Abstract

We discover the technique of controlling the flatness in signal amplitude of a multiwavelength Brillouin-Raman fiber laser by employing an air-gap outside of the cavity. The structure that is adjustable within sub-millimeter length behaves as flexible optical feedback that provides modifiable portions of multiple Fresnel reflectivities. This is the main benchmark that allows the efficient management of gain competition between self-lasing modes and Brillouin Stokes waves that is vital for self-flattening initiation. When setting the Brillouin pump wavelength at 1529 nm and the air-gap distance to 0.4 mm, 296 Stokes lines are produced with a channel spacing of 0.158 nm. The lasing bandwidth is 46.60 nm that covers from 1529.16 to 1575.76 nm wavelength. In this case at Raman power of 950 mW, the intense Brillouin pump power of 2 dBm saturates the cascaded higher-orders lasing lines. As a result, the overall peak power discrepancy is maintained at just 1.8 dB where an average optical-signal-to-noise ratio of 20 dB is realized. To date, this is the widest bandwidth with the flattest spectrum attained in multiwavelength fiber lasers that incorporate a single Raman pump unit.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flat amplitude and wide multiwavelength Brillouin/erbium fiber laser based on Fresnel reflection in a micro-air cavity design

A. W. Al-Alimi, A. R. Sarmani, M. H. Al-Mansoori, G. Lakshminarayana, and M. A. Mahdi
Opt. Express 26(3) 3124-3137 (2018)

Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering

Zinan Wang, Han Wu, Mengqiu Fan, Yi Li, Yuan Gong, and Yunjiang Rao
Opt. Express 21(24) 29358-29363 (2013)

S-band multiwavelength ring Brillouin/Raman fiber laser with 20 GHz channel spacing

