Abstract

We report on prism coupling of high-quality (high-Q) terahertz (THz) whispering-gallery modes (WGMs) in spherical high resistivity float zone grown silicon (HRFZ-Si) resonators over two octaves from 0.2 THz to 1.1 THz. The WGMs are excited using a HRFZ-Si prism and show unprecedented quality factors of up to 2.2 × 104. A detailed discussion of the phase-and mode-matching criteria of the prism coupling scheme implemented in the continuous wave THz spectroscopy system is presented. The results provide numerous opportunities for passive ultra-broadband high-Q devices operating in the THz frequency range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide

Dominik Walter Vogt and Rainer Leonhardt
Opt. Lett. 42(21) 4359-4362 (2017)

Terahertz whispering gallery mode bubble resonator

Dominik Walter Vogt and Rainer Leonhardt
Optica 4(7) 809-812 (2017)

Anomalous blue-shift of terahertz whispering-gallery modes via dielectric and metallic tuning

Dominik Walter Vogt, Angus Harvey Jones, Harald G. L. Schwefel, and Rainer Leonhardt
Opt. Lett. 44(6) 1319-1322 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Physics: Condens. Matter 18, S601 (2006).
  2. W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
    [Crossref]
  3. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
    [Crossref]
  4. J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25, 4126–4144 (2017).
    [Crossref] [PubMed]
  5. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE 1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
    [Crossref] [PubMed]
  6. A. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33, 348–350 (2008).
    [Crossref] [PubMed]
  7. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
    [Crossref]
  8. P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
    [Crossref]
  9. N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109, 021108 (2016).
    [Crossref]
  10. S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials,” Opt. Express 25, 15938–15946 (2017).
    [Crossref] [PubMed]
  11. I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
    [Crossref] [PubMed]
  12. W. Zhang, A. Charous, M. Nagai, D. M. Mittleman, and R. Mendis, “Extraordinary optical reflection resonances and bound states in the continuum from a periodic array of thin metal plates,” Opt. Express 26, 13195–13204 (2018).
    [Crossref] [PubMed]
  13. J. Xie, X. Zhu, X. Zang, Q. Cheng, L. Chen, and Y. Zhu, “Terahertz integrated device: high-Q silicon dielectric resonators,” Opt. Mater. Express 8, 50–58 (2018).
    [Crossref]
  14. R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
    [Crossref] [PubMed]
  15. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
    [Crossref]
  16. D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12, 947–952 (2017).
    [Crossref]
  17. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Reports 6, 22027 (2016).
    [Crossref]
  18. S. Preu, H. G. L. Schwefel, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, J. D. Zimmerman, and A. C. Gossard, “Coupled whispering gallery mode resonators in the terahertz frequency range,” Opt. Express 16, 7336–7343 (2008).
    [Crossref]
  19. D. W. Vogt and R. Leonhardt, “Ultra-high Q terahertz whispering-gallery modes in a silicon resonator,” APL Photonics 3, 051702 (2018).
    [Crossref]
  20. D. W. Vogt and R. Leonhardt, “Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide,” Opt. Lett. 42, 4359–4362 (2017).
    [Crossref] [PubMed]
  21. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  22. A. B. Matsko, Crystalline whispering gallery mode resonators in optics and photonics (CRC Press, 2009), Chap. 3.
  23. A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrared, Millimeter, Terahertz Waves 36, 269–277 (2015).
    [Crossref]
  24. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16, 15991–15998 (2008).
    [Crossref] [PubMed]
  25. D. W. Vogt, A. H. Jones, and R. Leonhardt, “Thermal tuning of silicon terahertz whispering-gallery mode resonators,” Appl. Phys. Lett. 113, 011101 (2018).
    [Crossref]
  26. G. A. Santamaría-Botello, L. E. G. M. noz, F. Sedlmeir, S. Preu, D. Segovia-Vargas, K. A. Abdalmalak, S. L. Romano, A. G. Lampérez, S. Malzer, G. H. Döhler, H. G. L. Schwefel, and H. B. Weber, “Maximization of the optical intra-cavity power of whispering-gallery mode resonators via coupling prism,” Opt. Express 24, 26503–26514 (2016).
    [Crossref] [PubMed]
  27. D. W. Vogt and R. Leonhardt, “High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using hilbert analysis,” Opt. Express 25, 16860–16866 (2017).
    [Crossref] [PubMed]
  28. D. W. Vogt and R. Leonhardt, “Mode identification for ultra high-Q terahertz whispering-gallery modes,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.74.
  29. R. L. Hightower and C. B. Richardson, “Resonant Mie scattering from a layered sphere,” Appl. Opt. 27, 4850–4855 (1988).
    [Crossref] [PubMed]
  30. D. W. Vogt and R. Leonhardt, “Terahertz whispering gallery mode bubble resonator,” Optica 4, 809–812 (2017).
    [Crossref]
  31. Y. A. Demchenko, I. Bilenko, and M. L. Gorodetsky, “Optimisation of the prism coupling of optical whispering-gallery-mode microcavities,” Quantum Electron. 47, 743 (2017).
    [Crossref]
  32. M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33, 2177–2195 (2016).
    [Crossref]
  33. F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
    [Crossref]

