Abstract

Integrated dielectric metamaterials with plasmonic structures can cause drastic optical resonances and strengthen the capacity of light absorption. Here, we describe the optical properties of silicon nanoarrays on a thin silver film for extreme light confinement at subwavelength nanoscales. We attain the nearly total absorption in silicon nanostrips, which support magnetic quadruple Mie-type resonances in the visible regions. The Mie resonant field of the dielectric nanostrip engages the screening response of the silver film, resulting in plasmon resonance configuration and thus achieving perfect light absorption in the dielectric nanostrip. Moreover, we can attain similar results in other nanostructures, such as silicon cylinder and rhombus column arrays. Because it can sustain hybridized plasmon modes and magnetic modes, the combined system will benefit the application of solar energy accumulation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Multipolar nonlinear nanophotonics

Daria Smirnova and Yuri S. Kivshar
Optica 3(11) 1241-1255 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref] [PubMed]
  2. S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115(19), 197401 (2015).
    [Crossref] [PubMed]
  3. M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16(5), 3155–3159 (2016).
    [Crossref] [PubMed]
  4. J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal,” Opt. Express 24(15), 17103–17114 (2016).
    [Crossref] [PubMed]
  5. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
    [Crossref] [PubMed]
  6. T. Li, L. Huang, J. Liu, Y. Wang, and T. Zentgraf, “Tunable wave plate based on active plasmonic metasurfaces,” Opt. Express 25(4), 4216–4226 (2017).
    [Crossref] [PubMed]
  7. T. Jostmeier, M. Mangold, J. Zimmer, H. Karl, H. J. Krenner, C. Ruppert, and M. Betz, “Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites,” Opt. Express 24(15), 17321–17331 (2016).
    [Crossref] [PubMed]
  8. M. Qin, L. L. Wang, X. Zhai, Q. Lin, and S. X. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
    [Crossref]
  9. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  10. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
    [Crossref] [PubMed]
  11. X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
    [Crossref] [PubMed]
  12. J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(1), 472–490 (2015).
    [Crossref]
  13. G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
    [Crossref] [PubMed]
  14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  15. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
    [Crossref] [PubMed]
  16. S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
    [Crossref] [PubMed]
  17. M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [Crossref] [PubMed]
  18. T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
    [Crossref] [PubMed]
  19. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett. 36(17), 3371–3373 (2011).
    [Crossref] [PubMed]
  20. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
    [Crossref] [PubMed]
  21. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  22. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
    [Crossref] [PubMed]
  23. S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, “Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions,” J. Am. Chem. Soc. 139(17), 6160–6168 (2017).
    [Crossref] [PubMed]
  24. J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
    [Crossref] [PubMed]
  25. S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
    [Crossref]
  26. H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018).
    [Crossref]
  27. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [Crossref] [PubMed]
  28. H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
    [Crossref] [PubMed]
  29. T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
    [Crossref]
  30. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
    [Crossref]
  31. Q. Yang, J. Gu, Y. Xu, Y. Li, X. Zhang, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Transmission and plasmonic resonances on quasicrystal metasurfaces,” Opt. Express 25(20), 24173–24182 (2017).
    [Crossref] [PubMed]
  32. M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
    [Crossref]
  33. C. M. Roberts, S. Inampudi, and V. A. Podolskiy, “Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces,” Opt. Express 23(3), 2764–2776 (2015).
    [Crossref] [PubMed]
  34. Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
    [Crossref] [PubMed]
  35. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  36. I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
    [Crossref]
  37. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [Crossref] [PubMed]
  38. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
    [Crossref] [PubMed]
  39. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  40. H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).
    [Crossref]
  41. S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
    [Crossref] [PubMed]
  42. A. Nagarajan, K. Vivek, M. Shah, V. G. Achanta, and G. Gerini, “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Adv. Opt. Mater. 6(16), 1800253 (2018).
    [Crossref]
  43. L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B Condens. Matter Mater. Phys. 80(16), 161106 (2009).
    [Crossref]
  44. Y. L. Kuo, S. Y. Chuang, S. Y. Chen, and K. P. Chen, “Enhancing the interaction between high-refractive index nanoparticles and gold film substrates based on oblique incidence excitation,” ACS Omega 1(4), 613–619 (2016).
    [Crossref]

