Abstract

Here, we present a graphene-based long-wavelength infrared photodetector, for enhancing the infrared absorption of which the design consists of magnetic- and electric-plasmon resonators of metasurface to excite the graphene surface-plasmonic polaritons (SPPs). Through tuning the graphene Fermi energy to achieve the distinct resonances in a matching frequency, peak graphene absorbance exceeding 67.2% is confirmed, even when a lossy dielectric is used, and the field angle of view is up to 90°. If the graphene is of a different carrier mobility, then the absorption frequency is lockable, and the device always can keep the system absorbance close to 100 percent. The significantly enhanced graphene absorbance, up to ~29-fold that of a suspended graphene (general 2.3%), is attributed to the surface-plasmonic coupling between the magnetic and the electric resonances, as well as Fabry-Pérot interference of the coherent SPPs. The plasmonic cavity-mode model and equivalent-circuit method developed in this study will also be useful in guiding other optoelectronic device design.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable unidirectional surface plasmon polariton launcher utilizing a graphene-based single asymmetric nanoantenna

Lei Huang, Shan Wu, Yulin Wang, Xiangjun Ma, Hongmei Deng, Shuming Wang, Ye Lu, Chuanqi Li, and Tao Li
Opt. Mater. Express 7(2) 569-576 (2017)

Multi-band terahertz absorber exploiting graphene metamaterial

Qihui Zhou, Peiguo Liu, Li-an Bian, Xin Cai, and Hanqing Liu
Opt. Mater. Express 8(9) 2928-2940 (2018)

Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial

Hui Xu, Hongjian Li, Zhihui He, Zhiquan Chen, Mingfei Zheng, and Mingzhuo Zhao
Opt. Express 25(17) 20780-20790 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  3. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
    [Crossref] [PubMed]
  4. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
    [Crossref] [PubMed]
  5. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  6. F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  7. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  8. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  9. S. Qu, C. Ma, and H. Liu, “Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement,” Sci. Rep. 7(1), 5190 (2017).
    [Crossref] [PubMed]
  10. X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
    [Crossref] [PubMed]
  11. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  12. S. Xia, X. Zhai, L. Wang, and S. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
    [Crossref]
  13. N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7(1), 7303 (2017).
    [Crossref] [PubMed]
  14. B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
    [Crossref]
  15. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [Crossref] [PubMed]
  16. L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016).
    [Crossref] [PubMed]
  17. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
    [Crossref]
  18. Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
    [Crossref] [PubMed]
  19. X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
    [Crossref] [PubMed]
  20. Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
    [Crossref] [PubMed]
  21. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
    [Crossref] [PubMed]
  22. A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, and H. Habibiyan, “Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator,” Appl. Opt. 56(34), 9556–9563 (2017).
    [Crossref] [PubMed]
  23. Y. Cai, J. Zhu, and Q. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
    [Crossref]
  24. M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
    [Crossref] [PubMed]
  25. B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
    [Crossref] [PubMed]
  26. U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
    [Crossref] [PubMed]
  27. Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
    [Crossref] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  29. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
    [Crossref]
  30. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  31. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
    [Crossref]
  32. X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
    [Crossref]
  33. A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
    [Crossref]
  34. V. D. Lam, J. B. Kim, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15(25), 16651–16656 (2007).
    [Crossref] [PubMed]
  35. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  36. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
    [Crossref]
  37. L. Du, D. Tang, and X. Yuan, “Edge-reflection phase directed plasmonic resonances on graphene nano-structures,” Opt. Express 22(19), 22689–22698 (2014).
    [Crossref] [PubMed]
  38. A. Y. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
    [Crossref]

2018 (2)

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

S. Xia, X. Zhai, L. Wang, and S. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
[Crossref]

2017 (7)

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref] [PubMed]

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, and H. Habibiyan, “Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator,” Appl. Opt. 56(34), 9556–9563 (2017).
[Crossref] [PubMed]

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7(1), 7303 (2017).
[Crossref] [PubMed]

S. Qu, C. Ma, and H. Liu, “Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement,” Sci. Rep. 7(1), 5190 (2017).
[Crossref] [PubMed]

2016 (4)

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016).
[Crossref] [PubMed]

2015 (4)

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

Y. Cai, J. Zhu, and Q. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

2014 (7)

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
[Crossref] [PubMed]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

A. Y. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

L. Du, D. Tang, and X. Yuan, “Edge-reflection phase directed plasmonic resonances on graphene nano-structures,” Opt. Express 22(19), 22689–22698 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

2012 (2)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

2011 (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

2010 (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

2009 (1)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

2008 (4)

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

2007 (1)

2006 (1)

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Abdolhosseini, S.

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Akhavan, A.

Avouris, P.

M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Borini, S.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Bruna, M.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Cai, Y.