2018 (4)

D. W. Vogt and R. Leonhardt, “Ultra-high Q terahertz whispering-gallery modes in a silicon resonator,” APL Photonics 3, 051702 (2018).
[Crossref]

D. W. Vogt, A. H. Jones, and R. Leonhardt, “Thermal tuning of silicon terahertz whispering-gallery mode resonators,” Appl. Phys. Lett. 113, 011101 (2018).
[Crossref]

J. Xie, X. Zhu, X. Zang, Q. Cheng, L. Chen, and Y. Zhu, “Terahertz integrated device: high-Q silicon dielectric resonators,” Opt. Mater. Express 8, 50–58 (2018).
[Crossref]

W. Zhang, A. Charous, M. Nagai, D. M. Mittleman, and R. Mendis, “Extraordinary optical reflection resonances and bound states in the continuum from a periodic array of thin metal plates,” Opt. Express 26, 13195–13204 (2018).
[Crossref] [PubMed]

2017 (9)

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25, 4126–4144 (2017).
[Crossref] [PubMed]

S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials,” Opt. Express 25, 15938–15946 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using hilbert analysis,” Opt. Express 25, 16860–16866 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “Terahertz whispering gallery mode bubble resonator,” Optica 4, 809–812 (2017).
[Crossref]

D. W. Vogt and R. Leonhardt, “Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide,” Opt. Lett. 42, 4359–4362 (2017).
[Crossref] [PubMed]

Y. A. Demchenko, I. Bilenko, and M. L. Gorodetsky, “Optimisation of the prism coupling of optical whispering-gallery-mode microcavities,” Quantum Electron. 47, 743 (2017).
[Crossref]

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
[Crossref]

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12, 947–952 (2017).
[Crossref]

2016 (4)

2015 (1)

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrared, Millimeter, Terahertz Waves 36, 269–277 (2015).
[Crossref]

2014 (1)

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2009 (3)

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE 1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[Crossref] [PubMed]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[Crossref]

2008 (3)

2007 (1)

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
[Crossref]

2006 (1)

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Physics: Condens. Matter 18, S601 (2006).

1999 (1)

1988 (1)

Abdalmalak, K. A.

Al-Naib, I.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

Al-Naib, I. A.

Astley, V.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[Crossref]

Bilenko, I.

Y. A. Demchenko, I. Bilenko, and M. L. Gorodetsky, “Optimisation of the prism coupling of optical whispering-gallery-mode microcavities,” Quantum Electron. 47, 743 (2017).
[Crossref]

Bingham, A.

Bingham, A. L.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
[Crossref]

Cao, W.

Charous, A.

Chen, L.