H. Ahmad, M. Z. Zulkifli, N. A. Hassan, and S. W. Harun
Appl. Opt. 51(11) 1811-1815 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Harun and H. Arof, Current Developments in Optical Fiber Technology (IntechOpen, 2013), Chap. 17.
  2. X. Wang, Y. Yang, M. Liu, Y. Yuan, Y. Sun, Y. Gu, and Y. Yao, “Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers,” Appl. Opt. 55(23), 6475–6479 (2016).
    [Crossref] [PubMed]
  3. Z. Wang, T. Wang, Q. Jia, W. Ma, Q. Su, and P. Zhang, “Triple Brillouin frequency spacing multiwavelength fiber laser with double Brillouin cavities and its application in microwave signal generation,” Appl. Opt. 56(26), 7419–7426 (2017).
    [Crossref] [PubMed]
  4. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
    [Crossref]
  5. K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
    [Crossref] [PubMed]
  6. Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21(24), 29358–29363 (2013).
    [Crossref] [PubMed]
  7. L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
    [Crossref]
  8. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  9. R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8(2), 139–143 (2011).
    [Crossref]
  10. G. Mamdoohi, A. R. Sarmani, M. H. A. Bakar, and M. A. Mahdi, “Switchable multiwavelength Brillouin–Raman fiber laser utilizing an enhanced nonlinear amplifying fiber loop design,” IEEE Photonics J. 10(2), 7201011 (2018).
    [Crossref]
  11. G. Mamdoohi, A. R. Sarmani, M. H. Abu Bakar, and M. A. Mahdi, “Effects of Raman pump power distribution on output spectrum in a multi-wavelength BRFL,” Opt. Express 23(20), 25570–25581 (2015).
    [Crossref] [PubMed]
  12. A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
    [Crossref]
  13. N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
    [Crossref]
  14. H. Ahmad, M. Z. Zulkifli, N. A. Hassan, and S. W. Harun, “S-band multiwavelength ring Brillouin/Raman fiber laser with 20 GHz channel spacing,” Appl. Opt. 51(11), 1811–1815 (2012).
    [Crossref] [PubMed]
  15. X. Li, L. Ren, X. Lin, H. Ju, N. Chen, J. Liang, K. Ren, and Y. Xu, “Improved multiple-wavelength Brillouin-Raman fiber laser assisted by four-wave mixing with a micro-air cavity,” Appl. Opt. 54(33), 9919–9924 (2015).
    [Crossref] [PubMed]
  16. Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1600305 (2016).
    [Crossref]
  17. A. W. Al-Alimi, N. A. Cholan, M. H. Yaacob, A. F. Abas, M. T. Alresheedi, and M. A. Mahdi, “Wide bandwidth and flat Multiwavelength Brillouin-erbium fiber laser,” Opt. Express 25(16), 19382–19390 (2017).
    [Crossref] [PubMed]
  18. A. W. Al-Alimi, A. R. Sarmani, M. H. Al-Mansoori, G. Lakshminarayana, and M. A. Mahdi, “Flat amplitude and wide multiwavelength Brillouin/erbium fiber laser based on Fresnel reflection in a micro-air cavity design,” Opt. Express 26(3), 3124–3137 (2018).
    [Crossref] [PubMed]
  19. S. O. Kasap, Optoelectronics and Photonics (Prentice Hall, 2001).
  20. C. Headley, G. Agrawal, Raman Amplification in Fiber Optical Communication Systems, (Academic Press, 2005).
  21. M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
    [Crossref]
  22. J. Tang, J. Sun, T. Chen, and Y. Zhou, “A stable optical comb with double-Brillouin-frequency spacing assisted by multiple four-wave mixing processes,” Opt. Fiber Technol. 17(6), 608–611 (2011).
    [Crossref]
  23. A. Cerqueira S, J. M. C. Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16(4), 2816–2828 (2008).
    [Crossref] [PubMed]
  24. T. H. Russell and W. B. Roh, “Threshold of second-order stimulated Brillouin scattering in optical fiber,” J. Opt. Soc. Am. B 19(10), 2341–2345 (2002).
    [Crossref]
  25. K. D. Park, H. Ryu, W. K. Lee, S. K. Kim, H. S. Moon, and H. S. Suh, “Threshold features of a Brillouin Stokes comb generated in a distributed fiber Raman amplifier,” Opt. Lett. 28(15), 1311–1313 (2003).
    [Crossref] [PubMed]
  26. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
    [Crossref] [PubMed]
  27. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
    [Crossref]
  28. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
    [Crossref] [PubMed]
  29. C. Montes, D. Bahloul, I. Bongrand, J. Botineau, G. Cheval, A. Mamhoud, E. Picholle, and A. Picozzi, “Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers,” J. Opt. Soc. Am. B 16(6), 932–951 (1999).
    [Crossref]

2018 (3)

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
[Crossref]

G. Mamdoohi, A. R. Sarmani, M. H. A. Bakar, and M. A. Mahdi, “Switchable multiwavelength Brillouin–Raman fiber laser utilizing an enhanced nonlinear amplifying fiber loop design,” IEEE Photonics J. 10(2), 7201011 (2018).
[Crossref]

A. W. Al-Alimi, A. R. Sarmani, M. H. Al-Mansoori, G. Lakshminarayana, and M. A. Mahdi, “Flat amplitude and wide multiwavelength Brillouin/erbium fiber laser based on Fresnel reflection in a micro-air cavity design,” Opt. Express 26(3), 3124–3137 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (2)

X. Wang, Y. Yang, M. Liu, Y. Yuan, Y. Sun, Y. Gu, and Y. Yao, “Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers,” Appl. Opt. 55(23), 6475–6479 (2016).
[Crossref] [PubMed]

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1600305 (2016).
[Crossref]

2015 (2)

2014 (1)

A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (3)

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8(2), 139–143 (2011).
[Crossref]

J. Tang, J. Sun, T. Chen, and Y. Zhou, “A stable optical comb with double-Brillouin-frequency spacing assisted by multiple four-wave mixing processes,” Opt. Fiber Technol. 17(6), 608–611 (2011).
[Crossref]

2010 (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

2009 (1)

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

2008 (3)

2006 (1)

2003 (1)

2002 (2)

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

1999 (1)

Abas, A. F.