2018 (5)

M. Qin, L. L. Wang, X. Zhai, Q. Lin, and S. X. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

A. Nagarajan, K. Vivek, M. Shah, V. G. Achanta, and G. Gerini, “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Adv. Opt. Mater. 6(16), 1800253 (2018).
[Crossref]

2017 (7)

2016 (12)

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

T. Jostmeier, M. Mangold, J. Zimmer, H. Karl, H. J. Krenner, C. Ruppert, and M. Betz, “Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites,” Opt. Express 24(15), 17321–17331 (2016).
[Crossref] [PubMed]

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref] [PubMed]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
[Crossref]

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).
[Crossref]

Y. L. Kuo, S. Y. Chuang, S. Y. Chen, and K. P. Chen, “Enhancing the interaction between high-refractive index nanoparticles and gold film substrates based on oblique incidence excitation,” ACS Omega 1(4), 613–619 (2016).
[Crossref]

2015 (5)

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

C. M. Roberts, S. Inampudi, and V. A. Podolskiy, “Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces,” Opt. Express 23(3), 2764–2776 (2015).
[Crossref] [PubMed]

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115(19), 197401 (2015).
[Crossref] [PubMed]

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(1), 472–490 (2015).
[Crossref]

2014 (3)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
[Crossref]

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

2013 (2)

W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
[Crossref] [PubMed]

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (4)

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett. 36(17), 3371–3373 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

2010 (2)

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (1)

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B Condens. Matter Mater. Phys. 80(16), 161106 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Achanta, V. G.

A. Nagarajan, K. Vivek, M. Shah, V. G. Achanta, and G. Gerini, “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Adv. Opt. Mater. 6(16), 1800253 (2018).
[Crossref]

Aydin, K.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

Bai, W.

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
[Crossref] [PubMed]

Baillargeat, D.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bartoli, F.

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
[Crossref] [PubMed]

Bartoli, F. J.

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B Condens. Matter Mater. Phys. 80(16), 161106 (2009).
[Crossref]

Bender, D. A.

Betz, M.

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Bogdanov, A.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Bouhelier, A.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115(19), 197401 (2015).
[Crossref] [PubMed]

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Brener, I.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Butun, S.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Campione, S.

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Chen, H. J.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Chen, H. T.

Chen, K. P.

Y. L. Kuo, S. Y. Chuang, S. Y. Chen, and K. P. Chen, “Enhancing the interaction between high-refractive index nanoparticles and gold film substrates based on oblique incidence excitation,” ACS Omega 1(4), 613–619 (2016).
[Crossref]

Chen, L.

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
[Crossref] [PubMed]

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B Condens. Matter Mater. Phys. 80(16), 161106 (2009).
[Crossref]

Chen, S. Y.

Y. L. Kuo, S. Y. Chuang, S. Y. Chen, and K. P. Chen, “Enhancing the interaction between high-refractive index nanoparticles and gold film substrates based on oblique incidence excitation,” ACS Omega 1(4), 613–619 (2016).
[Crossref]

Cheng, L.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Cheng, Q. Q.

Christensen, T.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Chuang, S. Y.

Y. L. Kuo, S. Y. Chuang, S. Y. Chen, and K. P. Chen, “Enhancing the interaction between high-refractive index nanoparticles and gold film substrates based on oblique incidence excitation,” ACS Omega 1(4), 613–619 (2016).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Clem, P. G.