J. Xie, X. Zhu, X. Zang, Q. Cheng, L. Chen, and Y. Zhu, “Terahertz integrated device: high-Q silicon dielectric resonators,” Opt. Mater. Express 8, 50–58 (2018).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
[Crossref]

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12, 947–952 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Reports 6, 22027 (2016).
[Crossref]

Cheng, Q.

Christodoulides, D.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
[Crossref]

Demchenko, Y. A.

Y. A. Demchenko, I. Bilenko, and M. L. Gorodetsky, “Optimisation of the prism coupling of optical whispering-gallery-mode microcavities,” Quantum Electron. 47, 743 (2017).
[Crossref]

Deninger, A. J.

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrared, Millimeter, Terahertz Waves 36, 269–277 (2015).
[Crossref]

Döhler, G. H.

Fang, B.

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12, 947–952 (2017).
[Crossref]

Foreman, M. R.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33, 2177–2195 (2016).
[Crossref]

Först, M.

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Physics: Condens. Matter 18, S601 (2006).

George, P. A.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
[Crossref]

Gorodetsky, M. L.

Y. A. Demchenko, I. Bilenko, and M. L. Gorodetsky, “Optimisation of the prism coupling of optical whispering-gallery-mode microcavities,” Quantum Electron. 47, 743 (2017).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[Crossref]

Gossard, A. C.

Grischkowsky, D.

Grischkowsky, D. R.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
[Crossref]

Gu, C.

Guerboukha, H.

Hanson, M.

He, M.

Hebestreit, E.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

Hightower, R. L.

Ilchenko, V. S.

Jones, A. H.

D. W. Vogt, A. H. Jones, and R. Leonhardt, “Thermal tuning of silicon terahertz whispering-gallery mode resonators,” Appl. Phys. Lett. 113, 011101 (2018).
[Crossref]

Koch, M.

Kurz, H.

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Physics: Condens. Matter 18, S601 (2006).

Lampérez, A. G.

Lederer, F.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

Leonhardt, R.

D. W. Vogt, A. H. Jones, and R. Leonhardt, “Thermal tuning of silicon terahertz whispering-gallery mode resonators,” Appl. Phys. Lett. 113, 011101 (2018).
[Crossref]

D. W. Vogt and R. Leonhardt, “Ultra-high Q terahertz whispering-gallery modes in a silicon resonator,” APL Photonics 3, 051702 (2018).
[Crossref]

D. W. Vogt and R. Leonhardt, “High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using hilbert analysis,” Opt. Express 25, 16860–16866 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “Terahertz whispering gallery mode bubble resonator,” Optica 4, 809–812 (2017).
[Crossref]

D. W. Vogt and R. Leonhardt, “Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide,” Opt. Lett. 42, 4359–4362 (2017).
[Crossref] [PubMed]

Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16, 15991–15998 (2008).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “Mode identification for ultra high-Q terahertz whispering-gallery modes,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.74.

Leuchs, G.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33, 2177–2195 (2016).
[Crossref]

Li, J.

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[Crossref]

Liu, Z.

Lo, Y. H.

Malzer, S.

Manolatou, C.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
[Crossref]

Marquardt, C.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

Matsko, A. B.

A. B. Matsko, Crystalline whispering gallery mode resonators in optics and photonics (CRC Press, 2009), Chap. 3.

Mendis, R.

Mittleman, D. M.

Morandotti, R.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

Nagai, M.

Nagel, M.

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Physics: Condens. Matter 18, S601 (2006).

Nallappan, K.

noz, L. E. G. M.

Ozaki, T.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

Preu, S.

Rana, F.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
[Crossref]

Richardson, C. B.

Rockstuhl, C.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

Roggenbuck, A.

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrared, Millimeter, Terahertz Waves 36, 269–277 (2015).
[Crossref]

Romano, S. L.

Santamaría-Botello, G. A.

Schindler, S.

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrared, Millimeter, Terahertz Waves 36, 269–277 (2015).
[Crossref]

Schunk, G.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

Schwefel, H. G.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33, 2177–2195 (2016).
[Crossref]

Schwefel, H. G. L.