Abass, A.

A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
[Crossref]

Abdullah, F.

A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
[Crossref]

Abu Bakar, M. H.

Ahmad, H.

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1600305 (2016).
[Crossref]

H. Ahmad, M. Z. Zulkifli, N. A. Hassan, and S. W. Harun, “S-band multiwavelength ring Brillouin/Raman fiber laser with 20 GHz channel spacing,” Appl. Opt. 51(11), 1811–1815 (2012).
[Crossref] [PubMed]

Aidit, S. N.

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1600305 (2016).
[Crossref]

Ajiya, M.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Al-Alimi, A. W.

Ali, M. H.

A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
[Crossref]

Al-Mansoori, M. H.

A. W. Al-Alimi, A. R. Sarmani, M. H. Al-Mansoori, G. Lakshminarayana, and M. A. Mahdi, “Flat amplitude and wide multiwavelength Brillouin/erbium fiber laser based on Fresnel reflection in a micro-air cavity design,” Opt. Express 26(3), 3124–3137 (2018).
[Crossref] [PubMed]

A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
[Crossref]

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8(2), 139–143 (2011).
[Crossref]

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Al-Mashhadani, T. F.

A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
[Crossref]

Alresheedi, M. T.

Anas, S. B. A.

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8(2), 139–143 (2011).
[Crossref]

Ania-Castañón, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[Crossref] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
[Crossref] [PubMed]

Bahloul, D.

Bakar, A. A. A.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

Bakar, M. H. A.

G. Mamdoohi, A. R. Sarmani, M. H. A. Bakar, and M. A. Mahdi, “Switchable multiwavelength Brillouin–Raman fiber laser utilizing an enhanced nonlinear amplifying fiber loop design,” IEEE Photonics J. 10(2), 7201011 (2018).
[Crossref]

Bao, X.

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
[Crossref]

Boggio, J. M. C.

Bongrand, I.

Botineau, J.

Cerqueira S, A.

Chang, J.-S.

Chen, L.

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
[Crossref]

Chen, N.

Chen, T.

J. Tang, J. Sun, T. Chen, and Y. Zhou, “A stable optical comb with double-Brillouin-frequency spacing assisted by multiple four-wave mixing processes,” Opt. Fiber Technol. 17(6), 608–611 (2011).
[Crossref]

Cheval, G.

Cholan, N. A.

Churkin, D. V.

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Fan, M.

Fragnito, H. L.

Gao, S.

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
[Crossref]

Gong, Y.

Gu, Y.

Hambali, N. A. M. A.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Harun, S. W.

Hassan, N. A.

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1600305 (2016).
[Crossref]

H. Ahmad, M. Z. Zulkifli, N. A. Hassan, and S. W. Harun, “S-band multiwavelength ring Brillouin/Raman fiber laser with 20 GHz channel spacing,” Appl. Opt. 51(11), 1811–1815 (2012).
[Crossref] [PubMed]

Hernandez-Figueroa, H. E.

Hitam, S.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Ismagulov, A. E.

Ismail, M. F. B.

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1600305 (2016).
[Crossref]

Jamaludin, M. Z.

A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
[Crossref]

Jia, Q.

Ju, H.

Kablukov, S. I.

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Kim, P.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[Crossref] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Kim, S. K.

Knight, J. C.

Lakshminarayana, G.

Lee, J.-H.

Lee, W. K.

Li, X.

Li, Y.

Liang, J.

Lin, X.

Liu, M.

Ma, W.

Mahdi, M. A.