Cluzel, B.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115(19), 197401 (2015).
[Crossref] [PubMed]

Colas des Francs, G.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115(19), 197401 (2015).
[Crossref] [PubMed]

Cui, T. J.

Dai, X.

Dai, Y.

S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, “Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions,” J. Am. Chem. Soc. 139(17), 6160–6168 (2017).
[Crossref] [PubMed]

Dal Negro, L.

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

Demichel, O.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115(19), 197401 (2015).
[Crossref] [PubMed]

Dong, J.

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(1), 472–490 (2015).
[Crossref]

Dong, Z. G.

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Gan, Q.

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
[Crossref] [PubMed]

Gan, Q. Q.

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B Condens. Matter Mater. Phys. 80(16), 161106 (2009).
[Crossref]

Gerini, G.

A. Nagarajan, K. Vivek, M. Shah, V. G. Achanta, and G. Gerini, “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Adv. Opt. Mater. 6(16), 1800253 (2018).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Giessen, H.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref] [PubMed]

Ginn, J.

Grinblat, G.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Gu, J.

Guo, J.

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Han, J.

Han, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Hentschel, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref] [PubMed]

Ho, H. P.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Hu, J.

Hu, X. P.

Huang, L.

Ihlefeld, J. F.

Inampudi, S.

Iorsh, I.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

James, T. D.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

Jiang, L.

Jiang, X.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Joannopoulos, J. D.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Jostmeier, T.

Jun, Y. C.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250–256 (2014).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kafafi, Z.

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
[Crossref] [PubMed]

Karl, H.

Kivshar, Y. S.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Komissarenko, F.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Krenner, H. J.

Kuo, Y. L.

Y. L. Kuo, S. Y. Chuang, S. Y. Chen, and K. P. Chen, “Enhancing the interaction between high-refractive index nanoparticles and gold film substrates based on oblique incidence excitation,” ACS Omega 1(4), 613–619 (2016).
[Crossref]

Kuznetsov, A. I.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Li, H.

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
[Crossref]

Li, H. J.

H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).
[Crossref]

Li, T.

Li, Y.

Q. Yang, J. Gu, Y. Xu, Y. Li, X. Zhang, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Transmission and plasmonic resonances on quasicrystal metasurfaces,” Opt. Express 25(20), 24173–24182 (2017).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Lin, Q.

M. Qin, L. L. Wang, X. Zhai, Q. Lin, and S. X. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
[Crossref]

Lin, Z. Y.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Liu, J.

Liu, J. Q.

Liu, L.

S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, “Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions,” J. Am. Chem. Soc. 139(17), 6160–6168 (2017).
[Crossref] [PubMed]

Liu, P.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Liu, S.

Liu, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Liu, X.

Liu, Y.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Lu, F. F.

Lu, H.

Lu, W. B.

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Mahony, T. S.

Maier, S. A.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Mangold, M.

Mao, D.

Mesch, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref] [PubMed]

Metzger, B.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref] [PubMed]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Miller, O. D.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Miroshnichenko, A. E.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Miyata, M.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mukhin, I.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Mulvaney, P.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

Nagarajan, A.

A. Nagarajan, K. Vivek, M. Shah, V. G. Achanta, and G. Gerini, “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Adv. Opt. Mater. 6(16), 1800253 (2018).
[Crossref]

Ni, Z. H.

Nielsen, M. P.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Nordlander, P.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Oulton, R. F.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Ouyang, C.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Permyakov, D.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Petek, H.

S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, “Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions,” J. Am. Chem. Soc. 139(17), 6160–6168 (2017).
[Crossref] [PubMed]

Podolskiy, V. A.

Qin, M.

H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018).
[Crossref]

M. Qin, L. L. Wang, X. Zhai, Q. Lin, and S. X. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
[Crossref]

Ren, J.

S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, “Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions,” J. Am. Chem. Soc. 139(17), 6160–6168 (2017).
[Crossref] [PubMed]

Ren, R.

