Abstract

A novel single-polarization single-mode double-ring hollow-core anti-resonant fiber with two single-polarization regions (1545–1553 nm and 1591–1596 nm) is proposed. Single-polarization guidance is achieved by coupling a polarized fundamental mode and silica mode by using different tube thicknesses. Specifically, when the wavelength is 1550 nm, only a single x-polarized fundamental mode with a low loss of 0.04 dB/m is propagated by a polarization extinction ratio of 17662 and minimum higher-order mode extinction ratio of 393 by optimizing the structural parameters. Furthermore, this fiber also exhibits high-performance bend resistance. The x-polarized FM loss is as low as 0.11 dB/m with single-polarization single-mode guidance when the proposed fiber was bent at a bend radius of 8 cm toward the x-direction.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode, low loss hollow-core anti-resonant fiber designs

Md. Selim Habib, J. E. Antonio-Lopez, Christos Markos, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 27(4) 3824-3836 (2019)

Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

Md. Selim Habib, Ole Bang, and Morten Bache
Opt. Express 24(8) 8429-8436 (2016)

Broadband high birefringence and polarizing hollow core antiresonant fibers

Seyedmohammad Abokhamis Mousavi, Seyed Reza Sandoghchi, David J. Richardson, and Francesco Poletti
Opt. Express 24(20) 22943-22958 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Lin and W. A. Gambling, “Polarization effects in fiber lasers: phenomena, theory and applications,” in IEE Colloquium on Polarization Effects in Optical Switching and Routing Systems (Institution of Engineering and Technology, 1990).
  2. S. Chen, L. Han, A. Schülzgen, H. Li, L. Li, J. V. Moloney, and N. Peyghambarian, “Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure,” Opt. Express 16(17), 13016–13023 (2008).
    [Crossref] [PubMed]
  3. X. Xu, X. Pan, and J. Song, “Analysis of sensing coil polarization properties’ effect on performance of fiber optical gyroscope,” Appl. Opt. 51(5), 621–625 (2012).
    [Crossref] [PubMed]
  4. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19(15), 2606–2611 (1980).
    [Crossref] [PubMed]
  5. N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. 16(11), 1267–1271 (1980).
    [Crossref]
  6. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
    [Crossref] [PubMed]
  7. M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
    [Crossref]
  8. W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, “Fiber-optic gyroscope with polarization-holding fiber,” Opt. Lett. 8(10), 540–542 (1983).
    [Crossref] [PubMed]
  9. W. K. Burns and R. P. Moeller, “Measurement of polarization mode dispersion in high-birefringence fibers,” Opt. Lett. 8(3), 195–197 (1983).
    [Crossref] [PubMed]
  10. M. I. Hasan, M. S. Habib, and S. M. A. Razzak, “An elliptical-shaped core residual dispersion compensating octagonal photonic crystal fiber,” IEEE Photonics Technol. Lett. 26(20), 2047–2050 (2014).
    [Crossref]
  11. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
    [Crossref]
  12. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref] [PubMed]
  13. H. C. Lefevre, “Interferometric fiber optic gyroscope,” in Fiber Optic Sensors: A Critical Review (Society of Photo-Optical Instrumentation Engineers, 1993).
  14. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8(12), 644–646 (1983).
    [Crossref] [PubMed]
  15. Z. Jin, X. Yu, and H. Ma, “Closed-loop resonant fiber optic gyro with an improved digital serrodyne modulation,” Opt. Express 21(22), 26578–26588 (2013).
    [Crossref] [PubMed]
  16. M. A. Terrel, M. J. F. Digonnet, and S. Fan, “Resonant fiber optic gyroscope using an air-core fiber,” J. Lightwave Technol. 30(7), 931–937 (2012).
    [Crossref]
  17. S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24(20), 22943–22958 (2016).
    [Crossref] [PubMed]
  18. M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
    [Crossref]
  19. C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
    [Crossref]
  20. W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33(21), 4497–4503 (2015).
    [Crossref]
  21. S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
    [Crossref]
  22. C. Wei, C. R. Menyuk, and J. Hu, “Polarization-filtering and polarization-maintaining low-loss negative curvature fibers,” Opt. Express 26(8), 9528–9540 (2018).
    [Crossref] [PubMed]
  23. X. Wang, S. Lou, and W. Lu, “Bend-resistant large-mode-area photonic crystal fiber with a triangular-core,” Appl. Opt. 52(18), 4323–4328 (2013).
    [Crossref] [PubMed]
  24. S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref] [PubMed]
  25. M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
    [Crossref] [PubMed]
  26. M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41(21), 5122–5125 (2016).
    [Crossref] [PubMed]
  27. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [Crossref]
  28. X. Huang, W. Qi, D. Ho, K.-T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
    [Crossref] [PubMed]
  29. X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
    [Crossref] [PubMed]