Sedlmeir, F.

Segovia-Vargas, D.

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
[Crossref]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109, 021108 (2016).
[Crossref]

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
[Crossref]

R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[Crossref] [PubMed]

Skorobogatiy, M.

Strekalov, D. V.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

Tang, C.

Taylor, A. J.

Vogl, U.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

Vogt, D. W.

D. W. Vogt, A. H. Jones, and R. Leonhardt, “Thermal tuning of silicon terahertz whispering-gallery mode resonators,” Appl. Phys. Lett. 113, 011101 (2018).
[Crossref]

D. W. Vogt and R. Leonhardt, “Ultra-high Q terahertz whispering-gallery modes in a silicon resonator,” APL Photonics 3, 051702 (2018).
[Crossref]

D. W. Vogt and R. Leonhardt, “Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide,” Opt. Lett. 42, 4359–4362 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “Terahertz whispering gallery mode bubble resonator,” Optica 4, 809–812 (2017).
[Crossref]

D. W. Vogt and R. Leonhardt, “High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using hilbert analysis,” Opt. Express 25, 16860–16866 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “Mode identification for ultra high-Q terahertz whispering-gallery modes,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.74.

Wang, B.

Wang, C.

Wang, D.

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12, 947–952 (2017).
[Crossref]

Wang, L.

Wang, L. J.

Weber, H. B.

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Reports 6, 22027 (2016).
[Crossref]

Xie, J.

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
[Crossref]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109, 021108 (2016).
[Crossref]

Yang, S.

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

Zang, X.

J. Xie, X. Zhu, X. Zang, Q. Cheng, L. Chen, and Y. Zhu, “Terahertz integrated device: high-Q silicon dielectric resonators,” Opt. Mater. Express 8, 50–58 (2018).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Reports 6, 22027 (2016).
[Crossref]

Zeltner, R.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

Zhang, W.

Zhu, X.

Zhu, Y.

J. Xie, X. Zhu, X. Zang, Q. Cheng, L. Chen, and Y. Zhu, “Terahertz integrated device: high-Q silicon dielectric resonators,” Opt. Mater. Express 8, 50–58 (2018).
[Crossref]

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12, 947–952 (2017).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Reports 6, 22027 (2016).
[Crossref]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Reports 6, 22027 (2016).
[Crossref]

Zimmerman, J. D.

Adv. Opt. Mater. (1)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5, 1600960 (2017).
[Crossref]

APL Photonics (1)

D. W. Vogt and R. Leonhardt, “Ultra-high Q terahertz whispering-gallery modes in a silicon resonator,” APL Photonics 3, 051702 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. W. Vogt, A. H. Jones, and R. Leonhardt, “Thermal tuning of silicon terahertz whispering-gallery mode resonators,” Appl. Phys. Lett. 113, 011101 (2018).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94, 154104 (2009).
[Crossref]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[Crossref]

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
[Crossref]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109, 021108 (2016).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrared, Millimeter, Terahertz Waves 36, 269–277 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Physics: Condens. Matter (1)

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Physics: Condens. Matter 18, S601 (2006).

Opt. Express (9)

G. A. Santamaría-Botello, L. E. G. M. noz, F. Sedlmeir, S. Preu, D. Segovia-Vargas, K. A. Abdalmalak, S. L. Romano, A. G. Lampérez, S. Malzer, G. H. Döhler, H. G. L. Schwefel, and H. B. Weber, “Maximization of the optical intra-cavity power of whispering-gallery mode resonators via coupling prism,” Opt. Express 24, 26503–26514 (2016).
[Crossref] [PubMed]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25, 4126–4144 (2017).
[Crossref] [PubMed]

S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials,” Opt. Express 25, 15938–15946 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using hilbert analysis,” Opt. Express 25, 16860–16866 (2017).
[Crossref] [PubMed]