Ren, Y. Z.

Roberts, A.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

Roberts, C. M.

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Ruppert, C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Samusev, A.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Shah, M.

A. Nagarajan, K. Vivek, M. Shah, V. G. Achanta, and G. Gerini, “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Adv. Opt. Mater. 6(16), 1800253 (2018).
[Crossref]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Sinclair, M. B.

Sinev, I.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Soljacic, M.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Song, G.

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
[Crossref] [PubMed]

Sun, B.

Sun, M.

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(1), 472–490 (2015).
[Crossref]

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Tan, S.

S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, “Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions,” J. Am. Chem. Soc. 139(17), 6160–6168 (2017).
[Crossref] [PubMed]

Tian, Z.

Tongay, S.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Valuckas, V.

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Viarbitskaya, S.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115(19), 197401 (2015).
[Crossref] [PubMed]

Vivek, K.

A. Nagarajan, K. Vivek, M. Shah, V. G. Achanta, and G. Gerini, “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Adv. Opt. Mater. 6(16), 1800253 (2018).
[Crossref]

Walsh, G. F.

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

Wang, B.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Wang, C. X.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Wang, G.

Wang, G. P.

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B Condens. Matter Mater. Phys. 80(16), 161106 (2009).
[Crossref]

Wang, H.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Wang, L.

Wang, L. L.

M. Qin, L. L. Wang, X. Zhai, Q. Lin, and S. X. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

Wang, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
[Crossref]

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Wang, Y.

Wen, S.

Wen, S. C.

Wendt, J. R.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wright, J. B.

Wu, J.

Xia, Q. S.

M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
[Crossref]

Xia, S. X.

M. Qin, L. L. Wang, X. Zhai, Q. Lin, and S. X. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

Xiang, Y.

Xiao, L.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Xiao, S.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
[Crossref]

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Xu, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Xu, H. J.

Xu, Y.

Yan, J. H.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Yan, X.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
[Crossref]

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Yang, G. W.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Yang, Q.

Yang, Y.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Yong, K. T.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Zeng, S.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Zentgraf, T.

Zhai, X.

M. Qin, L. L. Wang, X. Zhai, Q. Lin, and S. X. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).
[Crossref]

Zhang, B.

M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
[Crossref]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

Zhang, Z.

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(1), 472–490 (2015).
[Crossref]

Zhao, J.

S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, “Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions,” J. Am. Chem. Soc. 139(17), 6160–6168 (2017).
[Crossref] [PubMed]

Zheng, H.

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(1), 472–490 (2015).
[Crossref]

Zhou, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Zhu, S. N.

Zhu, W.

Zhu, Y. Y.

Zimmer, J.

ACS Omega (1)

Y. L. Kuo, S. Y. Chuang, S. Y. Chen, and K. P. Chen, “Enhancing the interaction between high-refractive index nanoparticles and gold film substrates based on oblique incidence excitation,” ACS Omega 1(4), 613–619 (2016).
[Crossref]

Adv. Opt. Mater. (1)

A. Nagarajan, K. Vivek, M. Shah, V. G. Achanta, and G. Gerini, “A broadband plasmonic metasurface superabsorber at optical frequencies: Analytical design framework and demonstration,” Adv. Opt. Mater. 6(16), 1800253 (2018).
[Crossref]

Carbon (1)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Europhys. Lett. (1)

M. Qin, X. Zhai, L. Wang, H. Li, Q. S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” Europhys. Lett. 114(5), 57006 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Qin, L. L. Wang, X. Zhai, Q. Lin, and S. X. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, “Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions,” J. Am. Chem. Soc. 139(17), 6160–6168 (2017).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (2)

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D Appl. Phys. 51(41), 415105 (2018).
[Crossref]

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Laser Photonics Rev. (1)