2018 (4)

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

C. Wei, C. R. Menyuk, and J. Hu, “Polarization-filtering and polarization-maintaining low-loss negative curvature fibers,” Opt. Express 26(8), 9528–9540 (2018).
[Crossref] [PubMed]

2017 (3)

X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref] [PubMed]

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref] [PubMed]

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

2016 (4)

2015 (1)

2014 (1)

M. I. Hasan, M. S. Habib, and S. M. A. Razzak, “An elliptical-shaped core residual dispersion compensating octagonal photonic crystal fiber,” IEEE Photonics Technol. Lett. 26(20), 2047–2050 (2014).
[Crossref]

2013 (3)

2012 (2)

2008 (2)

2003 (1)

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

1995 (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

1983 (3)

1980 (2)

A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19(15), 2606–2611 (1980).
[Crossref] [PubMed]

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. 16(11), 1267–1271 (1980).
[Crossref]

Abebe, M.

Akhmediev, N.

Alkeskjold, T. T.

Bang, O.

Belardi, W.

Burns, W. K.

Chang, W.

Chen, S.

Ctyroký, J.

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Digonnet, M. J. F.

Ding, W.

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Ezekiel, S.

Fan, S.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

Gao, S.-F.

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Gu, S.

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Habib, M. S.

M. I. Hasan, M. S. Habib, and S. M. A. Razzak, “An elliptical-shaped core residual dispersion compensating octagonal photonic crystal fiber,” IEEE Photonics Technol. Lett. 26(20), 2047–2050 (2014).
[Crossref]

Han, L.

Hasan, M. I.

Ho, D.

Homola, J.

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Hu, J.

C. Wei, C. R. Menyuk, and J. Hu, “Polarization-filtering and polarization-maintaining low-loss negative curvature fibers,” Opt. Express 26(8), 9528–9540 (2018).
[Crossref] [PubMed]

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Huang, X.

X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref] [PubMed]

X. Huang, W. Qi, D. Ho, K.-T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
[Crossref] [PubMed]

Imoto, N.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. 16(11), 1267–1271 (1980).
[Crossref]

Itoga, E.

Itoh, K.

Jakobsen, C.

Jiang, D.-L.

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Jin, Z.

Joseph Weiblen, R.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Kataura, H.

Lægsgaard, J.

Li, H.

Li, L.

Lou, S.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

X. Wang, S. Lou, and W. Lu, “Bend-resistant large-mode-area photonic crystal fiber with a triangular-core,” Appl. Opt. 52(18), 4323–4328 (2013).
[Crossref] [PubMed]

Lu, W.

Luan, F.

Lyngsø, J. K.

Ma, H.

Maníková, Z.

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Menyuk, C. R.

C. Wei, C. R. Menyuk, and J. Hu, “Polarization-filtering and polarization-maintaining low-loss negative curvature fibers,” Opt. Express 26(8), 9528–9540 (2018).
[Crossref] [PubMed]

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Meyer, R. E.

Michieletto, M.

Moeller, R. P.

Moloney, J. V.

Mousavi, S. A.

Nishizawa, N.

Pan, X.

Petrovich, M. N.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
[Crossref]

Peyghambarian, N.

Piliarik, M.

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Poletti, F.

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24(20), 22943–22958 (2016).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
[Crossref]

Qi, W.

Razzak, S. M. A.

M. I. Hasan, M. S. Habib, and S. M. A. Razzak, “An elliptical-shaped core residual dispersion compensating octagonal photonic crystal fiber,” IEEE Photonics Technol. Lett. 26(20), 2047–2050 (2014).
[Crossref]

Richardson, D. J.

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24(20), 22943–22958 (2016).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
[Crossref]

Sakai, J.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. 16(11), 1267–1271 (1980).
[Crossref]

Sakakibara, Y.

Sandoghchi, S. R.

Schülzgen, A.

Seno, Y.

Smith, A. M.

Song, J.

Stowe, D. W.

Sumimura, K.

Tekippe, V. J.

Terrel, M. A.

Tsuchiya, H.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. 16(11), 1267–1271 (1980).
[Crossref]

Villarruel, C. A.

Wang, P.

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Wang, X.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

X. Wang, S. Lou, and W. Lu, “Bend-resistant large-mode-area photonic crystal fiber with a triangular-core,” Appl. Opt. 52(18), 4323–4328 (2013).
[Crossref] [PubMed]

Wang, Y.-Y.

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Wei, C.

C. Wei, C. R. Menyuk, and J. Hu, “Polarization-filtering and polarization-maintaining low-loss negative curvature fibers,” Opt. Express 26(8), 9528–9540 (2018).
[Crossref] [PubMed]

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Xu, X.