Cai, Z.

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Charlton, M. D. B.

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7(1), 7303 (2017).
[Crossref] [PubMed]

Chen, C.

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Chen, J. H.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Cheng, L.

Cheng, X.

Colli, A.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

De Fazio, D.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Deng, B.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Du, L.

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Fan, Y. S.

Farmer, D. B.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Ferrari, A. C.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Freitag, M.

M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
[Crossref] [PubMed]

Fuhrer, M. S.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

García de Abajo, F. J.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Ghafoorifard, H.

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Guinea, F.

M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
[Crossref] [PubMed]

Guo, C. C.

Guo, Q.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Habibiyan, H.

Han, S. J.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Huang, Y.

Ishigami, M.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Jang, C.

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Jiang, X.

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Kim, J. B.

Kong, J.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Koppens, F. H.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Koschny, T.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Lam, V. D.

Lee, B. J.

Lee, S. J.

Lee, Y. P.

Li, C.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lidorikis, E.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Lin, T.

Ling, X.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Liu, H.

S. Qu, C. Ma, and H. Liu, “Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement,” Sci. Rep. 7(1), 5190 (2017).
[Crossref] [PubMed]

Liu, J. Q.

Liu, Q.

Y. Cai, J. Zhu, and Q. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Liu, Q. H.

Liu, X. L.

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
[Crossref] [PubMed]

A. Y. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

Ma, C.

S. Qu, C. Ma, and H. Liu, “Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement,” Sci. Rep. 7(1), 5190 (2017).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martin-Moreno, L.

M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
[Crossref] [PubMed]

A. Y. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

Matthaiakakis, N.

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7(1), 7303 (2017).
[Crossref] [PubMed]

Mizuta, H.

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7(1), 7303 (2017).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Nanot, S.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Nikitin, A. Y.

A. Y. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Pan, L.

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Parret, R.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Peres, N. M.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Qin, S. Q.

Qu, S.

S. Qu, C. Ma, and H. Liu, “Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement,” Sci. Rep. 7(1), 5190 (2017).
[Crossref] [PubMed]

Rhee, J. Y.

Sakurai, A.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

Sassi, U.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Soukoulis, C. M.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tang, D.

Tang, L.

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Tuttle, G.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, H.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Wang, J.

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Wang, L.

Wang, L. L.

Wang, L. P.

Wang, T.

Wang, W.

Wang, X.

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Wei, W.

Wen, S.

Wen, S. C.

Wu, F.

Xia, F.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Xia, S.

Xia, S. X.

Xiao, S.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Xu, W.

Yan, X.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7(1), 7303 (2017).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Ye, L.

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, R.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Yuan, S.

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Yuan, X.

Yuan, X. D.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhai, X.

Zhang, H.

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016).
[Crossref] [PubMed]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Zhao, B.

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, Z.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Zhou, J.

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Zhu, J.

Zhu, W.

M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
[Crossref] [PubMed]

Zhu, Z. H.

ACS Nano (4)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

M. Freitag, T. Low, L. Martin-Moreno, W. Zhu, F. Guinea, and P. Avouris, “Substrate-sensitive mid-infrared photoresponse in graphene,” ACS Nano 8(8), 8350–8356 (2014).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Cai, J. Zhu, and Q. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

J. Opt. (1)

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

Nano Lett. (2)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. J. García de Abajo, and F. Xia, “Efficient electrical detection of mid-infrared graphene plasmons at room temperature,” Nat. Mater. 17(11), 986–992 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Opt. Express (7)

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
[Crossref] [PubMed]

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[Crossref] [PubMed]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

L. Du, D. Tang, and X. Yuan, “Edge-reflection phase directed plasmonic resonances on graphene nano-structures,” Opt. Express 22(19), 22689–22698 (2014).
[Crossref] [PubMed]

V. D. Lam, J. B. Kim, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15(25), 16651–16656 (2007).
[Crossref] [PubMed]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (3)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

A. Y. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 90(4), 041407 (2014).
[Crossref]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Sci. Rep. (4)

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7(1), 7303 (2017).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

S. Qu, C. Ma, and H. Liu, “Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement,” Sci. Rep. 7(1), 5190 (2017).
[Crossref] [PubMed]