I. Sinev, I. Iorsh, A. Bogdanov, D. Permyakov, F. Komissarenko, I. Mukhin, A. Samusev, V. Valuckas, A. I. Kuznetsov, B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films,” Laser Photonics Rev. 10(5), 799–806 (2016).
[Crossref]

Nano Lett. (8)

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16(5), 3155–3159 (2016).
[Crossref] [PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

Nanophotonics (1)

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(1), 472–490 (2015).
[Crossref]

Nat. Commun. (2)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Opt. Express (11)

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref] [PubMed]

W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
[Crossref] [PubMed]

T. Li, L. Huang, J. Liu, Y. Wang, and T. Zentgraf, “Tunable wave plate based on active plasmonic metasurfaces,” Opt. Express 25(4), 4216–4226 (2017).
[Crossref] [PubMed]

T. Jostmeier, M. Mangold, J. Zimmer, H. Karl, H. J. Krenner, C. Ruppert, and M. Betz, “Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites,” Opt. Express 24(15), 17321–17331 (2016).
[Crossref] [PubMed]

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express S4(104), A620–A630 (2010).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

Q. Yang, J. Gu, Y. Xu, Y. Li, X. Zhang, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Transmission and plasmonic resonances on quasicrystal metasurfaces,” Opt. Express 25(20), 24173–24182 (2017).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

C. M. Roberts, S. Inampudi, and V. A. Podolskiy, “Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces,” Opt. Express 23(3), 2764–2776 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Phys. Chem. Chem. Phys. (1)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B Condens. Matter Mater. Phys. 80(16), 161106 (2009).
[Crossref]

Phys. Rev. Lett. (2)

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115(19), 197401 (2015).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic representation of dielectric nanostrip arrays, which defines the resonant mode of the dielectric nanostrip and plasmonic film. The system is illuminated by a y-polarized incident TM light with an incidence angle of φ. (b) Vertical view of the structure with different parametric definitions. The polarization angle θ is defined with respect to the x-axis.
Fig. 2
Fig. 2 (a) Fitted and simulated absorption spectra for the design with single silicon nanostrip (black line), single silver film (blue line), and the coupled system (cyan and red line). (b) Electric field image of this proposed structure at the resonant wavelength of λ0 = 493 nm on the x-z plane. The relevant poles are described by + and signs. Arrows show the magnetic field. Ez distribution on the z = 50 nm as shown in (c) and z = −100 nm (d) planes for λ0 = 493 nm.
Fig. 3
Fig. 3 (a) Absorption spectra of the nanostructure for different electric polarization angles θ from 0 to 90°, taking 30° as a step. (b) Absorption spectra as a function of the polarization angle of incident light wave and the wavelength. (c) The intensity of absorption as a function of θ.
Fig. 4
Fig. 4 (a) Absorption spectra of nanostructure at different incident oblique angles φ from 0 to 60°, taking 15° as a step. (b) Absorption spectra as a function of the incident oblique angle φ and wavelength. (c) The intensity of absorption as a function of φ.
Fig. 5
Fig. 5 (a) Dependence of absorption spectra on the silicon length l. (b) Simulated absorption spectra at varied refractive indices n of the dielectric nanostrips.
Fig. 6
Fig. 6 Schematic representation of dielectric cylinder (a) and rhombus (b) column arrays, respectively. Corresponding simulated absorption spectra for the dielectric cylinder (c) and rhombus (d) column arrays.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

da dt =( i ω 0 ση )a+i 2σ S 1
S 2 = S 1 i 2σ a
R= | S 2 S 1 | 2 = i( ω ω 0 )η+σ i( ω ω 0 )+η+σ
A= 4ση ( ω ω 0 ) 2 + ( σ+η ) 2
k 0 2 ε d β 2 h=arctan( ε d β 2 k 0 2 ε 0 ε 0 k 0 2 ε d β 2 )+arctan( ε d β 2 k 0 2 ε m ε m k 0 2 ε d β 2 )
w( 2π λ ) n eff =mπξ