zeilinger, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Zhang, Y.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Zou, C.-L.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

Adv. Opt. Photonics (1)

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

Nat. Commun. (1)

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Nat. Photon. (5)

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photon. 11, 53–57 (2017).
[Crossref]

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photon. 10, 766–770 (2016).
[Crossref]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706–714 (2009).
[Crossref]

Nat. Phys. (1)

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2011).
[Crossref]

Nature (3)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (2)

S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Phys. Rev. Lett. (7)

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett. 107, 083602 (2011).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018).
[Crossref] [PubMed]

G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C. Buchler, and P. K. Lam, “Configurable unitary transformations and linear logic gates using quantum memories,” Phys. Rev. Lett. 113, 063601 (2014).
[Crossref] [PubMed]

Prog. Opt. (1)

V. Torres-Company, J. Lancis, and P. Andrés, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

Sci. Adv. (1)

D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, “Optical π phase shift created with a single-photon pulse,” Sci. Adv. 2, e1600036 (2016).
[Crossref]

Other (2)

C. Rapp, “Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal”, in Proc. 2nd European Conf. Satellite Communications, (1991), pp. 179–184.

D. M. Pozar, Microwave electronics (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Principle of bandwidth conversion. A Gaussian optical pulse is chirped in a second-order dispersive medium. Further it is subjected to a quadratic temporal phase modulation (time lens) in an electro-optic phase modulator (EOPM) driven by a RF generator, resulting in compression of the pulse spectrum. The quadratic temporal phase profile may be replaced by a modulo-2π profile, akin to the Fresnel lens principle. Time t is given in a reference frame traveling at group velocity of a central frequency of the pulse.
Fig. 2
Fig. 2 a) Realistic modulo-2π Fresnel temporal phase profile θ(t) for K ≈ 35.6 GHz2 (corresponding to GDD ≈ 28092 ps2) including spectral responses of a 32-GHz electronic bandwidth arbitrary waveform generator (AWG), two RF amplifiers and EOPM (see text). b) Phase residuals for Fresnel orders of 1 (2π, blue), 2 (4π, orange) and 3 (6π, green). Please note that peaks of residuals for higher Fresnel orders are moved away from the center of the light pulse, while their height scales approximately with the Fresnel order.
Fig. 3
Fig. 3 Spectral intensities of compressed pulses for different modulation depths (Fresnel orders). The input pulse full width at half maximum (FWHM) is 250 GHz and the target FWHM is set to 10 MHz. The output pulse is wider than the target spectral width due to non-idealities of the applied phase, shown in Fig. 2. Intensity is normalized to the input pulse. Inset: detail of the compressed spectrum for 8π modulation depth (solid, red) on top of the input pulse spectrum (dashed, black), normalized to the input pulse. Please notice different horizontal and vertical scales in the inset.
Fig. 4
Fig. 4 a) Efficiency of bandwidth compression for FWHM spectral intensity bandwidth of 250 GHz, for Fresnel orders of 1 (2π, blue, solid), 2 (4π, orange, dashed), 3 (6π, green, dotted), 4 (8π, red, dot-dashed) and 5 (10π, violet, double dot-dashed) using commercially available elements. b) Efficiency for bandwidth compression using an ideal Fresnel modulation with realistic temporal aperture only (other effects neglected). Color coding as in (a). Further gray lines idicate efficiency of for a standard time lens utilizing single-tone modulation with amplitude of 10 rad (solid), 25 rad (dashed) and 40 rad (dotted).
Fig. 5
Fig. 5 Enhancement for a 250 GHz FWHM spectral intensity bandwidth input pulse. The lines correspond to Fresnel order of 1 (2π, blue, solid), 2 (4π, orange, dashed), 3 (6π, green, dotted), 4 (8π, red dot-dashed) and 5 (10π, violet, double dot-dashed). Gray lines show enhancement for sinusoidal, single-tone modulation with amplitude of 10 rad (solid), 25 rad (dashed) and 40 rad (dotted). Losses associated with dispersive propagation of 3 dB per 10000 ps2 were assumed.
Fig. 6
Fig. 6 Dependency of a) efficiency and b) enhancement of the bandwidth converter with the modulation depth of 8π on input and output FWHM spectral intensity bandwidths. In (b) the white cross marks the maximal enhancement in given input and output widths range with value of 449 for compression from 719 GHz to 7.8 MHz. The dashed lines show constant amount of needed dispersion Φ.

Metrics