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Science (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic structure of the graphene-based photodetector under normal incidence of TM-polarized radiation: incident electric field (E0), magnetic field (H0), and longitudinal wave vector (Κint) in a coordinate system. Structural parameters: grating period (p), width (w), and height (h); Al2O3 dielectric thickness (t); bottom metal thickness (t'). h = 100 nm is selected for the height larger than EM-wave penetration depths (δM), t = 300 nm for nearly t-independence of the electric-SP frequency (fSP,e), and t' = 200 nm for near-zero transmission. For the magnetic SPs, EM dissipation in the low-loss dielectric increases with the dielectric thickness, and the graphene absorption is thus reduced. The selected thickness is a compromise with the low dielectric loss.
Fig. 2
Fig. 2 When EF = 0.6 eV, distributions of surface current density at: (a) λ0,m;λ0,e = 10.15 μm for the structure of (p, w) = (7.0, 5.0) with the magnetic- and electric-SP modes both involved; (b) λ0,e = 10.15 μm for (p, w) = (3.0, 1.0), where fSP,m is detuned. Color bar: Jx,G(M) in A/m2; to guide the eyes, the boundaries of grating and bottom metal (in white solid line) are highlighted. RLC equivalent circuits: (c) the magnetic SPs in dipole mode for (p, w) = (7.0, 5.0); (d): the electric SPs in nth-order mode for (p, w) = (3.0, 1.0), of which the bottom-metal inductance (Le′) is negligible if the dielectric is thick enough to satisfy (ωCD)−1>>ωLe′.
Fig. 3
Fig. 3 At EF = 0.4 eV, the device reflectance (R) contours: (a) dependence of w when the period of p = 7.0 μm is fixed; on the contrary, (b) dependence of p when the grating width of w = 5.0 μm is fixed. Dash line: the electric SPs along Air/Metal interface of the gratings; scattered symbol: calculated λ0,m. Spectra in absorbance of the graphene (AG): (c) at the different EF and for the device in the structure of (p, w) = (3.0, 1.0), where the electric SPs in the different mode are solely involved in LWIR region; (d) at EF = 0.6 eV and under the magnetic- and electric-SP coupling when the slotted-graphene width of wG′ = 2.0 μm is fixed. To approach fSP,e in the modes of n = 4, 6, and 8 individually, the various structures in (p, w) are selected to alter the fundamental fSP,m.
Fig. 4
Fig. 4 For the device in the structure of (p, w) = (3.0, 1.0), EF dependence of λ0,e in different mode. λ0,e: calculated (in line); simulated (in symbol).
Fig. 5
Fig. 5 (a) When (p, w) = (5.5, 3.5), absorbance spectra of the graphene (AG) at different EF. When EF = 0.6 eV, three intense peaks, located at λ0 = 10.15, 9.38, and 8.76 μm, correspond to the electric SPs in the modes of n = 4, 6, and 8, respectively. (b) At the three peaks, normalized field of |Ex|/|E0| along the x axis. Boundaries of the grating and bottom metal (in white solid line) and graphene (in black dash) are highlighted.
Fig. 6
Fig. 6 The device is designed in the structure of (p, w) = (5.5, 3.5). The carrier mobility dependence of the absorbance spectra: for the graphene (AG) (a) at EF = 0.6 eV and (b) around EF = 0.6 eV, as well as (c) for the system of device (ASYS) around EF = 0.6 eV.
Fig. 7
Fig. 7 For the device in the structure of (p, w)=(5.5, 3.5), the absorbance of graphene (AG, θ) and system (ASYS, θ) at λ0=9.38 μm changes with the radiation incident angle (θ). The graphene: EF=0.6 eV; μ=2×103 cm2V-1s-1. The field angle is determined: at θ=θFV/2, the graphene absorbance is dropped by 0.37 times that at normal incident.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

σ( ω )=i 2 e 2 k B T π 2 ( ω+i τ 1 ) ln[ 2cosh( E F 2 k B T ) ],
A G = 2π λ 0 | E 0 | 2 S ε G V | E G | 2 dV .
R G( M ) +iω L e,G( M ) = γ 1 w G( M ) ε 0 ωl δ G( M ) ( ε G( M ) ε 2 G( M ) + ε 2 G( M ) i ε G( M ) ε 2 G( M ) + ε 2 G( M ) ),
f SP,m = 1 2π [ ( 1 L m + 1 2 L G ) 1 C m + 1 L m C D 8 L m 2 L G ( L m + L G ) C m C D + ( L m 2 C D +2 L m L G C m +2 L m L G C D ) 2 2 L m 2 L G C m C D ] 1 2 .
f SP,e = 1 2π [ ( L G + L e )( C e + C D 2 ) ] 1 2 .
1 k SPP 2 k 0 2 + ε D k SPP 2 ε D k 0 2 = iσ ω ε 0 ,
k SPP ε 0 ( 1+ ε D ) 2 2ω σ σ 2 + σ 2 .
f SP,e = 1 2π nπΔφ ε 0 ( 1+ ε D ) w G σ 2 + σ 2 σ ;n=2,4,6
k SPP π 2 ε 0 ( 1+ ε D ) e 2 E F ω 2 ,
L e,G γ 1 w G l π 2 e 2 E F .