S. Preu, H. G. L. Schwefel, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, J. D. Zimmerman, and A. C. Gossard, “Coupled whispering gallery mode resonators in the terahertz frequency range,” Opt. Express 16, 7336–7343 (2008).
[Crossref]

Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16, 15991–15998 (2008).
[Crossref] [PubMed]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE 1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[Crossref] [PubMed]

R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[Crossref] [PubMed]

W. Zhang, A. Charous, M. Nagai, D. M. Mittleman, and R. Mendis, “Extraordinary optical reflection resonances and bound states in the continuum from a periodic array of thin metal plates,” Opt. Express 26, 13195–13204 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. Appl. (1)

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7, 024029 (2017).
[Crossref]

Phys. Rev. Lett. (1)

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112, 183903 (2014).
[Crossref] [PubMed]

Plasmonics (1)

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12, 947–952 (2017).
[Crossref]

Quantum Electron. (1)

Y. A. Demchenko, I. Bilenko, and M. L. Gorodetsky, “Optimisation of the prism coupling of optical whispering-gallery-mode microcavities,” Quantum Electron. 47, 743 (2017).
[Crossref]

Sci. Reports (1)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Reports 6, 22027 (2016).
[Crossref]

Other (2)

A. B. Matsko, Crystalline whispering gallery mode resonators in optics and photonics (CRC Press, 2009), Chap. 3.

D. W. Vogt and R. Leonhardt, “Mode identification for ultra high-Q terahertz whispering-gallery modes,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.74.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the CW THz spectroscopy system with fiber coupled photo-conductive antennas (PCAs) using two-inch diameter s-p THz lenses to focus the THz radiation onto the base of the HRFZ-Si prism. The length of the base of the prism is about 13 mm. The spherical HRFZ-Si WGMR is mounted on a 3D manual translation stage, and the position is observed using two microscope cameras. (b) and (c) show the corresponding top and side view, respectively, of the 8 mm HRFZ-Si sphere next to the HRFZ-Si prism. Please note that (c) is focused on the prism surface.
Fig. 2
Fig. 2 2D simulation of a Gaussian beam (focal spot size: 0.7λ) propagating through the HRFZ-Si prism at 500 GHz (a) without WGMR, (b) with 2 mm diameter HRFZ-Si WGMR, and (c) with 8 mm diameter HRFZ-Si WGR. The solid black lines show the outline of the prism. The mode cross-sections (|E|2) of the fundamental THz WGMs at around 500 GHz in a 2 mm and 8 mm diameter HRFZ-Si WGMR are shown in (d) and (e), respectively. The solid black lines indicates the surfaces of the WGMRs. (f) shows the THz beam profile cross-sections extracted at the lines indicated in (c) with the blue and green solid lines, before and after the prism, respectively.
Fig. 3
Fig. 3 Measured intensity profiles of the THz WGMs in an 8 mm diameter HRFZ-Si spherical WGMR in the frequency ranges from (a) 250 GHz to 260 GHz, (b) 500 GHz to 510 GHz, and (c) 1050 GHz to 1060 GHz. The arrows in (a) indicate the FSRs of the fundamental mode (3.62 GHz) and first higher order radial mode (3.74 GHz).
Fig. 4
Fig. 4 Measured intensity and phase profile (black dots) of the THz WGM at 258.90 GHz [(a) and (b)], 503.74 GHz [(c) and (d)], and 1054.43 GHz [(e) and (f)]. The solid red and blue lines show the fit of Eq. (1) to the intensity and phase profiles, respectively. The corresponding calculated counterpart (intensity or phase) is shown with red and blue dashed lines.
Fig. 5
Fig. 5 Measured intensity and phase profiles of the THz WGM at 1054.66 GHz at strong coupling [(a) and (b)], and weak coupling [(c) and (d)]. The red and blue lines show again the fitted and calculated intensity and phase profiles based on Eq. (1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t = 2 δ c Γ δ o + δ c i ( ω THz ω 0 ) ,

Metrics