G. Mamdoohi, A. R. Sarmani, M. H. A. Bakar, and M. A. Mahdi, “Switchable multiwavelength Brillouin–Raman fiber laser utilizing an enhanced nonlinear amplifying fiber loop design,” IEEE Photonics J. 10(2), 7201011 (2018).
[Crossref]

A. W. Al-Alimi, A. R. Sarmani, M. H. Al-Mansoori, G. Lakshminarayana, and M. A. Mahdi, “Flat amplitude and wide multiwavelength Brillouin/erbium fiber laser based on Fresnel reflection in a micro-air cavity design,” Opt. Express 26(3), 3124–3137 (2018).
[Crossref] [PubMed]

A. W. Al-Alimi, N. A. Cholan, M. H. Yaacob, A. F. Abas, M. T. Alresheedi, and M. A. Mahdi, “Wide bandwidth and flat Multiwavelength Brillouin-erbium fiber laser,” Opt. Express 25(16), 19382–19390 (2017).
[Crossref] [PubMed]

G. Mamdoohi, A. R. Sarmani, M. H. Abu Bakar, and M. A. Mahdi, “Effects of Raman pump power distribution on output spectrum in a multi-wavelength BRFL,” Opt. Express 23(20), 25570–25581 (2015).
[Crossref] [PubMed]

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8(2), 139–143 (2011).
[Crossref]

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Mamdoohi, G.

G. Mamdoohi, A. R. Sarmani, M. H. A. Bakar, and M. A. Mahdi, “Switchable multiwavelength Brillouin–Raman fiber laser utilizing an enhanced nonlinear amplifying fiber loop design,” IEEE Photonics J. 10(2), 7201011 (2018).
[Crossref]

G. Mamdoohi, A. R. Sarmani, M. H. Abu Bakar, and M. A. Mahdi, “Effects of Raman pump power distribution on output spectrum in a multi-wavelength BRFL,” Opt. Express 23(20), 25570–25581 (2015).
[Crossref] [PubMed]

Mamhoud, A.

Mezentsev, V. K.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Min, B.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[Crossref] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Mokhtar, M.

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Montes, C.

Moon, H. S.

Park, K. D.

Park, K.-D.

Park, N.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[Crossref] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Picholle, E.

Picozzi, A.

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[Crossref] [PubMed]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
[Crossref] [PubMed]

Rao, Y.

Ren, K.

Ren, L.

Rieznik, A. A.

Roh, W. B.

Russell, T. H.

Ryu, H.

Sahbudin, R. K. Z.

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8(2), 139–143 (2011).
[Crossref]

Sarmani, A. R.

Saxena, B.

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
[Crossref]

Shargh, R. S.

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8(2), 139–143 (2011).
[Crossref]

Shee, Y. G.

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Su, Q.

Suh, H. S.

Sun, J.

J. Tang, J. Sun, T. Chen, and Y. Zhou, “A stable optical comb with double-Brillouin-frequency spacing assisted by multiple four-wave mixing processes,” Opt. Fiber Technol. 17(6), 608–611 (2011).
[Crossref]

Sun, Y.

Tang, J.

J. Tang, J. Sun, T. Chen, and Y. Zhou, “A stable optical comb with double-Brillouin-frequency spacing assisted by multiple four-wave mixing processes,” Opt. Fiber Technol. 17(6), 608–611 (2011).
[Crossref]

Tiu, Z. C.

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1600305 (2016).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Wang, T.

Wang, X.

Wang, Z.

Wu, H.

Xu, Y.

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
[Crossref]

X. Li, L. Ren, X. Lin, H. Ju, N. Chen, J. Liang, K. Ren, and Y. Xu, “Improved multiple-wavelength Brillouin-Raman fiber laser assisted by four-wave mixing with a micro-air cavity,” Appl. Opt. 54(33), 9919–9924 (2015).
[Crossref] [PubMed]

Yaacob, M. H.

Yang, Y.

Yao, Y.

Yuan, Y.

Zhang, L.

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
[Crossref]

Zhang, P.

Zhou, Y.