Yan, S.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Yong, K.

X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref] [PubMed]

Yong, K.-T.

Yoo, S.

X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref] [PubMed]

X. Huang, W. Qi, D. Ho, K.-T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
[Crossref] [PubMed]

Yoshizawa, N.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. 16(11), 1267–1271 (1980).
[Crossref]

Yu, X.

Zhang, W.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Zhang, X.

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Zhao, T.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Adv. Opt. Photonics (1)

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. 16(11), 1267–1271 (1980).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. I. Hasan, M. S. Habib, and S. M. A. Razzak, “An elliptical-shaped core residual dispersion compensating octagonal photonic crystal fiber,” IEEE Photonics Technol. Lett. 26(20), 2047–2050 (2014).
[Crossref]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315–340 (2013).
[Crossref]

Nat. Commun. (1)

S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Opt. Express (7)

C. Wei, C. R. Menyuk, and J. Hu, “Polarization-filtering and polarization-maintaining low-loss negative curvature fibers,” Opt. Express 26(8), 9528–9540 (2018).
[Crossref] [PubMed]

X. Huang, W. Qi, D. Ho, K.-T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24(20), 22943–22958 (2016).
[Crossref] [PubMed]

Z. Jin, X. Yu, and H. Ma, “Closed-loop resonant fiber optic gyro with an improved digital serrodyne modulation,” Opt. Express 21(22), 26578–26588 (2013).
[Crossref] [PubMed]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
[Crossref] [PubMed]

S. Chen, L. Han, A. Schülzgen, H. Li, L. Li, J. V. Moloney, and N. Peyghambarian, “Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure,” Opt. Express 16(17), 13016–13023 (2008).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Sci. Rep. (1)

X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Other (2)

J. T. Lin and W. A. Gambling, “Polarization effects in fiber lasers: phenomena, theory and applications,” in IEE Colloquium on Polarization Effects in Optical Switching and Routing Systems (Institution of Engineering and Technology, 1990).

H. C. Lefevre, “Interferometric fiber optic gyroscope,” in Fiber Optic Sensors: A Critical Review (Society of Photo-Optical Instrumentation Engineers, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Cross-section of the proposed fiber (a) and the electric field distributions of the FM at the wavelengths of (b) 2060 nm and (c) 1050 nm.
Fig. 2
Fig. 2 Effective refractive indices and birefringence (a) and electric field distributions (b) of the x-polarized and y-polarized FMs and two SMs; the losses in the x-polarized and y-polarized FMs (c) and corresponding PERs and HOMERs (d) of these modes.
Fig. 3
Fig. 3 Loss ratio of the different modes at the wavelength of 1550 nm.
Fig. 4
Fig. 4 PER as function of R3 and Rc at the wavelength of 1550 nm for R1 = 9 μm (a), 10 μm (b), 11 μm (c), 12 μm (d), 13 μm (e), 14 μm (f), and 15 μm (g).
Fig. 5
Fig. 5 Bend degree of θ (a), critical bend radius and x-polarized FM loss (b) for different θ, and PER, HOMER, and birefringence (c) at different θ with the critical bend radius at the wavelength of 1550 nm
Fig. 6
Fig. 6 The x-polarized FM loss and birefringence (a), and PER and HOMER (b) in 1540–1560 nm for straight condition and bend radius of 8 cm and 15 cm with θ = 0°.
Fig. 7
Fig. 7 Rotation of four tubes with degree of α (a), x-polarized FM loss (b), birefringence (c), and PER and HOMER (d) for ideal condition and α = ± 5°.
Fig. 8
Fig. 8 The x-polarized FM loss (a), birefringence (b), and PER and HOMER (c) for ideal condition and diameter change of ± 10%.
Fig. 9
Fig. 9 Cross-section of the (a) double-layer and (b) triple-layer split cladding HC-ARFs.
Fig. 10
Fig. 10 Electric field distributions of the x-polarized FM (a), y-polarized FM (b), and silica mode (c) in double-layer split cladding HC-ARF and x-polarized FM (d), y-polarized FM (e), and silica mode (f) in the triple-layer split cladding the HC-ARF.
Fig. 11
Fig. 11 The x-polarized FM loss, PER, HOMER (a), and birefringence (b) of double-layer split cladding HC-ARF and the x-polarized FM loss, PER, HOMER (c), and birefringence (d) of triple-layer split cladding HC-ARF.

Tables (2)

Tables Icon

Table 1 Related Parameters and Results at Other Wavelengths

Tables Icon

Table 2 Thickened Thickness and Results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2t n 2 1 m ,
CL=8.686 k 0 Im( n eff ) [dB/m] ,
n eq (x,y) = n(x,y)[1+(xcosθ+ysinθ)/R] ,

Metrics