J. Tang, J. Sun, T. Chen, and Y. Zhou, “A stable optical comb with double-Brillouin-frequency spacing assisted by multiple four-wave mixing processes,” Opt. Fiber Technol. 17(6), 608–611 (2011).
[Crossref]

Zulkifli, M. Z.

Appl. Opt. (4)

Fiber Integr. Opt. (1)

A. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, T. F. Al-Mashhadani, and M. H. Ali, “L-Band multi-wavelength Brillouin–Raman fiber laser with 20-GHz channel spacing,” Fiber Integr. Opt. 33(1–2), 56–67 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1600305 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Multiwavelength coherent Brillouin Random fiber laser with ultrahigh optical signal-to-noise ratio,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900308 (2018).
[Crossref]

IEEE Photonics J. (1)

G. Mamdoohi, A. R. Sarmani, M. H. A. Bakar, and M. A. Mahdi, “Switchable multiwavelength Brillouin–Raman fiber laser utilizing an enhanced nonlinear amplifying fiber loop design,” IEEE Photonics J. 10(2), 7201011 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

Laser Phys. Lett. (2)

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8(2), 139–143 (2011).
[Crossref]

Nat. Photonics (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

J. Tang, J. Sun, T. Chen, and Y. Zhou, “A stable optical comb with double-Brillouin-frequency spacing assisted by multiple four-wave mixing processes,” Opt. Fiber Technol. 17(6), 608–611 (2011).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[Crossref]

Other (3)

S. W. Harun and H. Arof, Current Developments in Optical Fiber Technology (IntechOpen, 2013), Chap. 17.

S. O. Kasap, Optoelectronics and Photonics (Prentice Hall, 2001).

C. Headley, G. Agrawal, Raman Amplification in Fiber Optical Communication Systems, (Academic Press, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental layout of MBRFL with an AG arranged between fiber interfaces I and II.
Fig. 2
Fig. 2 (a) Arrangement for the AG characterization and (b) the optical properties as a function of Lmm.
Fig. 3
Fig. 3 (Above) Forward-pumped multiwavelength fiber laser. (Bottom) Microscopic propagation of Brillouin photons in the fiber waveguide where the Raman gain satisfies Eq. (1). BP: Brillouin pump wave, S1 and S2: Brillouin Stokes waves 1 and 2.
Fig. 4
Fig. 4 Representation of output spectra for (a) the enlarged view at 20 GHz. wavelength spacing and at different AG lengths of (b) 0.05 mm, (c) 0.2 mm and (d) 1 mm (BP power = 2 dBm, BP wavelength = 1529 nm, RPU power = 950 mW).
Fig. 5
Fig. 5 Channels flatness and average output power measured by OSA as a function of Lmm (MBW = 45 nm, BP power = 2 dBm, BP wavelength = 1529 nm, RPU power = 950 mW).
Fig. 6
Fig. 6 Output spectrum at RPU power of 950 mW and BP is turned off. The noise floors in red texts are measured at 1552 nm wavelength.
Fig. 7
Fig. 7 Channels flatness as a function of BP wavelength at the specified multiwavelength bandwidth coverage (RPU power = 950 mW, BP power = 2 dBm).
Fig. 8
Fig. 8 Output spectra of MBRFL for (a) Setup 1 (no AG) and (b) Setup 2 (with 0.4 mm AG) and their corresponding enlarged visuals in (c) and (d), respectively. (BP wavelength = 1529 nm, BP power = 2 dBm, RPU power = 950 mW).
Fig. 9
Fig. 9 Peak power fluctuation at (a) Setup 1 and (b) Setup 2 where all pumping properties are similar to those mentioned in Fig. 8.

Tables (2)

Tables Icon

Table 1 Achievements on 20 GHz. multiwavelength fiber lasers.

Tables Icon

Table 2 Numerical summary for the results obtained in Fig. 9.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RG(z)= g R P 0 exp( α P z)

Metrics